Supporting Information

Synthesis and structural characterization of a dendrimer model compound based on a cyclotriphosphazene core with TEMPO radicals as substituents.

Elena Badetti,^{†, \Box} Vega Lloveras,^{†, \Box} Klaus Wurs,[†] Rosa María Sebastián,[‡] Anne-Marie Caminade,[§] Jean-Pierre Majoral,[§] Jaume Veciana^{†, \Box} and José Vidal-Gancedo.^{*†, \Box}

[†]Institut de Ciència de Materials de Barcelona ICMAB–CSIC; Campus UAB, 08193 Bellaterra, Barcelona (Spain).

[□] CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Barcelona (Spain).

[‡]Universitat Autònoma de Barcelona; Campus UAB, 08193 Bellaterra, Barcelona. (Spain)

[§]Laboratoire de Chimmie de la Coordination – CNRS, Route de Narbonne 205, 31077 Toulouse cedex 4 (France).

^LInstitut für Allgemeine Anorganische und Teoretische Chemie, Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria.

Table of Contents

1. Experimental procedure	S3
2. Collection of spectra	S4
3. X-ray diffraction analysis	S8
4. Variable-temperature EPR study	S39
5. EPR spectra in different solvents	S40
6. Simulations of N-containing triradical system	S41
7. References	S41

1. Experimental Procedure

General. Compound **3-Gc₀T** was synthesized according to published procedures.¹ The preparation of dendrimer was performed under inert atmosphere with Schlenk type glassware and under dark conditions. Anhydrous solvents were used thoroughly.

IR spectra were recorded in an attenuated total reflectance mode (ATR) in a Perkin Elmer Spectrum One Fourier transform spectrometer. NMR spectra were recorded in a Bruker AC250 instrument. ³¹P{¹H} NMR (101.3 MHz) spectra were reported relative to H₃PO₄ 85% in water. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) spectra were recorded on a BIFLEX spectrometer (Bruker-Franzen Analytik) equipped with a pulsed nitrogen laser (337 nm), operating in positive-ion reflector mode, using 19 kV acceleration voltage. Matrices (4-Hydroxy-3,5-dimethoxycinnamic acid) were prepared at 5 mg/mL in tetrahydrofuran (THF). Analytes were dissolved at concentrations between 0.1 and 5 mg/mL in THF. EPR spectra were obtained in an X-Band Bruker ELEXYS 500 spectrometer equipped with a TE102 microwave cavity, a Bruker variable temperature unit, a field frequency lock system Bruker ER 033 M. Line positions were determined with an NMR Gaussmeter Bruker ER 035 M. The modulation amplitude was kept well below the line width, and the microwave power was well below saturation. Crystal structure was determined in a diffractometer Nonius Kappa CCD diffractometer with an area detector and graphite-monochromized MoK α radiation ($\lambda = 0.71074$ Å). The structure of the crystal was solved by direct methods and refined by full-matrix least squares method with SHELXTL software. CCDC-894232 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Synthesis of 3-Gc₀T. Dendrimer 1-Gc'₀ (0.05 g, 0.06 mmol) and free radical 4-amino-TEMPO 2 (0.08 g, 0.43 mmol) were dissolved in THF (1 mL). The mixture was stirred overnight. Pentane was added to the solution until the formation of an orange precipitate. The mixture was stirred for 10 min and filtered via cannula. The solid was washed with THF:pentane (1:10) several times and dried to afford 0.10 g of the hexaimine (97% yield) as an orange solid. IR (ATR) 2975, 2932, 2861, 1645, 1602, 1504, 1458, 1360, 1174, 1157, 945 cm⁻¹. ³¹P{¹H} NMR (101.3 MHz, CDCl₃) δ 5.6 ppm. ¹H-NMR (250 MHz, CDCl₃) See pag. S5. MALDI-TOF MS (matrix of 4-hydroxy-3,5-dimethoxycinnamic acid): *m/z* calcd for C₉₆H₁₃₂N₁₅O₁₂P₃, 1781 [M]; found, 1783 [M⁺].

