Supporting Information

Acremolin from *Acremonium strictum* is *N*²,3-Etheno-2'-isopropyl-1-methylguanine, not a 1*H*-Azirine. Synthesis and Structural Revision.

Lawrence A. Januar[§] and Tadeusz F. Molinski*,§,†

[§]Department of Chemistry and Biochemistry, and [†]Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive MC0358, La Jolla, CA, 92093 tmolinski@ucsd.edu

Page	Content	Title
S1-S2		Experimental procedures
S3	Figure S1.	Fluorescence spectrum of 5a .
S4	Figure S2.	Expansion of 1H NMR spectrum of 5a
S5	Figure S3.	¹ H NMR spectrum of 6 (500 MHz, CF_3COOD).
S6	Figure S4.	13 C NMR spectrum of 6 (125 MHz, CF ₃ COOD).
S7	Figure S5.	¹ H NMR spectrum of 7a (500 MHz, DMSO- d_6).
S8	Figure S6.	¹³ C NMR spectrum of 7a (125 MHz, DMSO- d_6).
S9	Figure S7.	DEPT-135 spectrum of 7a (125 MHz, DMSO- <i>d</i> ₆).
S10	Figure S8.	DEPT-90 spectrum of 7a (125 MHz, DMSO- <i>d</i> ₆).
S11	Figure S9.	HSQC spectrum of 7a (125 MHz, DMSO- d_6).
S12	Figure S10.	HMBC spectrum of 7a (125 MHz, DMSO- <i>d</i> ₆).
S13	Figure S11.	¹ H NMR spectrum of 10 (500 MHz, CD ₃ OD).
S14	Figure S12.	13 C NMR spectrum of 10 (125 MHz, CD ₃ OD).
S15	Figure S13	¹ H NMR spectrum of 10a (500 MHz, DMSO- d_6).
S16	Figure S14	13 C NMR spectrum of 10a (125 MHz, DMSO- d_6).
S17	Figure S15.	¹ H NMR spectrum of 5a (500 MHz, DMSO- d_6).
S18	Figure S16.	¹³ C NMR spectrum of 5a (125 MHz, DMSO- d_6).
S19	Figure S17.	DEPT-135 spectrum of 5a (125 MHz, DMSO- <i>d</i> ₆).
S20	Figure S18.	HMBC spectrum of 5a (125 MHz, DMSO- <i>d</i> ₆).
S21	Figure S19	LCMS of byproduct of debenzylation of 10 .
S22	Table S1	Tabulated $^{1}H^{-13}C$ HMBC data of 7a (DMSO- d_{6})
S23	Table S2	Tabulated $^{1}H^{-13}C$ - and $^{1}H^{-15}N$ -HMBC data of 5a (DMSO- d_{6})
S24	Figure S20	$^{1}\text{H}-^{15}\text{N}-\text{HMBC}$ spectrum of 5a (DMSO- <i>d</i> ₆)
S25	Figure S21	¹ H- ¹⁵ N-HMBC spectrum of 5a (DMSO- d_6) – expansion

1-Methylguanine (6). A solution of guanosine (5.97 g, 21.1 mmol in 40.0 mL anhydrous DMSO) was treated with NaH (511 mg, 21.3 mmol) under N₂ at room temperature. After stirring the mixture for 75 minutes, a solution of iodomethane (3.00 g, 21.1 mmol) in DMSO (1.0 mL) was added dropwise. The reaction mixture was allowed to stir for 5 hours at room temperature then poured into 400 mL of isopropanol and combined with washings (40 mL). The combined *i*-PrOH solution was placed in a freezer (-20 °C)

overnight and the precipitated solid material collected by filtration and washed with acetone (200 mL). The solid was quickly resuspended in acetone and filtered again. The filtered solid was dried under reduced to pressure to give pure *1-methylguanosine* (4.24 g, 14.3 mmol). A second crop was obtained by cooling the filtrate in a -80° C freezer and purified as described above (102 mg, 0.343 mmol). The combined yield **1** was 69%; ¹H-NMR (400 MHz, D₂O) δ 7.83 (1H, s), 5.79 (1H, d, *J*_H=5.6 Hz), 4.67 (1H, t, *J*_H=5.4 Hz), 4.35 (1H, t, *J*_H= 4.2 Hz), 4.16 (1H, q, *J*_H= 3.2 Hz), 3.85 (1H, dd, *J*_H=2.4, 12.8 Hz), 3.77 (1H, dd, *J*_H=3.6, 12.4 Hz), 3.32 (3H, s).^{[1][2][3]}

