Supplementary material

Antagonists for the orphan G protein-coupled

receptor GPR55 based on a coumarin scaffold

Viktor Rempel, ${ }^{\#}$ Nicole Volz, ${ }^{\S}$ Franziska Gläser, ${ }^{\S}$ Martin Nieger ${ }^{\ell}$, Stefan Bräse, ${ }^{\S}$ and Christa E.
$$
\text { Müller }{ }^{\#, *}
$$

\#PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D53121 Bonn, Germany; ${ }^{\S}$ Institute of Organic Chemistry, University of Karlsruhe, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany; ${ }^{\text {\& }}$ Laboratory of Inorganic Chemistry, Department of Chemistry, P.O. Box 55 (A.I.Virtasen aukio 1), FIN-00014 University of Helsinki, Finland.

Table of Contents

Page Topics

S2 Chemical synthesis of coumarin derivatives
S2 Analytical data of coumarin derivatives
S2 Figure S1. Crystal structure of 14
S3 NMR spectral data
S3 Figure S2. Antagonistic activity of $\mathbf{3 5}$ at human GPR55
S4 Figure S3. Schild regression for $\mathbf{3 5}$ antagonism
S4 Figure S4. Gaddum plot for 49
S5 Figure S5. Antagonistic activity of $\mathbf{6 9}$ at human GPR55
S6 Figure S6. Antagonistic activity of 47 at human GPR55
S7 Figure S7. Antagonistic activity of 71 at human GPR55
S8 Table S1. Intrinsic activities of selected coumarin derivatives at CB_{1} and CB_{2} receptors
S10 Table S2. Intrinsic activities of coumarin derivatives at the orphan GPR18 and GPR55 receptors ${ }^{\text {a }}$
S13 References

Chemical synthesis of coumarin derivatives

General procedures for the preparation of coumarin derivatives
Under an atmosphere of argon, 1.00 eq. of substituted salicylaldehyde, 1.20 eq. of potassium carbonate, 2.50 eq. of α, β-unsaturated aldehyde and 1.20 eq. of 1,3-dimethylimidazolium dimethylphosphate were suspended in toluene ($3.3 \mathrm{~mL} / \mathrm{mmol}$ salicylaldehyde). The reaction vessel was subjected to microwave irradiation to keep a constant temperature at $110^{\circ} \mathrm{C}$ for 50 min (max. 200 watt) while being stirred. After cooling to rt the reaction was quenched by addition of water. The aqueous layer was extracted with EtOAc, the combined organic phases were dried over sodium sulfate and the solvent was removed under reduced pressure. The products were purified by flash column chromatography.

Analytical data of coumarin derivatives

Figure S1. Crystal structure of $\mathbf{1 4}$ (displacement parameters are drawn at 50\% probability level).

NMR spectral data

NMR spectral data of previously published compounds can be found in references 1 and 2 .

Figure S2. Antagonistic activity of $\mathbf{3 5}$ in β-arrestin recruitment assays performed with CHO cells stably expressing the human GPR55. (A) Concentration-dependent β-arrestin recruitment by the agonist LPI in absence and presence of $\mathbf{3 5}$ in different concentrations. EC_{50} values: LPI: $2.47 \pm 0.89 \mu \mathrm{M}$; LPI + $35(10 \mu \mathrm{M}): 21.8 \pm 1.8 \mu \mathrm{M} ; \mathrm{LPI}+35(3 \mu \mathrm{M}): 8.11 \pm 2.15 \mu \mathrm{M}$; LPI $+35(1 \mu \mathrm{M}): 3.51 \pm 0.46 \mu \mathrm{M}$. (B) Concentration-dependent inhibition of LPI $(1 \mu \mathrm{M})$ effect on β-arrestin recruitment by 35. $\mathrm{IC}_{50}: 0.981 \pm$ $0.140 \mu \mathrm{M}$. Data points represent means \pm SEMs of three independent experiments, performed in duplicates.

Figure S3. Schild regression for 35 antagonism of LPI-induced β-arrestin recruitment to human GPR55. The regression is linear ($\mathrm{r}^{2}: 0.99$) with a slope of 1.270 ± 0.121. A K_{B}-value of $1.87 \mu \mathrm{M}$ was determined.