2. Collection of spectra

FT-IR

S4

¹H-NMR (250 MHz, CDCl₃) δ (ppm)

The signals of the ¹H NMR spectrum of $3-Gc_0T$ are broad due to the presence of the paramagnetic radical units but it is possible to establish the appearance of the new imine proton (CH=N, 8.45 ppm) while the aldehyde proton at 9.93 ppm of $1-Gc_0$ ' clearly disappears. In addition, we can observe the phenyl ring protons of the dendrimeric branch at the same position: 7.76 and 7.11 ppm.

MALDI-TOF MS (m/z)

Matriz: 4-Hydroxy-3,5-dimethoxycinnamic acid (CIN)

S7

3. X-ray diffraction analysis

The data collection conditions and the parameters of refinement process are listed in Table S1 while the most relevant structural parameters of **3-Gc**₀**T** are listed in Table S2. We can observe that there is a small asymmetry in the P-N-P and N-P-N bond angles of the phosphazene ring. The mean values of the N-P-N and P-N-P angles are 116.87 and 122.50 Å, respectively. This was also observed in the cyclic (*p*-halogenophenoxy)-phosphazene structures² and other related structures.³⁻⁵ P-N bond lengths are 1.563(4)-1.585(4) retaining their phosphazenic character. On the other hand, there are elongations of *Ar*-O bond lengths of this compound compared with the normal value for *Ar*-O bonds.⁶⁻⁸ Distances of P-O bonds also agree with normal P-O bonds⁹⁻¹⁰ being these values similar to those observed in analogous structures deposited in the Cambridge Structural Database.

The molecular conformation of **3**-**G**c₀**T** is defined by the twist of the branches around the P-O bonds which can be described by the torsion angles including the centroid X of the phospazene ring (Table S2). This molecular conformation is stabilised by C-H^{...} π stacking interactions between the benzene rings of the closest branches as inferred from the analysis of atomic distances. Thus, the distance between atom H₁₀₂ (C₁₀₂) and the centroid of benzene ring 1 is around 2.74 Å, which is shorter than the distance between H₅₀₆ (C₅₀₆) and the centroid of ring 2 of 3.14 Å. The longer distance is probably caused by steric interactions, because on the opposite side of ring 2 an intermolecular C-H^{...} π stacking of atom H₆₀₃ (C₆₀₃) occurs with a distance of 2.88 Å (see Figure S1). On the other side of the cyclotriphosphazene ring are only intramolecular interactions of 2.74 and 2.72 Å between H₄₀₆ and ring 5 and H₂₀₂ and ring 6, respectively. A worth noticing point of the molecular structure is that all TEMPO radical units have a distorted chair conformation with *C_s* symmetry with the two CH₂-C(Me)₂-groups coplanar.

The global flat geometry of the molecule allows an optimised crystal packing of the molecules forming sheets perpendicular to the crystallographic *c*-axis. Figure S1 shows the build-up of sheets along the *a*-axis with alternate enantiomeric molecules connected by the C-H^{...} π stacking interactions of H₆₀₃ (C₆₀₃) with benzene ring 2 and two weak hydrogen bonds between a H_{methyl} of TEMPO 5 and the O₃ atom and between H_{aryl} of benzene ring 5 and the O₁₂ of TEMPO 6, both with a distance of 2.52 Å. The

interactions within the sheet are completed by a hydrogen bond between two TEMPOs by a common translation along the *b*-axis with a distance of 2.44 Å between H atom at C_{609} and O_8 (see Figure S2). Figure S2 shows two great cavities, A and B, existing between the branches of neighbouring molecules, which are filled with toluene solvent molecules and are covered by the neighbouring sheets. Note, that the thickness of the sheets is 12.9 Å, half the lattice constant of the *c*-axis, and that each cavity possess a volume of around 670 Å³. Finally, the crystal packing is completed in the third dimension by connecting the sheets through one further hydrogen bond with a length of 2.53 Å between two TEMPOs.

All the geometric parameters are listed below in Tables S2, S3, S4 and S5.

Figure S1. Packing scheme with hydrogen bonds along the *a*-axis. Symmetry codes: A: -0.5 + x, 0.5 - y, *z*; A: 0.5 + x, 0.5 - y, *z*.

Figure S2. Packing scheme with hydrogen bonds along the *b*-axis. Symmetry codes: A: x, -1 + y, z; B: x, 1 + y, z.

