Supporting Information for

Carbon Encapsulated Fe₃O₄ Nanoparticles as a High-Rate Lithium Ion Battery Anode Material

Chunnian He, Shan Wu, Naiqin Zhao*, Chunsheng Shi, Enzuo Liu, and Jiajun Li School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China

* Address correspondence to

nqzhao@tju.edu.cn.

Figure S1. a)-b) SEM images, and c)-d) TEM images of the carbonization products of the mixture ($Fe(NO_3)_3 \cdot 9H_2O$ and $C_6H_{12}O_6$) without NaCl, indicating that a mass of 3D micron-sized carbon blocks with Fe nanoparticles embedded exist in the products.

Figure S2. a) SEM image of the fine composite powder containing NaCl, glucose and $Fe(NO_3)_3 \cdot 9H_2O$, indicating that $Fe(NO_3)_3 \cdot C_6H_{12}O_6$ complex was evenly coated on the surface of NaCl particles. b) SEM image of as-synthesized products before removing the NaCl, suggesting that the 2D Fe@C@PGC nanosheets were actually formed on the NaCl surface. c) HRTEM image, and d) Energy-dispersive X-ray pattern of a typical Fe nanoparticle encapsulated by onion-like carbon shell.

Figure S3. a) HRTEM image and b) SEM image of 2D $Fe_3O_4@C@PGC$ nanosheets. c) Energy-dispersive X-ray pattern and d) SAED pattern of a typical Fe_3O_4 nanoparticle encapsulated by onion-like carbon shell.

Figure S4. a) Nitrogen adsorption–desorption isotherms, and b) pore size distribution curve of 2D Fe₃O₄@C@PGC nanosheets. c) Nitrogen adsorption–desorption isotherms, and d) pore size distribution curve of 3D Fe₃O₄/C composite.

Store	Number		Average reversible capacity	Average reversible capacity
Step	Number	Charging rate	of 2D Fe ₃ O ₄ @C@PGC	of 3D Fe ₃ O ₄ /C composite
number	of cycle	(1C = 1 A/g)	composite electrode	electrode
1	50	1 C	977 mAh/g	505 mAh/g
2	50	2 C	905 mAh/g	362 mAh/g
3	50	5 C	858 mAh/g	198 mAh/g
4	50	10 C	587 mAh/g	90 mAh/g
5	50	15 C	364 mAh/g	69 mAh/g
6	50	20 C	311 mAh/g	62 mAh/g
7	50	1 C	975 mAh/g	441 mAh/g

Table S1. Detailed information of battery performance of 2D Fe₃O₄@C@PGC and 3D Fe₃O₄/C composite electrode corresponding to Figure 4d.

Figure S5. a)-b) TEM and c)-d) HRTEM images of $Fe_3O_4@C@PGC$ composite electrode after 350 electrochemical cycles for rate performance test in Figure 4d.