A solution of *1-methylguanosine* (1.97 g, 6.63 mmol in 1M HCl (10.0 mL) was heated at reflux for 1.5 hours. The reaction mixture was allowed to cool to room temperature, diluted with deionized H₂O (10.0 mL), and made alkaline with 2M NaOH aqu. Upon cooling to 3 °C. the solution deposited a solid precipitate, which was collected by filtration, washed with deionized H₂O and dried under reduced pressure to give pure $\mathbf{6}^{[5]}$ (617 mg, 61%; 42% over two steps) as an off-white amorphous solid; UV-vis (MeOH) λ_{max} 273, 249 nm. ¹H-NMR (500 MHz, CF₃COOD) δ 8.79 (1H, s), 3.58 (3H, s); ¹³C-NMR (125 MHz, CF₃COOD) δ 156.5 (C-2), 155.1 (C-2), 144.4 (C-4), 140.5 (C-8), 109.9 (C-5), 30.9 (C-10).

7-*N*-*p*-methoxybenzyl-1-methylguanine (7a). A suspension of 6 (300 mg, 1.82 mmol) and K_2CO_3 (303 mg, 2.19 mmol) in anhydrous DMSO (10.0 mL) was vigorously stirred under an atmosphere of N₂. *p*-Methoxybenzylchloride (512 mg, 3.27 mmol) was added and the solution was allowed to stir at room temperature for 26 hours. Deionized H₂O (100 mL) was added to the reaction mixture and the pH of the solution was adjusted to ~8 using 1M NH₄OH followed by extraction with EtOAc (5x100

mL). The EtOAc layers were combined, washed with deionized H₂O (50 mL) and concentrated under reduced pressure, during which **7a** precipitated as a while solid (87 mg) and recrystallized from EtOH to give pure **7a** (61.8 mg). The combined EtOAc layers were concentrated and passed through a short SiO₂ column (0-10% CH₃OH in CH₂Cl₂) to obtain an additional 30.0 mg of pure **7a** (total yield, 91.8 mg, 31%) along with a mixture of **7a**, **b** (200 mg, 0.702 mmol). ¹H-NMR analysis of the mixture showed a 1:2 isomeric ratio of **7a** and its N^9 isomer, **7b** (1.2:1 $N^7:N^9$ isomers, 56%); **7a**: UV (CH₃OH) λ_{max} (log ε) 215 (4.03), 282 (3.45); FTIR (ATR): v 3338, 3171, 2959, 2930, 1688, 1642, 1614, 1556, 1513, 1248 cm⁻¹; ¹H-NMR (500 MHz, (CD₃)₂SO) δ 8.08 (1H, s), 7.29 (2H, d, *J*=8.6 Hz), 6.87 (2H, d, *J*=8.6 Hz), 6.71 (1H, s), 5.35 (2H, s), 3.70 (3H, s), 3.36 (3H, s); ¹³C-NMR (125 MHz, (CD₃)₂SO) ¹³C-NMR (125 MHz, (CD₃)₂SO) δ 158.8 (C-6), 157.9 (C-5"), 154.3 (C-2), 153.5 (C-4), 143.4 (C-8), 129.2 (C-2"), 129.8 (C-3"), 113.9 (C-4"), 107.0 (C-5), 55.1 (C-6"), 48.3 (C-1"), 27.8 (C-10); HRMS *m/z* 286.1299 [M+H]⁺ calc. for C₁₄H₁₆O₂N₅, 286.1299

7-*N*-(*p*-Methoxybenzyl)acremolin (10). To a suspension of 7a (51.4 mg, 0.180 mmol) and 4Å molecular sieves (400 mg) in anhydrous CH₃CN (5.0 mL) was added 3-methyl-1-bromo-2-butanone (8, 38.9 mg, 0.236 mmol) under an atmosphere of N₂. The reaction mixture was heated and stirred at 40 °C for 21 hours. Additional bromoketone (15.4 mg, 0.0933 mmol) was added and the stirring continued until TLC showed absence of starting material (23 h). The mixture was neutralized using 1M NH₄OH aqu. and the solid material removed by filtration. The filtrate was dried to

give a white solid (64 mg) that was purified on a short SiO₂ column (0-10% CH₃OH-CH₂Cl₂) to yield crude material (20.8 mg) containing **10** and the mono-alkylation product **10a** (43.4 mg, 54%). Repurification of the former by silica chromatography (1:1 EtOAc-hexanes) gave pure **10** (16.9 mg, 27%). UV (CH₃OH) λ_{max}