Empirical formula	$C_{96}H_{132}N_{15}O_{12}P_3 \ x \ 3 \ C_7H_8$
Formula weight	2057.48
Temperature	233(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pna2 ₁ (no. 33)
Unit cell dimensions	$a = 22.7570(3) \text{ Å}$; $\alpha = 90^{\circ}$
	$b = 19.7108(3) \text{ Å}$; $\beta = 90^{\circ}$
	$c = 25.8479(4) \text{ Å}$; $\gamma = 90^{\circ}$
Volume	11594.3(3) Å ³
Z	4
Density (calculated)	1.179 Mg/m ³
Absorption coefficient	0.116 mm ⁻¹
F(000)	4416
Crystal size	$0.35 \ge 0.31 \ge 0.19 \text{ mm}^3$
Theta range for data collection	1.37 to 22.00°
Index ranges	-23<=h<=23, -20<=k<=20, -26<=l<=27

 Table S1. Data collection conditions and parameters of refinement process.

Reflections collected	49072
Independent reflections	14004 [R(int) = 0.0568]
Reflections [I>2sigma(I)]	11699
Completeness to theta = 22.00°	99.8 %

Table S2. Selected bond lengths (in Å) angles and torsion angles (in degrees) with centroid X of the phospazene ring.

P(1)-N(1)	1.580(4)	N(1)-P(2)-N(2)	117.0(2)
P(1)-N(3)	1.585(4)	N(1)-P(1)-N(3)	116.5(2)
P(2)-N(1)	1.568(4)	N(2)-P(3)-N(3)	117.1(2)
P(2)-N(2)	1.584(4)		
P(3)-N(2)	1.563(4)	P(2)-N(1)-P(1)	122.9(2)
P(3)-N(3)	1.578(4)	P(3)-N(2)-P(2)	122.5(3)
P(1)-O(1)	1.585(3)	P(3)-N(3)-P(1)	122.1(2)
P(1)-O(3)	1.580(4)		
P(2)-O(5)	1.584(3)	O(1)-P(1)-O(3)	96.19(19)
P(2)-O(7)	1.581(3)	O(5)-P(2)-O(7)	99.02(17)
P(3)-O(9)	1.598(3)	O(9)-P(3)-O(11)	98.32(16)
P(3)-O(11)	1.593(3)		
O(1)-C(101)	1.426(6)	X-P(1)-O(1)-C(101)	-33.6
O(3)-C(201)	1.420(6)	X-P(2)-O(5)-C(301)	-9.8
O(5)-C(301)	1.412(6)	X-P(3)-O(9)-C(501)	129.6
O(7)-C(401)	1.414(5)	X-P(1)-O(3)-C(201)	-31.4
O(9)-C(501)	1.391(5)	X-P(2)-O(7)-C(401)	133.3
O(11)-C(601)	1.401(6)	X-P(3)-O(11)-C(601)	-14.9

	x	у	Z	U(eq)
P(1)	8271(1)	2283(1)	6169(1)	41(1)
P(2)	8922(1)	1490(1)	5497(1)	40(1)
P(3)	8624(1)	2799(1)	5222(1)	39(1)
O(1)	7597(1)	2208(2)	6309(1)	53(1)
O(2)	4585(2)	4244(3)	2883(2)	98(2)
O(3)	8484(2)	2469(2)	6733(1)	53(1)
O(4)	13003(3)	-292(3)	7499(3)	132(2)
O(5)	8729(1)	809(2)	5220(1)	48(1)
O(6)	4284(2)	-15(3)	2980(2)	93(1)
O(7)	9585(1)	1306(2)	5614(1)	45(1)
O(8)	11909(3)	-3957(3)	6394(2)	128(2)
O(9)	8151(1)	2892(2)	4771(1)	44(1)
O(10)	5708(2)	8242(2)	4611(2)	96(2)
O(11)	9033(1)	3431(2)	5089(1)	46(1)
O(12)	13067(2)	4128(2)	7944(2)	73(1)
N(1)	8546(2)	1581(2)	6000(2)	43(1)
N(2)	8940(2)	2111(2)	5108(2)	46(1)
N(3)	8363(2)	2899(2)	5783(2)	42(1)
N(4)	5841(2)	3043(2)	4466(2)	64(1)
N(5)	4880(2)	3961(3)	3254(2)	69(1)
N(6)	11108(3)	1430(4)	7222(3)	106(2)
N(7)	12568(3)	104(3)	7424(3)	94(2)
N(8)	6195(2)	374(3)	4230(2)	75(1)
N(9)	4710(2)	50(3)	3300(2)	68(1)
N(10)	10684(3)	-1570(2)	6193(2)	78(2)
N(11)	11620(3)	-3389(3)	6379(2)	90(2)