Figure S4. Gaddum plot for 49. [A] and [A"] represent equiactive concentrations of the agonist LPI in the presence and absence of the allosteric modulator NV-435 (10 $\mu \mathrm{M})$. The regression is linear $\left(\mathrm{r}^{2}: 0.99\right)$ with a slope of 1.605 ± 0.023. A K_{B}-value of $16.5 \mu \mathrm{M}$ could be determined by application of the following equation: $\mathrm{K}_{\mathrm{B}}=[$ Antagonist $] /($ slope -1$)$.

Figure S5. (A) Gaddum plot for 69. [A] and [A "] represent equiactive concentrations of the agonist LPI in the presence and absence of the allosteric modulator $\mathbf{6 9}(1 \mu \mathrm{M})$. The regression is linear $\left(\mathrm{r}^{2}: 0.99\right)$ with a slope of 2.782 ± 0.123. A K_{B}-value of $0.561 \mu \mathrm{M}$ was determined for $\mathbf{6 9}$ by application of the following equation: $K_{B}=[$ Antagonist $] /($ slope -1$)$. (B) Concentration response curve of the agonist LPI in the absence and presence of the allosteric modulator $69(1 \mu \mathrm{M})$. The determined pA_{2}-value was 0.483 $\pm 0.198 \mu \mathrm{M}$. The pA_{2} value was determined using equiactive agonist concentrations at a level of 30% of the maximal response of the depressed concentration-response curve. Data points represent means \pm SEMs of three independent experiments, performed in duplicates.

Figure S6. Antagonistic activity of 47 in β-arrestin recruitment assays performed with CHO cells stably expressing the human GPR55. (A) Concentration-dependent β-arrestin recruitment by the agonist LPI in the absence and presence of $\mathbf{4 7}(10 \mu \mathrm{M}) . \mathrm{EC}_{50}$ values: LPI: $0.769 \pm 0.056 \mu \mathrm{M}$; LPI $+47(10$ $\mu \mathrm{M}$): $1.51 \pm 0.12 \mu \mathrm{M}$. A pA 2_{2} value of $11.2 \pm 2.5 \mu \mathrm{M}$ could be determined. (B) Concentration-dependent inhibition of LPI $(1 \mu \mathrm{M})$ effect on β-arrestin recruitment by $47 . \mathrm{IC}_{50}: 6.35 \pm 2.66 \mu \mathrm{M}$. Data points represent means \pm SEMs of three independent experiments, performed in duplicates.

Figure S7. Antagonistic activity of 71 in β-arrestin recruitment assays performed with CHO cells stably expressing the human GPR55. (A) Concentration-dependent β-arrestin recruitment by the agonist LPI in the absence and presence of 71 (different concentrations). EC_{50} values: LPI: $1.59 \pm 0.24 \mu \mathrm{M}$; LPI $+71(3 \mu \mathrm{M}): 5.22 \pm 2.01 \mu \mathrm{M}$; LPI $+71(1 \mu \mathrm{M}): 2.23 \pm 0.09 \mu \mathrm{M}$; LPI $+71(0.3 \mu \mathrm{M}): 1.56 \pm 0.24 \mu \mathrm{M}$. A pA_{2} value of $0.340 \pm 0.071 \mu \mathrm{M}$ could be determined. (B) Concentration-dependent inhibition of LPI (1 $\mu \mathrm{M})$ effect on β-arrestin recruitment by $71 . \mathrm{IC}_{50}: 0.854 \pm 0.454 \mu \mathrm{M}$. Data points represent means \pm SEMs of three independent experiments, performed in duplicates.

Table S1. Intrinsic activities of selected coumarin derivatives at CB_{1} and CB_{2} receptors ${ }^{\mathrm{a}}$

Compd	\mathbf{R}^{3}	\mathbf{R}^{5}	\mathbf{R}^{6}	\mathbf{R}^{7}	\mathbf{R}^{8}	$\begin{gathered} \text { human } \\ \mathbf{C B}_{1} \\ \hline \end{gathered}$	$\begin{gathered} \text { human } \\ \mathbf{C B}_{2} \\ \hline \end{gathered}$
						cAMP EC	nulation EM

| Standard agonists and antagonists | | | |
| :--- | :--- | :--- | :--- | :--- |
| CP55,940 | | $0.00228^{1,23}$
 (100) | $0.00100^{1,23}$
 (100) |
| rimonabant | | (0) | (0) |
| $\Delta^{9}-\mathbf{T H C}$ | | 0.00676
 ± 0.00361
 (67) | 0.0140
 ± 0.0068
 (34) |

