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FULL GENETIC METHODS

DNA extraction and GBS

DNA was extracted and purified following the same method described in Peters et al.
(2020), except that we used the updated Qiagen DNeasy Plant Pro DNA extraction kit. The
kit protocol was followed, except that the lysis step was extended to 24 hours, and
immediately after lysis, samples were treated with 100 pl isopropanol and incubated at 65°C
for 30 minutes, vortexing every 15 minutes. A new GBS library including 90 D. antarctica
samples was generated for this study (Supplementary Table B2). Another 126 samples
sequenced across four previously GBS libraries (Parvizi, Dutoit, Fraser, & Waters, 2022;
Vaux, Craw, Fraser, & Waters, 2021; Vaux, Parvizi, Craw, Fraser, & Waters, 2022) were
also used for this study (Supplementary A; Supplementary Table B1). DNA was digested
using the PstI-HF enzyme, following the GBS protocol described by Elshire et al. (2011),
with the same modifications described by Peters et al. (2020). The size selection varied
between 200 — 600 bp (Supplementary A; Supplementary Table B2). The five libraries were
sequenced on five separate runs using mid output flow cells on the Illumina NextSeq 500

platform (75 bp paired-end; Supplementary A; Supplementary Table B2).

Processing of GBS data

The process _radtags component of STACKS 2.53 (Rochette, Rivera-Colon, &
Catchen, 2019) was used to demultiplex all samples into paired forward and reverse reads per
individual, using inline barcodes. The process_radtags component removed low quality reads
and reads with missing barcodes or Pstl restriction sites (-c -q). This process included the

rescue barcode and RADtag parameter (-r) to retrieve additional reads, and reads were
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truncated to 68 bp (-t 68). For the new GBS library, a total of 317,501,416 reads (87.3%)
were retained after this initial filtering (Supplementary Table B2).

Demultiplexed pairs of reads were assembled into loci without a reference genome
using the de_novo pipeline in STACKS. In ustacks, the minimum depth of coverage used to
create a stack was two (-m 3), the maximum distance (in nucleotides) allowed between stacks
was two (-M 2), and the maximum distance allowed to align secondary reads to primary
stacks was four (-N 4). A bounded SNP model was applied with the error rate not being
allowed to exceed 5% (--bound_high 0.05). In cstacks, the number of mismatches allowed
between sample loci when building a catalog was two (-n 2). For the populations component
of STACKS, samples were organised into a single, panmictic population. Each locus was
required to be present in 70% of individuals within the population (-p 1 -r 0.7). A minimum
minor allele frequency of 5% was enforced for loci (--min_maf 0.05). Only the first SNP of
each locus was used (--write_single snp) and all SNPs were processed as biallelic and
assumed to represent nuclear loci.

The settings in STACKS listed above were selected after iteratively modifying
parameters in STACKS (Supplementary Table B3), as recommended by Mastretta-Yanes et al.
(2015). We aimed to maximise the number of variant loci, while paying attention to coverage
depth, missing data per sample and per locus, and the risk of erroneously combining too
many reads. Overall, these preliminary investigations of revealed the data to be highly
consistent across parameter changes, and relative to the other iterations, the final selected

parameter settings yielded a medium number of loci with low missing data.
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Filtering loci

The initial output loci from STACKS were filtered. Loci estimated to be in linkage
disequilibrium (LD) within the panmictic population were identified using PLINK 1.9 with a
cut-off of 0.8 (Purcell et al., 2007). One locus from each pair of loci estimated to be in LD
was removed at random. Using VCFTOOLS 0.1.16 (Danecek et al., 2011), genotypes for a locus
were removed from individuals if they had a coverage depth below 8 reads (--minDP 8), and
then after recoding loci, sites with >50% missing data among all individuals were removed (-
-max-missing 0.5). The loci estimated to be in LD or to have low genotype coverage depth
were organised into a list and excluded (-B; Catchen et al. 2013) and the populations
component of was re-run (same settings as above).

Variation in coverage depth per locus was investigated in the subsequent dataset using
VCFR 1.13 (Knaus & Griinwald, 2017), and loci that were outliers for mean coverage depth
and the standard deviation of coverage depth were identified. The outlier range was 1.5 times
the interquartile range, above the upper quartile and below the lower quartile. These coverage
depth outlier loci were added to an updated, second list of excluded loci and the populations
component of STACKS was re-run to produce the final filtered dataset.