Table S3. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10³). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(12)	6820(3)	5752(3)	4589(2)	77(2)
N(13)	5970(2)	7657(2)	4600(2)	67(1)
N(14)	11204(2)	3979(2)	6601(2)	62(1)
N(15)	12644(2)	4087(2)	7625(2)	52(1)
C(101)	7146(2)	2386(3)	5950(2)	46(1)
C(102)	7127(2)	2138(3)	5464(2)	53(1)
C(103)	6693(2)	2361(3)	5130(2)	57(1)
C(104)	6287(2)	2828(3)	5290(2)	51(1)
C(105)	6287(2)	3031(3)	5795(3)	68(2)
C(106)	6719(2)	2819(3)	6136(2)	62(2)
C(107)	5830(2)	3115(3)	4938(3)	66(2)
C(108)	5379(2)	3414(3)	4179(2)	67(2)
C(109)	5649(3)	4024(3)	3911(3)	81(2)
C(110)	5228(3)	4437(3)	3593(3)	88(2)
C(111)	5567(5)	4900(5)	3230(5)	158(5)
C(112)	4788(5)	4838(5)	3930(4)	146(4)
C(113)	5135(3)	2948(3)	3756(3)	70(2)
C(114)	4675(3)	3289(3)	3420(2)	65(2)
C(115)	4570(4)	2879(4)	2926(3)	109(3)
C(116)	4085(3)	3339(5)	3709(3)	109(3)
C(201)	9049(2)	2284(2)	6920(2)	45(1)
C(202)	9545(2)	2520(3)	6684(2)	64(2)
C(203)	10096(3)	2295(4)	6877(3)	78(2)
C(204)	10131(2)	1869(3)	7280(2)	61(2)
C(205)	9619(2)	1661(3)	7520(2)	62(2)
C(206)	9070(2)	1870(3)	7340(2)	58(1)
C(207)	10691(3)	1529(6)	7472(3)	112(3)
C(208)	11607(3)	1017(4)	7434(3)	89(2)
C(209)	12181(4)	1202(5)	7157(5)	136(4)
C(210)	12713(4)	816(4)	7340(5)	126(4)
C(211)	13182(5)	812(6)	6882(6)	166(5)
C(212)	13000(5)	1156(5)	7785(5)	144(4)
S13				

C(213)	11508(4)	327(5)	7392(6)	163(5)
C(214)	12017(4)	-115(5)	7656(4)	122(3)
C(215)	11908(4)	-836(4)	7445(5)	130(3)
C(216)	12062(8)	-66(11)	8253(4)	244(10)
C(301)	8135(2)	686(2)	5093(2)	45(1)
C(302)	7922(2)	920(3)	4630(2)	60(2)
C(303)	7347(2)	764(3)	4496(2)	59(1)
C(304)	6996(2)	380(3)	4817(2)	51(1)
C(305)	7219(2)	166(3)	5286(2)	59(1)
C(306)	7797(2)	325(3)	5425(2)	53(1)
C(307)	6405(2)	182(3)	4653(2)	62(2)
C(308)	5619(2)	122(3)	4061(2)	70(2)
C(309)	5727(3)	-227(5)	3540(3)	105(3)
C(310)	5165(3)	-484(5)	3276(3)	96(3)
C(311)	5297(5)	-636(8)	2711(5)	178(6)
C(312)	4910(5)	-1130(5)	3550(6)	172(6)
C(313)	5204(3)	705(4)	3978(3)	88(2)
C(314)	4616(3)	512(3)	3740(3)	80(2)
C(315)	4289(4)	1125(4)	3551(5)	139(4)
C(316)	4213(4)	165(6)	4131(4)	122(3)
C(401)	9772(2)	691(2)	5843(2)	41(1)
C(402)	10059(4)	245(3)	5536(2)	90(2)
C(403)	10284(4)	-332(4)	5742(3)	104(3)
C(404)	10206(2)	-494(3)	6256(2)	53(1)
C(405)	9927(3)	-28(3)	6556(2)	63(2)
C(406)	9710(2)	570(3)	6350(2)	57(1)
C(407)	10455(3)	-1122(3)	6481(2)	63(2)
C(408)	10934(3)	-2179(3)	6434(2)	79(2)
C(409)	11591(3)	-2162(3)	6340(3)	89(2)
C(410)	11926(4)	-2776(4)	6553(3)	100(3)
C(411)	12543(5)	-2797(6)	6318(5)	150(4)
C(412)	11963(6)	-2777(5)	7152(4)	155(5)
S14				