Coumarin derivatives I: with small 7-substituents

$\mathbf{1 3}$	2-methoxy- benzyl	methyl	H	H	methyl	n.d. ${ }^{\text {c }}$ (7)	n.d. ${ }^{\text {c }}$ (22)
$\mathbf{3 1}$	3-methoxy- benzyl	methoxy	H	Br	H	n.d. ${ }^{\text {c }}$ (0)	n.d. ${ }^{\text {c }}$ (0)
$\mathbf{3 5}$ (PSB-SB- $258)$	2-methoxy- benzyl	methyl	methoxy	methyl	methyl	n.d. $^{\text {c }}$ (0)	n.d. ${ }^{\text {c }}$ (55)
$\mathbf{4 3}$	3-methoxy- benzyl	methoxy	H	bromomethyl	H	n.d. $^{\text {c }}$ (23)	n.d. $^{\text {c }}$ (0)

Coumarin derivatives II: 7-pentyl-substitution

46	4-methoxy- 3,5- dimethyl- benzyl	methoxy	H	pentyl	H	n.d. $^{\text {c }}$ (39)	n.d. $^{\text {c }}$ (74)
$\mathbf{4 7}$	2-methoxy- benzyl	methoxy	H	pentyl	H	0.0561^{1} (93)	0.0139^{1} (106)
$\mathbf{4 8}$	2-hydroxy- benzyl	hydroxy	H	pentyl	H	n.d. $^{\text {c }}$ (109)	n.d. (0)
49 (PSB-SB- 435)	3-methoxy- benzyl	methoxy	H	pentyl	H	0.430^{1} (58)	0.112^{1} (93)

- S9 -

50	$\begin{aligned} & \text { 3-hydroxy- } \\ & \text { benzyl } \end{aligned}$	hydroxy	H	pentyl	H	$\begin{gathered} \text { n.d. }^{\text {c }} \\ (0) \end{gathered}$	n.d. ${ }^{\text {c }}$ (0)
51	benzyl	methoxy	H	pentyl	H	$\begin{aligned} & \text { n.d. }^{\text {c }} \\ & \text { (58) } \end{aligned}$	n.d. ${ }^{\text {c }}$ (4)
52	benzyl	hydroxy	H	pentyl	H	n.d. ${ }^{\text {. }}$ (0)	n.d. ${ }^{\text {c }}$ (0)
53	$\begin{aligned} & \text { 2-methyl- } \\ & \text { benzyl } \\ & \hline \end{aligned}$	methoxy	H	pentyl	H	$\begin{gathered} \text { n.d. }^{\mathrm{c}} \\ (0) \end{gathered}$	$\begin{aligned} & \text { n.d. }^{\text {c }} \\ & \text { (57) } \end{aligned}$
54	$\begin{aligned} & \text { 2-methyl- } \\ & \text { benzyl } \end{aligned}$	hydroxy	H	pentyl	H	$\begin{gathered} \text { n.d. }^{\text {c }} \\ \text { (9) } \end{gathered}$	$\begin{aligned} & \text { n.d. }^{\text {c }} \\ & \text { (12) } \end{aligned}$
55	$\begin{aligned} & \text { 3-methyl- } \\ & \text { benzyl } \end{aligned}$	methoxy	H	pentyl	H	$\begin{gathered} \text { n.d. }^{\text {c }} \\ \text { (0) } \end{gathered}$	$\begin{aligned} & \text { n.d. }{ }^{\text {c }} \\ & \text { (50) } \end{aligned}$
56	3-methyl- benzyl	hydroxy	H	pentyl	H	$\begin{aligned} & \text { n.d. }{ }^{\text {n }} \\ & \text { (42) } \end{aligned}$	$\begin{aligned} & \text { n.d. }{ }^{\text {c }} \\ & \text { (10) } \end{aligned}$
57	2-chlorobenzyl	methoxy	H	pentyl	H	n.d. ${ }^{\text {. }}$ (6)	n.d. ${ }^{\text {c }}$ (47)
58	2-chlorobenzyl	hydroxy	H	pentyl	H	n.d. ${ }^{\text {c }}$ (60)	n.d. ${ }^{\text {c }}$ (2)
59	3-chlorobenzyl	methoxy	H	pentyl	H	$\begin{gathered} \text { n.d. }^{\text {c }} \\ (0) \end{gathered}$	$\begin{aligned} & \text { n.d. }{ }^{\text {c }} \\ & \text { (40) } \end{aligned}$
60	3-chlorobenzyl	hydroxy	H	pentyl	H	$\begin{aligned} & \text { n.d. }{ }^{\text {c }} \\ & \text { (70) } \end{aligned}$	n.d. ${ }^{\text {c }}$ (0)
61	4-chlorobenzyl	methoxy	H	pentyl	H	n.d. ${ }^{\text {c }}$ (11)	n.d. ${ }^{\text {. }}$ (47)
62	4-fluorobenzyl	methoxy	H	pentyl	H	$\begin{aligned} & \text { n.d. }^{\text {c }} \\ & (98) \end{aligned}$	$\begin{aligned} & \text { n.d. }^{\text {c }} \\ & (91) \end{aligned}$
63	4-bromobenzyl	methoxy	H	pentyl	H	$\begin{aligned} & \text { n.d. }^{\text {c }} \\ & \text { (17) } \end{aligned}$	n.d. ${ }^{\text {. }}$ (0)