(log ε): 225 (4.65), 273 (4.11); FTIR (ATR): v 2954, 2935, 1671, 1613, 1516, 1246 cm⁻¹; ¹H-NMR (500 MHz, CD₃OD) δ 8.14 (1H, s), 7.37 (2H, d, J_{H-H} =8.8 Hz), 7.33 (1H, s), 6.88 (2H, d, J_{H-H} =8.8 Hz), 5.58 (2H, s), 3.75 (3H, s), 3.66 (3H, s), 2.94 (1H, m), 1.31 (3H, d, J_{H-H} =6.8 Hz); ¹³C-NMR (125 MHz, CD₃OD) 159.8 (C-5''), 153.4(C-6), 148.9(C-2'), 142.7 (C-2), 142.3 (C-4), 141.7 (C-8), 129.2 (C-3''), 128.2 (C-2''), 113.8 (C-4''), 108.4 (C-5), 102.9 (C-1''), 54.3 (C-6''), 49.2 (C-1''), 27.9 (C-10), 27.7 (C-3'), 21.1 (C-4' and C-5'); HRMS m/z 352.1769 [M+H]⁺ calcd for C₁₉H₂₂N₅O₂, 352.1768.

Monoalkylation product 10a. ¹H-NMR (500 MHz, $(CD_3)_2SO$) δ 9.25 (1H, br s, H-8), 7.80 (2H, br s, N-H₂), 7.44 (2H, d, $J_{\text{H-H}}$ =8.7 Hz, H-3''), 6.98 (2H, d, $J_{\text{H-H}}$ =8.7 Hz, H-4''), 5.62 (2H, s, H-1'), 5.31 (2H, s, H-1''), 3.75 (3H, s, H-6''), 3.33 (3H, s, H-10), 2.89 (1H, septet, $J_{\text{H-H}}$ =6.9 Hz, H-3'), 1.32 (3H, d, $J_{\text{H-H}}$ =6.9 Hz, H-4' and H-5'); ¹³C-NMR (125 MHz, (CD₃)₂SO) δ 205.3 (C-2'), 159.6 (C-5''), 156.1 (C-6), 152.9 (C-2), 148.1 (C-4), 138.54 (C-8), 130.2 (C-3''), 126.3 (C-2''), 114.3 (C-4''), 104.9 (C-5), 55.2 (C-6''), 51.0 (C-1''), 50.8 (C-1'), 37.8 (C-3'), 28.6 (C-10), 17.7 (C-4' and C-5'). In CD₃OD, H-1' and H-8 underwent rapid deuterium exchange (23 °C), and the corresponding

¹H and ¹³C NMR signals were attenuated. HRMS m/z 370.1873 [M]⁺ calcd for C₁₉H₂₄N₅O₃, 370.1874

Acremolin (5a). Compound 10 was deprotected to give acremolin (5a) using two methods. *Method A*: To a solution of 10 (16.9 mg, 0.0481 mmol in 0.5 mL toluene) was added 90% H₂SO₄ (50 μ L). The mixture was vigorously stirred at 50 °C for 3 days. The reaction mixture was then diluted with toluene (1.5 mL) and deionized H₂O (2 mL). The toluene layer was removed and the aqueous layer was extracted with a second portion of toluene (2 mL). The aqueous layer was neutralized to pH 7-8 using 1M aqueous NH₄OH and extracted with EtOAc (3x3 mL). The EtOAc layers were combined and concentrated to yield pure 5a (4.3 mg, 39%) as a colorless amorphous solid with