C(413)	10700(3)	-2795(3)	6172(3)	79(2)
C(414)	10971(4)	-3478(3)	6361(3)	81(2)
C(415)	10825(4)	-4019(4)	5965(3)	108(3)
C(416)	10747(5)	-3669(4)	6894(4)	134(4)
C(501)	7849(2)	3491(2)	4669(2)	44(1)
C(502)	7789(2)	3668(3)	4171(2)	57(1)
C(503)	7486(3)	4263(3)	4043(2)	67(2)
C(504)	7255(2)	4674(3)	4411(2)	53(1)
C(505)	7293(3)	4465(3)	4914(2)	80(2)
C(506)	7600(3)	3872(3)	5050(2)	83(2)
C(507)	6968(3)	5319(3)	4263(2)	62(2)
C(508)	6533(3)	6379(3)	4410(2)	72(2)
C(509)	6886(3)	6987(3)	4615(3)	72(2)
C(510)	6603(3)	7673(3)	4505(3)	72(2)
C(511)	6708(4)	7884(4)	3942(3)	112(3)
C(512)	6870(3)	8210(4)	4860(3)	93(2)
C(513)	5937(3)	6417(3)	4634(3)	71(2)
C(514)	5591(3)	7054(3)	4502(2)	75(2)
C(515)	5391(4)	7033(4)	3923(3)	104(3)
C(516)	5048(3)	7103(4)	4849(3)	101(2)
C(601)	9457(2)	3649(2)	5444(2)	43(1)
C(602)	10020(2)	3391(3)	5421(2)	52(1)
C(603)	10435(2)	3605(3)	5777(2)	53(1)
C(604)	10292(2)	4072(2)	6149(2)	45(1)
C(605)	9730(2)	4351(2)	6154(2)	56(1)
C(606)	9314(2)	4139(3)	5792(2)	61(2)
C(607)	10718(2)	4257(3)	6559(2)	50(1)
C(608)	11587(2)	4173(3)	7031(2)	55(1)
C(609)	12150(2)	4450(3)	6823(2)	52(1)
C(610)	12593(2)	4651(3)	7250(2)	54(1)
C(611)	13192(3)	4764(3)	7000(2)	74(2)
C(612)	12400(3)	5298(3)	7535(2)	75(2)
S15				

C(613)	11724(2)	3531(3)	7332(2)	57(1)
C(614)	12145(2)	3634(3)	7778(2)	56(1)
C(615)	12420(3)	2955(3)	7923(3)	86(2)
C(616)	11842(3)	3933(4)	8256(2)	75(2)
C(1)	8399(8)	7359(9)	7952(7)	211(6)
C(2)	8495(6)	8030(7)	7762(6)	167(4)
C(3)	8799(8)	8151(9)	7297(7)	216(7)
C(4)	9051(10)	7669(12)	6996(9)	268(9)
C(5)	8963(11)	7086(12)	7277(9)	271(9)
C(6)	8688(8)	6832(9)	7697(8)	211(6)
C(7)	8095(10)	7159(11)	8414(9)	266(9)
C(8)	8635(5)	8510(6)	5101(5)	154(4)
C(9)	8549(5)	7820(6)	4980(5)	144(4)
C(10)	8516(6)	7658(7)	4446(5)	169(4)
C(11)	8537(8)	8116(9)	4043(7)	223(7)
C(12)	8633(7)	8805(9)	4206(7)	214(6)
C(13)	8673(6)	8999(7)	4710(6)	169(4)
C(14)	8784(10)	8679(12)	5630(8)	284(10)
C(15)	7942(8)	5797(10)	5862(8)	225(7)
C(16)	8181(8)	5871(9)	5370(7)	205(6)
C(17)	8687(11)	6039(14)	5113(10)	315(12)
C(18)	9155(9)	6140(10)	5457(8)	239(7)
C(19)	9007(8)	6096(9)	5996(8)	219(7)
C(20)	8455(8)	5919(10)	6231(8)	230(7)
C(21)	7401(14)	5480(20)	6086(17)	450(20)