Coumarin derivatives III: long, branched 7-substituent

64	benzyl	methoxy	H	$\begin{array}{\|l} 1,1- \\ \text { dimethylheptyl } \end{array}$	H	n.d. ${ }^{\text {c }}$ (27)	n.d. ${ }^{\text {. }}$ (0)
65	benzyl	hydroxy	H	$\begin{aligned} & 1,1- \\ & \text { dimethylheptyl } \end{aligned}$	H	$\begin{aligned} & \text { n.d. }^{\text {c }} \\ & \text { (84) } \end{aligned}$	$\begin{aligned} & \text { n.d. }^{\text {c }} \\ & \text { (32) } \end{aligned}$
66	$\begin{aligned} & \text { 2-methoxy- } \\ & \text { benzyl } \\ & \hline \end{aligned}$	methoxy	H	$\begin{aligned} & 1,1- \\ & \text { dimethylheptyl } \end{aligned}$	H	n.d. ${ }^{\text {c }}$ (0)	$\begin{aligned} & \text { n.d. }{ }^{\text {c }} \\ & \text { (30) } \end{aligned}$
$\begin{array}{\|l} \hline \mathbf{6 7} \\ \text { (PSB-SB- } \\ \hline 1203) \\ \hline \end{array}$	$\begin{aligned} & \text { 2-hydroxy- } \\ & \text { benzyl } \end{aligned}$	hydroxy	H	$\begin{aligned} & 1,1- \\ & \text { dimethylheptyl } \end{aligned}$	H	n.d. ${ }^{\text {c }}$ (0)	$\begin{gathered} 0.0542^{1} \\ (76) \end{gathered}$
$\begin{array}{\|l} \mathbf{6 9} \\ \text { (PSB-SB- } \\ 487) \\ \hline \end{array}$	$\begin{aligned} & \text { 2-hydroxy- } \\ & \text { benzyl } \end{aligned}$	hydroxy	H	$\begin{aligned} & \text { 1,1- } \\ & \text { dimethyloctyl } \end{aligned}$	H	n.d. ${ }^{\text {b }}$ (0)	$\begin{aligned} & \text { n.d. }{ }^{\text {c }} \\ & \text { (52) } \end{aligned}$
70	$\begin{aligned} & \text { 2-methoxy- } \\ & \text { benzyl } \\ & \hline \end{aligned}$	methoxy	H	1-butylcylopentyl	H	$\begin{aligned} & \text { n.d. }^{\text {c }} \\ & (110) \end{aligned}$	n.d. ${ }^{\text {c }}$ (3)
71	$\begin{aligned} & \text { 2-hydroxy- } \\ & \text { benzyl } \end{aligned}$	hydroxy	H	1-butylcylopentyl	H	$\begin{aligned} & \text { n.d. }{ }^{\text {c }} \\ & \text { (37) } \end{aligned}$	$\begin{gathered} 0.0480^{1} \\ (106) \end{gathered}$
73	$\begin{aligned} & \text { 2-hydroxy- } \\ & \text { benzyl } \\ & \hline \end{aligned}$	hydroxy	H	1-butylcylcohexyl	H	$\begin{aligned} & \text { n.d. }{ }^{\text {c }} \\ & \text { (81) } \end{aligned}$	$\begin{gathered} 0.179 \\ (76) \end{gathered}$