spectroscopic properties identical to those reported for acremolin.^[4]: UV (CH₃OH) λ_{max} (log ε) pH 3: 219 (4.57), 254 (4.06); pH 7: 223 (4.49), 269 (4.05); pH 9: 225 (4.61), 270 (4.16); Fluorescence λ_{ex} 296 nm, λ_{em} 421 nm; FTIR (ATR): v 3099, 2958, 2925, 1672, 1617, 1568, 1518, 1464 cm⁻¹; ¹H-NMR (500 MHz, (CD₃)₂SO) δ 13.87 (1H, s, br), 8.16 (1H, s), 7.38 (1H, s), 3.57 (3H, s), 2.88 (1H, septet, J_{H-H} =6.9 Hz), 1.25 (6H, d, J_{H-H} =6.9 Hz); ¹³C-NMR (125 MHz, (CD₃)₂SO) δ 152.8 (C-6), 148.0(C-2'), 142.3 (C-2), 141.6 (C-4), 140.5 (C-8, ¹J_{CH} = 212.7 Hz), 108.9 (C-5), 103.2 (C-1', ¹J_{CH} = 195.5 Hz),), 28.9 (C-10), 27.7 (C-3'), 22.1 (C-4' and C-5'); HRMS *m*/z 232.1191 [M+H]⁺ calcd for C₁₁H₁₄O₂N₅, 232.1193.

The aqueous phase from the workup of **5a** was examined by LCMS (see Figure S11) and showed a single major *water-soluble* by-product, **10**•SO₃H (m/z 432.2).

m/z 232.1191 N N Nhed by LCMS e by-product, $10 \cdot SO_3H$ (tentative structure)

Method B: A solution of **10** (2.8 mg 7.9 μ mol) in TFA (1.0 mL) in a sealed vial was heated to 40 °C with vigorous stirring for 24 h, then at 80 °C for an additional 15 h. The mixture was cooled to room temperature and TFA was removed under reduced pressure to give a brown residue. The residue was dissolved in deionized H₂O (1.0 mL) and the solution neutralized (1M NH₄OH) before extraction with EtOAc (4 x 4 mL). The combined organic layers were dried to give crude **5a** that was passed through a short SiO₂ column (0-5% MeOH in CH₂Cl₂) to yield pure **5a** (1.4 mg, 76%) identical by ¹H NMR with the product from *Method A*.

^[1] Hobartner, C., Kreutz, C.; Flecker, E.; Ottenschlager, E.; Pils, W.; Grubmayr, K.; Micura R. Monatsh. Chem. 2003, 134, 851–873.

^[2] Gladkaya, V. A.; Levitskaya, Z. V.; Shalamai, A. S.; Usenko, L. S.; T.; Dashevskaya A. Chem. Nat. Compd., 1989, 25, 488.

^[3] Chang, C.; Ashworth, D. J.; Chern, L.; Gomes, J. D.; Lee, C.; Mou, P. W.; Narayan, R. Mag. Reson. Chem. 1984, 22, 671.

^[4] Julianti, E.; Oh, H.; Lee, H.-S.; Oh, D.-C.; Oh, K.-B.; Shin, J. Tetrahedron Lett. 2012, 53, 2885-2886.

^[5] Bredereck, H.; Martini, A. Ber. **1947**, 80, 401-405

Figure S1. Fluorescence spectrum of synthetic acremolin (5a) (0.10 μ M MeOH, T = 23 °C).^a

^a 1.0 nm resolution, nm; λ_{ex} = 296 nm, λ_{em} = 420, collected on a Photon Technology International QuantaMaster Fluorospectrometer (Birmingham, NJ, USA)

0 2 4 9 8 Fig. S11. ¹H NMR of 10 (CD₃OD, 500 MHz) \OMe 1 10 우 Ž 0 7 0 Me_N N Z 12 - S13 bpm

A

Conditions: Reversed phase, Kinetex® C_{18} (2.6 μ , 4.6 x 150 mm), gradient, 0-100% CH₃CN in H₂O + 0.1% HCO₂H over 30 min, 0.7 mL.min⁻¹. Single quadrupole mass spectrometer (ThermoFisher, Surveyor MSQ): ESI ionization (positive mode).

Figure S13. LCMS of byproduct from debenzylation of **10** (workup, aqueous phase). (a) UV-vis chromatogram (λ 240-280 nm) (b) LR ESIMS of peak eluting at rt = 9.33 min, *m/z* 432.2 [M+H]⁺.