P(1)-O(3)	1.580(4)	
P(1)-N(1)	1.580(4)	
P(1)-O(1)	1.585(3)	
P(1)-N(3)	1.585(4)	
P(2)-N(1)	1.568(4)	
P(2)-O(7)	1.581(3)	
P(2)-N(2)	1.584(4)	
P(2)-O(5)	1.584(3)	
P(3)-N(2)	1.563(4)	
P(3)-N(3)	1.578(4)	
P(3)-O(11)	1.593(3)	
P(3)-O(9)	1.598(3)	
O(1)-C(101)	1.426(6)	
O(2)-N(5)	1.295(6)	
O(3)-C(201)	1.420(6)	
O(4)-N(7)	1.275(7)	
O(5)-C(301)	1.412(6)	
O(6)-N(9)	1.281(6)	
O(7)-C(401)	1.414(5)	
O(8)-N(11)	1.298(7)	
O(9)-C(501)	1.391(5)	
O(10)-N(13)	1.299(6)	
O(11)-C(601)	1.401(6)	
O(12)-N(15)	1.271(5)	
N(4)-C(107)	1.228(8)	
N(4)-C(108)	1.481(7)	
N(5)-C(114)	1.469(8)	
N(5)-C(110)	1.509(8)	
N(6)-C(207)	1.163(9)	
N(6)-C(208)	1.502(9)	
S17		

N(7)-C(210)	1.456(11)
N(7)-C(214)	1.457(11)
N(8)-C(307)	1.251(7)
N(8)-C(308)	1.468(7)
N(9)-C(314)	1.472(8)
N(9)-C(310)	1.478(8)
N(10)-C(407)	1.266(7)
N(10)-C(408)	1.467(7)
N(11)-C(410)	1.466(10)
N(11)-C(414)	1.487(10)
N(12)-C(507)	1.247(7)
N(12)-C(508)	1.473(7)
N(13)-C(510)	1.462(8)
N(13)-C(514)	1.490(8)
N(14)-C(607)	1.239(6)
N(14)-C(608)	1.462(7)
N(15)-C(610)	1.480(7)
N(15)-C(614)	1.497(7)
C(101)-C(102)	1.349(8)
C(101)-C(106)	1.380(7)
C(102)-C(103)	1.385(8)
C(103)-C(104)	1.368(7)
C(104)-C(105)	1.364(8)
C(104)-C(107)	1.493(8)
C(105)-C(106)	1.384(8)
C(108)-C(109)	1.517(9)
C(108)-C(113)	1.531(9)
C(109)-C(110)	1.502(9)
C(110)-C(111)	1.518(12)
C(110)-C(112)	1.545(12)
C(113)-C(114)	1.517(9)
C(114)-C(115)	1.532(10)
S18	

C(114)-C(116)	1.539(10)
C(201)-C(206)	1.358(7)
C(201)-C(202)	1.365(7)
C(202)-C(203)	1.419(9)
C(203)-C(204)	1.340(9)
C(204)-C(205)	1.384(8)
C(204)-C(207)	1.523(10)
C(205)-C(206)	1.394(8)
C(208)-C(213)	1.383(11)
C(208)-C(209)	1.533(13)
C(209)-C(210)	1.506(12)
C(210)-C(212)	1.485(13)
C(210)-C(211)	1.594(16)
C(213)-C(214)	1.601(14)
C(214)-C(215)	1.543(13)
C(214)-C(216)	1.549(16)
C(301)-C(306)	1.356(7)
C(301)-C(302)	1.371(7)
C(302)-C(303)	1.387(8)
C(303)-C(304)	1.380(7)
C(304)-C(305)	1.379(8)
C(304)-C(307)	1.464(7)
C(305)-C(306)	1.399(7)
C(308)-C(313)	1.502(9)
C(308)-C(309)	1.533(10)
C(309)-C(310)	1.535(10)
C(310)-C(311)	1.521(13)
C(310)-C(312)	1.569(15)
C(313)-C(314)	1.521(9)
C(314)-C(315)	1.500(11)
C(314)-C(316)	1.527(12)
C(401)-C(406)	1.341(7)
S19	