[^0]${ }^{\mathrm{b}}$ effect of test compounds $(10 \mu \mathrm{M})$ on inhibition of forskolin $(10 \mu \mathrm{M})$-stimulated cAMP production was related to the effect of the full agonist CP55,940 ($=100 \%$). CP55,940 was used in a concentration of $1 \mu \mathrm{M}$.
${ }^{c}$ n.d. not determined

Table S2. Intrinsic activities of coumarin derivatives at the orphan GPR18 and GPR55 receptors ${ }^{\text {a }}$

compd	β-arrestin recruitment assay			
	human GPR18	human GPR18	human GPR55	human GPR55
	$\begin{gathered} \mathbf{E C}_{50} \pm \text { SEM } \\ (\mu \mathrm{M}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{I C}_{50} \pm \text { SEM } \\ (\mu \mathrm{M}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{E C}_{50} \pm \text { SEM } \\ (\mu \mathrm{M}) \end{gathered}$	$\begin{gathered} \mathbf{I C}_{50} \pm \text { SEM } \\ (\mu \mathrm{M}) \\ \hline \end{gathered}$
Standard agonists and antagonists				
LPI	> $10(44 \%)^{\text {b }}$	$>10(15 \%){ }^{\text {c }}$	1.00 ± 0.25	n.d. ${ }^{\text {e }}$
CP55,940	> $10(0 \%)^{\text {b }}$	5.99 ± 1.88	> $10(4 \%)^{\text {d }}$	$1.89{ }^{3}$
rimonabant	> $10(0 \%)^{\text {b }}$	10.1 ± 1.3	$2.01{ }^{3}$	n.d. ${ }^{\text {e }}$
Δ^{9}-THC	4.61 ± 0.50	> $10(0 \%)^{\text {c }}$	> $10(0 \%)^{\text {d }}$	14.2 ± 5.4
Coumarin derivatives I: with small 7-substituents				
$\begin{array}{\|l\|} \hline \mathbf{1 0} \\ \text { (PSB-SB-115) } \end{array}$	> 10 (10\%) ${ }^{\text {b }}$	$>10(11 \%)^{\text {c }}$	$>10(0 \%)^{\text {d }}$	3.45 ± 0.36
11	> $10(25 \%)^{\text {b }}$	> $10(12 \%)^{\text {c }}$	> $10(0 \%)^{\text {d }}$	5.33 ± 1.10
$\begin{aligned} & \mathbf{1 2} \\ & \text { (PSB-SB-489) } \end{aligned}$	> $10(10 \%)^{\text {b }}$	> 10 (32\%) ${ }^{\text {c }}$	> $10(15 \%)^{\text {d }}$	1.77 ± 0.23
13	> 10 (7\%) ${ }^{\text {b }}$	> $10(0 \%)^{\text {c }}$	> $10(0 \%)^{\text {d }}$	7.14 ± 2.66
14	> $10(12 \%)^{\text {b }}$	11.3 ± 2.0	> $10(0 \%)^{\text {d }}$	5.70 ± 1.62
15	> $10(27 \%)^{\text {b }}$	> $10(0 \%)^{\text {c }}$	> 10 (37\%) ${ }^{\text {d }}$	$>10(46 \%)^{\text {f }}$
16	> $10(19 \%)^{\text {b }}$	> $10(0 \%)^{\text {c }}$	> $10(20 \%)^{\text {d }}$	> $10(40 \%)^{\text {f }}$
17	> $10(11 \%)^{\text {b }}$	> $10(7 \%)^{\text {c }}$	> $10(0 \%)^{\text {d }}$	> $10(28 \%)^{\text {f }}$
18	> $10(9 \%)^{\text {b }}$	> $10(9 \%)^{\text {c }}$	> $10(0 \%)^{\text {d }}$	$>10(13 \%)^{\text {f }}$
19	> 10 (3\%) ${ }^{\text {b }}$	> $10(9 \%)^{\text {c }}$	$>10(18 \%)^{\text {d }}$	~ 10 (54\%) ${ }^{\text {f }}$
20	> $10(4 \%)^{\text {b }}$	> $10(0 \%)^{\text {c }}$	> $10(0 \%)^{\text {d }}$	> $10(45 \%)^{\text {f }}$
21	> $10(18 \%)^{\text {b }}$	> $10(0 \%)^{\text {c }}$	> 10 (11\%) ${ }^{\text {d }}$	> $10(16 \%)^{f}$
22	> $10(8 \%)^{\text {b }}$	> $10(0 \%)^{\text {c }}$	> $10(10 \%)^{\text {d }}$	> $10(7 \%)^{\text {f }}$
23	> $10(1 \%)^{\text {b }}$	> $10(0 \%)^{\text {c }}$	> $10(18 \%)^{\text {d }}$	> $10(5 \%)^{\text {f }}$
24	n.d. ${ }^{\text {e }}$	n.d. ${ }^{\text {e }}$	$>10(0 \%)^{\text {d }}$	2.81 ± 1.16