Table S1. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) and HMBC data of N^7 -PMB-N¹- methylguanine (**7a**). HMBC optimized for ^{2,3} J_{HC} = 8.0 Hz

$\delta_{\rm C}$	$\delta_{\rm H}({\rm int, mult})$	$J_{\mathrm{H-H}}(\mathrm{Hz})$	HMBC
154.3	-	-	-
153.5	-	-	-
107.0	-	-	-
157.9	-	-	-
143.4	8.08 (1H, s)	-	4,5
27.8	3.36 (3H, s)	-	2
48.3	5.35 (2H, s)	-	5, 8, 3"
129.8	-	-	-
129.2	7.29 (2H, d)	8.6	1", 2", 4"
113.9	6.87 (2H, d)	8.6	2", 5"
158.8	-	-	-
55.1	3.70 (3H, s)	-	5"
	$\begin{array}{c} \delta_{\rm C} \\ 154.3 \\ 153.5 \\ 107.0 \\ 157.9 \\ 143.4 \\ 27.8 \\ 48.3 \\ 129.8 \\ 129.2 \\ 113.9 \\ 158.8 \\ 55.1 \end{array}$	$\begin{array}{cccc} \delta_{\rm H}({\rm int, mult}) \\ 154.3 & - \\ 153.5 & - \\ 107.0 & - \\ 157.9 & - \\ 143.4 & 8.08 (1{\rm H, s}) \\ 27.8 & 3.36 (3{\rm H, s}) \\ 48.3 & 5.35 (2{\rm H, s}) \\ 129.8 & - \\ 129.2 & 7.29 (2{\rm H, d}) \\ 113.9 & 6.87 (2{\rm H, d}) \\ 158.8 & - \\ 55.1 & 3.70 (3{\rm H, s}) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

¹H-¹³C HMBC

₿ ^a		δ ^a	S b	I (U ₇)	DEDTa	$^{1}\text{H} \rightarrow ^{13}\text{C}$	$^{1}\text{H} \rightarrow ^{15}\text{N}$	
	$O_{\rm H}$	$O_{\rm C}$	0 _N	$J_{\text{H-H}}(\Pi Z)$	DEFI	HMBC ^c	HMBC ^c	
N-1	-	-	131.5	-	-	-	-	
C-2	-	142.3	-	-	-	-	-	
N-3	-	-	156.1	-	-	-	-	
C-4	-	141.6	-	-	-	-	-	
C-5	-	108.9	-	-	-	-	-	
C-6	-	152.8	-	-	-	-	-	
N-7	-	-	232.6	-	-	-	-	
C-8	8.16 (1H, s)	140.5	-	-	CH	C-6, C-4, C-5	N-7, N-9	
N-9	13.87 (1H, br, s)	-	166.1	-	-	-	-	
C-10	3.57 (3H, s)	28.9	-	-	CH_3	C-6, C-2	N-1	
N-11	-	-	221.9	-	-	-	-	
C-1'	7.38 (1H, d)	103.2	-	1.0	CH	C-2', C-2	N-11, N-3	
C-2'	-	148.0	-		-	-	-	
C-3'	2.88 (1H, d sept)	27.7	-	6.9, 1.0	CH	C-2', C-1', C-4',5'	N-11	
C-4',5'	1.25 (3H. d)	22.1	-	6.9	CH_3	C-2', C-3'	-	

Table S2. ¹H, ¹³C and ¹⁵N NMR data of synthetic acremolin (**5a**, DMSO, 25 °C). HMBC long rage coupling = 8.0 Hz. ^a 125 MHz. ^{b 15}N δ obtained by indirect detection from ¹H-¹⁵N-HMBC crosspeaks. ^c600 MHz HMBC.

- 60				- 120	- 140 - 20					- 740 - 760		
												0
												-
												-0
	•••••			• • • • • • •			• • - ••• •·	••			• • • • • •	 -
				•								-4
												-
			(ZHV									9–
			SO, 600 M									-
	z∕∽z)(т "	f 5a ((CD ₃) ₂		٥				-			
- o= :			¹⁵ N HMBC o			•			•			-∞
			. S20. ¹ H ⁻									-
			Fig									mdo

150		09	170			0	
	1						
						£	- ແ
***	ා ආ ∙ ළොළා අ		• • • • • • • • • •	 - • • • • • •	⊙ • • • • •	 ~ ~ ~ ~	
							-4
		ansion					
		- exp					
		00 MHz					
		2 ² SO, 6					- ഗ
	z∕~zı	 I ((CD ₃)					
- O =	╤∕═(╤╲ᡔ	5a C of 5a					
	Z Z V						
		¹ H-15					–u
		ig. S21					
		LL.					
							- 1
	Ô					0	