C(401)-C(402)	1.353(8)
C(402)-C(403)	1.355(8)
C(403)-C(404)	1.379(8)
C(404)-C(405)	1.359(7)
C(404)-C(407)	1.479(7)
C(405)-C(406)	1.383(8)
C(408)-C(413)	1.489(10)
C(408)-C(409)	1.516(11)
C(409)-C(410)	1.531(9)
C(410)-C(411)	1.531(14)
C(410)-C(412)	1.550(12)
C(413)-C(414)	1.559(9)
C(414)-C(415)	1.516(11)
C(414)-C(416)	1.516(10)
C(501)-C(502)	1.340(7)
C(501)-C(506)	1.364(8)
C(502)-C(503)	1.401(8)
C(503)-C(504)	1.353(8)
C(504)-C(505)	1.367(8)
C(504)-C(507)	1.479(7)
C(505)-C(506)	1.407(8)
C(508)-C(513)	1.477(9)
C(508)-C(509)	1.537(9)
C(509)-C(510)	1.523(8)
C(510)-C(512)	1.528(10)
C(510)-C(511)	1.533(10)
C(513)-C(514)	1.522(9)
C(514)-C(516)	1.530(10)
C(514)-C(515)	1.564(10)
C(601)-C(606)	1.357(8)
C(601)-C(602)	1.378(7)
C(602)-C(603)	1.383(7)
S20	

C(603)-C(604)	1.370(7)
C(604)-C(605)	1.391(7)
C(604)-C(607)	1.485(7)
C(605)-C(606)	1.398(8)
C(608)-C(609)	1.494(8)
C(608)-C(613)	1.517(8)
C(609)-C(610)	1.546(7)
C(610)-C(611)	1.524(8)
C(610)-C(612)	1.537(8)
C(613)-C(614)	1.513(8)
C(614)-C(615)	1.522(8)
C(614)-C(616)	1.535(9)
C(1)-C(6)	1.396(15)
C(1)-C(2)	1.427(14)
C(1)-C(7)	1.434(16)
C(2)-C(3)	1.408(15)
C(3)-C(4)	1.356(16)
C(4)-C(5)	1.375(17)
C(5)-C(6)	1.348(16)
C(8)-C(13)	1.399(13)
C(8)-C(9)	1.408(12)
C(8)-C(14)	1.447(16)
C(9)-C(10)	1.420(13)
C(10)-C(11)	1.380(15)
C(11)-C(12)	1.437(15)
C(12)-C(13)	1.363(14)
C(15)-C(16)	1.392(15)
C(15)-C(21)	1.496(19)
C(15)-C(20)	1.526(15)
C(16)-C(17)	1.369(17)
C(17)-C(18)	1.401(17)
C(18)-C(19)	1.436(16)
S21	

C(19)-C(20)	1.438(15)	
- (-) - (-)	(-)	

O(3)-P(1)-N(1)	109.6(2)
O(3)-P(1)-O(1)	96.19(19)
N(1)-P(1)-O(1)	111.3(2)
O(3)-P(1)-N(3)	111.3(2)
N(1)-P(1)-N(3)	116.5(2)
O(1)-P(1)-N(3)	110.08(19)
N(1)-P(2)-O(7)	112.9(2)
N(1)-P(2)-N(2)	117.0(2)
O(7)-P(2)-N(2)	105.88(19)
N(1)-P(2)-O(5)	108.63(19)
O(7)-P(2)-O(5)	99.02(17)
N(2)-P(2)-O(5)	112.0(2)
N(2)-P(3)-N(3)	117.1(2)
N(2)-P(3)-O(11)	111.65(19)
N(3)-P(3)-O(11)	108.7(2)
N(2)-P(3)-O(9)	105.8(2)
N(3)-P(3)-O(9)	113.70(19)
O(11)-P(3)-O(9)	98.32(16)
C(101)-O(1)-P(1)	121.6(3)
C(201)-O(3)-P(1)	122.1(3)
C(301)-O(5)-P(2)	121.1(3)
C(401)-O(7)-P(2)	124.4(3)
C(501)-O(9)-P(3)	124.7(3)
C(601)-O(11)-P(3)	120.1(3)
P(2)-N(1)-P(1)	122.9(2)
P(3)-N(2)-P(2)	122.5(3)
P(3)-N(3)-P(1)	122.1(2)
C(107)-N(4)-C(108)	115.3(5)
O(2)-N(5)-C(114)	116.2(5)
O(2)-N(5)-C(110)	115.7(5)
S22	