Missing data per sample and variation in loci coverage depth (same methods as
described above) was assessed for the filtered datasets using VCFR. Some output files from
STACKS were converted to different file formats in PGDSPIDER 2.1.1.3 (Lischer & Excoffier,
2012) for some downstream analyses. For phylogenetic reconstructions, VCF files were
converted to the phylip format, with loci filtered to require at least four samples per locus (-m

4), using VCF2PHYLIP 2.0 (Ortiz, 2019).
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Genotypic analyses

Phylogenetic relationships among samples were inferred by constructing unrooted
maximum likelihood (ML) and neighbour-joining (NJ) trees with free rates using IQTREE
1.6.12 (Nguyen, Schmidt, Von Haeseler, & Minh, 2015) and VCF-KIT 0.1.6 (Cook &
Andersen, 2017) respectively. The analysis in IQTREE was conducted with 10,000 ultrafast
bootstrap replicates and the implementation of the modelfinder algorithm. Trees were
visualised in FIGTREE 1.4.4 (FigTree, 2018).

Population structure was assessed using principal components analysis (PCA)
implemented in ADEGENET 2.13 (Jombart, 2008; Jombart & Ahmed, 2011). The maximum
number of ‘meaningful’ principal components (PCs) to interpret was determined by
comparing PC Eigen values. Population structure and admixture among samples was further
assessed using LEA 2.8 (Frichot & Frangois, 2015), which analysed 10 values of K. The LEA

analysis was conducted with default settings.

FULL GENETIC RESULTS

Genotypic analyses

After filtering, the dataset contained 4,269 loci. A total of 243 loci were excluded for
being in LD or for having low or outlying coverage depth (Supplementary Table B4). Mean
missing data per sample was relatively low (Supplementary Table 4), and missing data was
consistent among most samples (Supplementary Figures B1 and B2). After filtering, the
coverage depth for loci was well constrained (Supplementary Figure B3).

The phylogenetic reconstructions for ML and NJ trees were similar (Figure 3,
Supplementary Figures B4 and B5). Samples clustered into geographic groupings, with the
Cape Campbell and Ward Beach sites forming a northern group, Wharanui and Waipapa Bay

forming a central group, and the Kaikoura Peninsula, Southern Kaikoura and Hurunui
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forming a southern group (Figure 3, Supplementary Figures B4 and B5). Samples from
Rarangi and Banks Peninsula consistently formed a distinct, basal clade relative the other
South Island samples, when the trees were rooted using the North Island sampling
(Supplementary Figures B4 and BS5).

For PCA, the broken-stick test indicated that only the first two PCs should be retained
(Supplementary Figure B6). PC1 (13.9% of variation) and PC2 (9.2%) revealed the same
clusters identified in the phylogenetic reconstructions (Figure 4a). Specifically, Ward Beach
and Cape Campbell were clustered together, as were Wharanui and Waipapa Bay, and
samples from the Kaikoura Peninsula, Southern Kaikoura and Hurunui formed another
grouping (Figure 3). Samples from the North Island, Rarangi and Banks Peninsula were
separated (Figure 3). In both the phylogenetic reconstructions and the PCA (Figures 3 and 4a,
Supplementary Figures B4 and B5), 10 samples clustered unexpectedly with individuals from
geographically distant populations — potentially indicating low levels of dispersal and
admixture.

According to cross entropy values, the highest values of K (i.e. 9 or 10) were favoured
using LEA admixture analysis (Supplementary Figure B7). However, clustering among
samples was clearly hierarchical and population structure was highly consistent across all
values of K (i.e. 2 — 10; Supplementary Figure 8). For example, samples from Wharanui and
Waipapa Bay were consistently clustered together from K =2 to K =7, and from K =8
onwards Wharanui was distinguished as a separate group (Supplementary Figure B8). Some
clusters distinguished a small number of individuals or contributed to clustering uncertainty
for a small proportion of samples. These clusters potentially indicate uncertainty due to
genuine admixture among some locations, and they may have been influenced by the
remaining missing data. Nonetheless, the large clusters consistently identified across most

values of K in both datasets were highly concordant with the phylogenetic and PCA results.
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Notably, for K =9, the following groups were distinguished: the North Island, Rarangi and
Banks Peninsula, Cape Campbell and Ward Beach, Wharanui, Waipapa Bay, Kaikoura

Peninsula, and Southern Kaikoura and Hurunui (Figure 4b, Supplementary Figure B8).
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SUPPLEMENTARY TABLES

SUPPLEMENTARY TABLE Bl
Sampling of D. antarctica ‘“NZ North’ from 17 locations.