- S11 -

25	> $10(31 \%)^{\text {b }}$	> 10 (9\%) ${ }^{\text {c }}$	> $10(0 \%)^{\text {d }}$	$>10(28 \%)^{\text {f }}$
26	> $10(29 \%)^{\text {b }}$	$>10(29 \%){ }^{\text {c }}$	$>10(5 \%)^{\text {d }}$	$>10(43 \%)^{\text {f }}$
27	>10 (3\%) ${ }^{\text {b }}$	$>10(34 \%)^{\text {c }}$	$>10(4 \%)^{\text {d }}$	$>10(6 \%)^{\text {f }}$
28	$>10(0 \%)^{\text {b }}$	$>10(4 \%)^{\text {c }}$	$>10(26 \%){ }^{\text {d }}$	$>10(2 \%){ }^{\text {f }}$
29	$>10(10 \%)^{\text {b }}$	$>10(11 \%)^{\text {c }}$	$>10(0 \%)^{\text {d }}$	9.38 ± 0.58
30	$>10(0 \%)^{\text {b }}$	$>10(13 \%)^{\text {c }}$	$>10(0 \%)^{\text {d }}$	> $10(54 \%)^{\text {f }}$
31	$>10(0 \%)^{\text {b }}$	>10 (31\%) ${ }^{\text {c }}$	$>10(0 \%)^{\text {d }}$	3.99 ± 0.75
32	$>10(3 \%)^{\text {b }}$	$>10(18 \%)^{\text {c }}$	$>10(0 \%)^{\text {d }}$	$>10(45 \%)^{\text {f }}$
33	$>10(14 \%)^{\text {b }}$	$>10(24 \%)^{\text {c }}$	$>10(0 \%)^{\text {d }}$	6.74 ± 2.04
34	> $10(9 \%)^{\text {b }}$	$>10(14 \%)^{\text {c }}$	> 10 (39\%) ${ }^{\text {d }}$	> $10(42 \%)^{\text {f }}$
$\begin{aligned} & 35 \\ & \text { (PSB-SB-258) } \end{aligned}$	$>10(4 \%)^{\text {b }}$	$>10(27 \%)^{\text {c }}$	$>10(0 \%)^{\text {d }}$	0.981 ± 0.140
36	> $10(0 \%)^{\text {b }}$	$\geq 10(46 \%)^{\text {c }}$	> $10(0 \%)^{\text {d }}$	12.8 ± 3.2
37	$>10(14 \%)^{\text {b }}$	$>10(16 \%){ }^{\text {c }}$	$>10(2 \%)^{\text {d }}$	9.32 ± 1.05
38	$>10(0 \%)^{\text {b }}$	$>10(32 \%)^{\text {c }}$	$>10(0 \%)^{\text {d }}$	13.5 ± 4.3
39	$>10(12 \%)^{\text {b }}$	$\geq 10(47 \%)^{\text {c }}$	$>10(3 \%)^{\text {d }}$	10.3 ± 0.7
40	>10 (4\%) ${ }^{\text {b }}$	$>10(33 \%)^{\text {c }}$	$>10(0 \%)^{\text {d }}$	7.69 ± 1.71
41	$>10(12 \%)^{\text {b }}$	$>10(38 \%)^{\text {c }}$	$>10(2 \%)^{\text {d }}$	5.16 ± 0.73
42	$>10(13 \%)^{\text {b }}$	$>10(25 \%)^{\text {c }}$	$>10(1 \%)^{\text {d }}$	> $10(13 \%)^{\text {f }}$
43	$>10(9 \%)^{\text {b }}$	$>10(27 \%)^{\text {c }}$	$>10(8 \%)^{\text {d }}$	> $10(18 \%)^{\text {f }}$
44	$>10(12 \%)^{\text {b }}$	$>10(13 \%){ }^{\text {c }}$	$>10(0 \%)^{\text {d }}$	~ 10 (53\%) ${ }^{\text {f }}$
45	$>10(17 \%){ }^{\text {b }}$	> $10(0 \%)^{\text {c }}$	$>10(23 \%){ }^{\text {d }}$	$>10(25 \%)^{\text {f }}$
Coumarin derivatives II: 7-pentyl-substitution				
46	>10 (9\%) ${ }^{\text {b }}$	$>10(27 \%)^{\text {c }}$	$>10(0 \%)^{\text {d }}$	$>10(44 \%)^{\text {f }}$
47	$>10(1 \%)^{\text {b }}$	$>10(20 \%)^{\text {c }}$	$>10(10 \%)^{\text {d }}$	6.35 ± 2.66
48	n.d. ${ }^{\text {e }}$	n.d. ${ }^{\text {e }}$	$>10(0 \%)^{\text {d }}$	> $10(37 \%)^{\text {f }}$
$\begin{aligned} & \mathbf{4 9} \\ & \text { (PSB-SB-435) } \end{aligned}$	$>10(9 \%)^{\text {b }}$	$>10(33 \%)^{\text {c }}$	$>10(30 \%)^{\text {d }}$	3.23 ± 0.31