. . n
Sample group Location Collection date(s) Total
Boom Rock 29/07/20
North Island Orongorongo Beach 02/12/19 14
Cod Rocks 04/12/19
Rarangi 17/11/20 9
20/11/16
Cape Campbell 15/11/20 13
19/11/16
Ward Beach 15/09/18 38
17/11/20
19/11/16
) 15/09/18
Wharanui 18/09/19 28
16/11/20
19/11/16
Waipapa Bay 14/09/18 50
16/11/20
20/11/16
Kaikoura Peninsula 28/04/17 33
14/11/20
Rakanui 20/11/16
Southern Kaikoura Raramai Tunnels 31/03/07 12
Oaro 13/11/20
Elliots Garden,
Hurunui Gore Bay 13/11/20 11
Napenape 18/11/20
Banks Le Boqs Bay 11/12/08
Peninsula Peraki Bay 08/03/09 8
Te Oka Bay 07/03/09
Totals 216
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SUPPLEMENTARY TABLE B2

Sequencing information and results the five GBS libraries used to sequence the 216 D. antarctica samples for this study. A new GBS library,
FV3, was generated for this study (highlighted in yellow), whereas the other four libraries were produced for previous studies (Parvizi, Fraser,
Dutoit, Craw, & Waters, 2020; Vaux et al., 2021, 2022). The table includes the number of reads removed during quality control using the
process_radtags component of STACKS 2.53.

GBS library name CF1 CF2 FV1 Fv2 FV3 Total
m:;g;:e';‘e‘a“;’:;gfes 192 216 96 203 192 899
" Samples for thisstudy 2] 12 n 16 2 216
Number of adapter plates 2 3 1 3 2
Size selection (bp) 250 - 450 300 - 600 200 - 600 200 - 600 200 - 500
Sequencing platform Illumina Illumina Illumina Illumina [llumina
NextSeq 500 NextSeq 500  NextSeq 500  NextSeq 500  NextSeq 500
Read length (bp) 75 75 75 75 75
Paired reads? Yes Yes Yes Yes Yes
PhiX spike-in (approx.) 5% 5% 5% 5% 5%
Total Sequences 307,797,516 310,206,086 315,678,078 330,627,614 363,842,806 1,628,152,100
Barcode Not Found 152,618,572 37,478,802 26,414,122 45,595,966 42,773,066 304,880,528
Low Quality 79,148 80,258 125,261 71,969 265,853 622,489
RAD Cutsite Not Found 2,868,624 6,485,392 3,029,044 2,753,042 3,302,471 18,438,573
Retained Reads 152,231,172 266,161,634 286,109,651 282,206,637 317,501,416 1,304,210,510
Percentage retained reads 49.5% 85.8% 90.6% 85.4% 87.3% 80.1%
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8 SUPPLEMENTARY TABLE B3
9  Results of varying certain parameters in ustacks, cstacks and populations components of
10  STACKS 2.53. Complete lists of parameters used for each component are provided in the
11 Methods. The STACKS runs selected for analysis are highlighted in green.
12
. # Mean
# . # variant and . -
N ustacks cstacks populations . . . variant missing data
pops invariant loci .
loci per sample
216 -m3-M2-N4 -n2 1 -p1-r0.90 6,177 2,255 5.7%
216 -m3-M2-N4 -n2 1 -p1-r0.80 8,995 3,833 9.4%
216 -m3-M2-N4 -n2 1 -p1-r0.70 10,629 4,872 12.9%
216 -m3-M2-N4 -n2 1 -p 1 -r0.60 12,035 5,919 17.0%
216 -m3-M2-N4 -n2 1 -p1-r0.50 13,440 7,092 21.8%
216 -m4-M2-N4 -n2 1 -p 1-r0.60 11,252 5,549 16.6%
216 -m3-M2-N4 -l 1 -p1-r0.60 11,976 5,944 17.2%
216 -m3-M2-N4 -n3 1 -p 1-r0.60 12,015 5,954 17.1%
216 -m3-M3-N5 -n2 1 -p1-r0.60 11,657 5,763 17.1%
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SUPPLEMENTARY TABLE B4

Details for final filtered loci dataset. The dataset was filtered loci for linkage disequilibrium
(LD), genotype coverage depth, and locus coverage depth. The final column lists the mean
missing data per sample for the dataset, as estimated by VCFR.