50	> $10(0 \%)^{\text {b }}$	$>10(37 \%)^{\text {c }}$	> $10(25 \%)^{\text {d }}$	10.6 ± 4.9
51	$>10(0 \%)^{\text {b }}$	$\geq 10(46 \%)^{\text {c }}$	> $10(22 \%)^{\text {d }}$	$>10(36 \%)^{\text {f }}$
52	> $10(5 \%)^{\text {b }}$	$>10(33 \%)^{\text {c }}$	> $10(47 \%)^{\text {d }}$	> $10(0 \%)^{\text {f }}$
53	> $10(0 \%)^{\text {b }}$	$>10(34 \%)^{\text {c }}$	$>10(17 \%)^{\text {d }}$	5.08 ± 1.05
54	> $10(0 \%)^{\text {b }}$	$>10(10 \%)^{\text {c }}$	$>10(26 \%)^{\text {d }}$	$>10(19 \%)^{\text {f }}$
55	$>10(0 \%)^{\text {b }}$	$>10(27 \%)^{\text {c }}$	$>10(39 \%)^{\text {d }}$	$>10(27 \%)^{\text {f }}$
56	$>10(0 \%)^{\text {b }}$	$>10(33 \%)^{\text {c }}$	$>10(19 \%){ }^{\text {d }}$	$>10(19 \%){ }^{\text {f }}$
57	$>10(0 \%){ }^{\text {b }}$	$>10(25 \%)^{\text {c }}$	$>10(26 \%)^{\text {d }}$	9.00 ± 2.44
58	> $10(11 \%)^{\text {b }}$	> $10(0 \%)^{\text {c }}$	$>10(41 \%)^{\text {d }}$	$>10(0 \%)^{\text {f }}$
59	$>10(0 \%)^{\text {b }}$	$\geq 10(47 \%)^{\text {c }}$	$>10(20 \%)^{\text {d }}$	$>10(36 \%)^{\text {f }}$
60	$>10(0 \%)^{\text {b }}$	$>10(44 \%)^{\text {c }}$	$>10(54 \%)^{\text {d }}$	$>10(30 \%)^{\text {f }}$
61	$>10(0 \%){ }^{\text {b }}$	$>10(50 \%)^{\text {c }}$	$>10(10 \%)^{\text {d }}$	3.29 ± 1.30
62	$>10(0 \%)^{\text {b }}$	$>10(35 \%){ }^{\text {c }}$	$>10(0 \%)^{\text {d }}$	~ 10 (57\%) ${ }^{\text {f }}$
63	> $10(0 \%)^{\text {b }}$	$>10(30 \%)^{\text {c }}$	> $10(0 \%)^{\text {d }}$	3.76 ± 1.46
Coumarin derivatives III: long, branched 7-substituent				
64	$>10(0 \%)^{\text {b }}$	$>10(31 \%)^{\text {c }}$	$>10(26 \%)^{\text {d }}$	~ 10 (51\%) ${ }^{\text {f }}$
65	$>10(0 \%)^{\text {b }}$	8.10 ± 0.58	$>10(5 \%)^{\text {d }}$	0.358 ± 0.089
66	$>10(1 \%)^{\text {b }}$	$>10(26 \%)^{\text {c }}$	$>10(57 \%)^{\text {d }}$	$>10(25 \%){ }^{\text {f }}$
$\left\lvert\, \begin{aligned} & 67 \\ & \text { (PSB-SB-1203) } \end{aligned}\right.$	$>10(0 \%)^{\text {b }}$	15.9 ± 4.9	$>10(5 \%)^{\text {d }}$	0.261 ± 0.181
68	$>10(5 \%){ }^{\text {b }}$	$>10(33 \%)^{\text {c }}$	$>10(43 \%)^{\text {d }}$	$>10(31 \%)^{\text {f }}$
$\begin{array}{\|l\|} \mathbf{6 9} \\ \text { (PSB-SB-487) } \\ \hline \end{array}$	> $10(0 \%)^{\text {b }}$	12.5 ± 2.9	$>10(0 \%)^{\text {d }}$	0.113 ± 0.020
70	$>10(3 \%){ }^{\text {b }}$	$>10(25 \%){ }^{\text {c }}$	$>10(13 \%)^{\text {d }}$	$>10(30 \%)^{\text {f }}$
71	$>10(0 \%)^{\text {b }}$	$\leq 10(57 \%)^{\text {c }}$	$>10(25 \%)^{\text {d }}$	0.759 ± 0.415
72	$>10(0 \%)^{\text {b }}$	$>10(33 \%)^{\text {c }}$	$>10(12 \%)^{\text {d }}$	> $10(44 \%)^{\text {f }}$
73	$>10(0 \%)^{\text {b }}$	$\leq 10(59 \%){ }^{\text {c }}$	> $10(7 \%)^{\text {d }}$	0.961 ± 0.431