Locus representation Filtering
# # # Total # final HI:;[S‘;?II:
# populations # Genotype Loci Highly variant g
. excluded . data
groups settings LD depth depth  correlated loci loci er
<8 outliers loci (SNPs) P
sample
216 1 -p1-r0.70 42 153 55 N/A 243 4,629 12.4%
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SUPPLEMENTARY B FIGURES

SUPPLEMENTARY FIGURE Bl1

The percentage of missing data (missingness, estimated in VCFR) per sample in the GBS dataset (4,629 loci). Sample groups are labelled under
samples.
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SUPPLEMENTARY FIGURE B2

Histograms of missing data (missingness, estimated in VCFR) per sample in the GBS dataset
(4,629 loci).
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SUPPLEMENTARY FIGURE B3

Coverage depth per locus in the GBS dataset, as estimated in VCFR, including highly correlated loci. (a) a histogram of mean coverage depth per
locus, (b) a box and whisker plot of mean coverage depth per locus, (c) a histogram of the standard deviation (SD) in coverage depth per locus,
(d) a box and whisker plot of the standard deviation in coverage depth per locus.
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SUPPLEMENTARY FIGURE B4

36
Unrooted maximum likelihood (ML) phylogeny produced by IQTREE for the GBS dataset
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North

wrsaie |sland
Y. Rarangi

ANT_AT_ORON Z01#12_ 084
R NT_AT_ORON_207412_016
AT,
0

ANT_AT R
ANT_AT_ANGI 20301
\T_B0HS_200812_003

Banks
e PeNiNsula

T
ANT_£T_CRAR 250902052
ANT_AT_CRA_200003_003
ANT_AT_GAPC 201611 001 R

ok
o ]
N e ape

BNTR_CRRC 201t

o
T C
ampbell

AN
ANT_MRARD 201

108

o iy
p————————— 1) AT AR, BB
ANT NR_WARD 301600 00
= AN WARD 201E0 00t
ANT_NR i
AT MR WARD FRRO P
RATAT WS et 5%

At

R AT K G 212
AIP_T02011_0.44.

TR _K
AT RAIF 202011
T

AT WA VAR 203608,
AnT_aT KAk zutesi_p0z
ANT_HR_KAIE 70701

a1
T KAIK 201641 108
ANT_RR_RAIP_202011_AE .
ANT_AT_KAIK_201611_204 =
NT_NR_KATP_203011_0AT al oura
ANT_NR_KAIP_2020T1_(5

—
R i
R
T insu
A
R
N
T
ANT_AT_KAIK_201811_1 1|I‘j
Tk e
T i
| 1. e—
T_AT_NAT
2
ANT_AT_HAPE 232011 ma H
ANT_AT_WAlK_2i1671 206 u ru nu I
N
P
A
e s ks w1,
i I
e e
iAo
PR
P
. s o
s
L Al AT,
,, PR e
R :
Mo
b
~ e
o ANT_AT_WARN_201611_008
02 ANT_AT_WHRN_Z01611_ 512
L m NR_WHAR_201800_003
" 33 _NR_WHAR_201900_003
ANT_NR_WH
o
LT
J “
AL " = TANT_NR_WHAR_201800_P04
L

ANT_NR_WAlE_202011_022

* ANT_NR_WAIN_202¢
AT iR aviert o
" T KRLWAIP 201609 K15
ANT_AT AW 201611_011
LEn

ki ANT_AT_WAIS 271611

Y
JAN_201671_003
WAIN_201611_009

=
o A AT VAN 2010 T
= NT_AT_WAIS 201617 608
A AT KA ST 168
ANT_NR_WAIS_202011_0.3
ANT_AT_WAIN_201511_910

———————————— 11
WALV 701803_0r1
CHROYAIR 201809 KDY

s

39
17



43

40
41
42

Supplementary Material for:

Integrating kelp genomic analyses and geological data to reveal ancient earthquake impacts

SUPPLEMENTARY FIGURE B5

Unrooted neighbour-joining (NJ) phylogeny produced by VCF-KIT for the GBS dataset (4,629
loci).
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Supplementary Material for:

Integrating kelp genomic analyses and geological data to reveal ancient earthquake impacts

SUPPLEMENTARY FIGURE B6

The selection of retained principal components (PCs) for principal components analysis. Each
graph shows the Eigen values for all PCs in the GBS dataset (4,629 loci). The red line shows
the broken-stick test, the number of PCs above the broken-stick line that were retained for
analysis are labelled in red.
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51 SUPPLEMENTARY FIGURE B7

52  Cross entropy values for each iteration of K (1 — 10) applied in LEA for the GBS dataset
53 (2,851 loci).
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SUPPLEMENTARY FIGURE B8
Ancestry matrices (K =2 — 10) generated by LEA for the GBS dataset (4,629 loci).
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