a all data result from three independent experiments, performed in duplicates.
${ }^{\mathrm{b}}$ effect of test compounds $(10 \mu \mathrm{M})$ on β-arrestin recruitment to human GPR18 related to the effect of Δ^{9} - THC in a concentration of $10 \mu \mathrm{M}(=100 \%)$.
${ }^{\mathrm{c}} \%$ inhibition of Δ^{9}-THC $(10 \mu \mathrm{M})$-mediated β-arrestin recruitment by test compounds in a concentration of $10 \mu \mathrm{M}$.
${ }^{d}$ effect of test compounds $(10 \mu \mathrm{M})$ on β-arrestin recruitment to human GPR55 related to the effect of LPI in a concentration of $1 \mu \mathrm{M}(=100 \%)$.
${ }^{\mathrm{e}} \mathrm{n}$.d. $=$ not determined.
${ }^{\mathrm{f}} \%$ inhibition of LPI $(1 \mu \mathrm{M})$-mediated β-arrestin recruitment by test compounds in a concentration of 10 $\mu \mathrm{M}$.

References

1. Rempel, V.; Volz, N.; Hinz, S.; Karcz, T.; Meliciani, I.; Nieger, M.; Wenzel, W.; Bräse, S.; Müller, C. E., 7-Alkyl-3-benzylcoumarins: a versatile scaffold for the development of potent and selective cannabinoid receptor agonists and antagonists. J. Med. Chem. 2012, 55, 7967-7977.
2. Rempel, V.; Fuchs, A.; Hinz, S.; Karcz, T.; Lehr, M.; Koetter, U.; Müller, C. E., Magnolia extract, magnolol and metabolites: activation of cannabinoid CB_{2} receptors and blockade of the related GPR55. ACS Med. Chem. Lett. 2012, 4, 41-45.

[^0]: ${ }^{\text {a }}$ all data result from three independent experiments, performed in duplicates.