C(114)-N(5)-C(110)	123.8(5)
C(207)-N(6)-C(208)	120.3(8)
O(4)-N(7)-C(210)	116.0(6)
O(4)-N(7)-C(214)	115.0(6)
C(210)-N(7)-C(214)	122.8(7)
C(307)-N(8)-C(308)	119.9(5)
O(6)-N(9)-C(314)	116.8(5)
O(6)-N(9)-C(310)	115.6(5)
C(314)-N(9)-C(310)	125.1(5)
C(407)-N(10)-C(408)	118.8(5)
O(8)-N(11)-C(410)	117.5(6)
O(8)-N(11)-C(414)	113.7(6)
C(410)-N(11)-C(414)	125.3(6)
C(507)-N(12)-C(508)	118.7(5)
O(10)-N(13)-C(510)	115.9(5)
O(10)-N(13)-C(514)	116.5(5)
C(510)-N(13)-C(514)	123.9(5)
C(607)-N(14)-C(608)	118.8(4)
O(12)-N(15)-C(610)	115.9(4)
O(12)-N(15)-C(614)	116.2(4)
C(610)-N(15)-C(614)	124.3(4)
C(102)-C(101)-C(106)	121.7(5)
C(102)-C(101)-O(1)	122.7(4)
C(106)-C(101)-O(1)	115.6(5)
C(101)-C(102)-C(103)	119.3(5)
C(104)-C(103)-C(102)	120.4(5)
C(105)-C(104)-C(103)	119.2(5)
C(105)-C(104)-C(107)	118.2(5)
C(103)-C(104)-C(107)	122.6(5)
C(104)-C(105)-C(106)	121.4(5)
C(101)-C(106)-C(105)	117.7(6)
N(4)-C(107)-C(104)	123.3(5)
S23	

N(4)-C(108)-C(109)	109.5(5)
N(4)-C(108)-C(113)	108.6(5)
C(109)-C(108)-C(113)	107.3(5)
C(110)-C(109)-C(108)	114.9(5)
C(109)-C(110)-N(5)	108.4(5)
C(109)-C(110)-C(111)	109.9(7)
N(5)-C(110)-C(111)	106.4(7)
C(109)-C(110)-C(112)	112.4(7)
N(5)-C(110)-C(112)	107.7(6)
C(111)-C(110)-C(112)	111.8(8)
C(114)-C(113)-C(108)	113.1(5)
N(5)-C(114)-C(113)	110.4(5)
N(5)-C(114)-C(115)	106.3(5)
C(113)-C(114)-C(115)	110.7(6)
N(5)-C(114)-C(116)	111.1(6)
C(113)-C(114)-C(116)	110.7(5)
C(115)-C(114)-C(116)	107.6(6)
C(206)-C(201)-C(202)	122.1(5)
C(206)-C(201)-O(3)	117.3(4)
C(202)-C(201)-O(3)	120.6(4)
C(201)-C(202)-C(203)	117.9(5)
C(204)-C(203)-C(202)	121.4(5)
C(203)-C(204)-C(205)	118.9(5)
C(203)-C(204)-C(207)	125.4(6)
C(205)-C(204)-C(207)	115.4(6)
C(204)-C(205)-C(206)	121.1(5)
C(201)-C(206)-C(205)	118.5(5)
N(6)-C(207)-C(204)	125.1(8)
C(213)-C(208)-N(6)	112.4(7)
C(213)-C(208)-C(209)	109.6(8)
N(6)-C(208)-C(209)	110.2(6)
C(210)-C(209)-C(208)	114.7(9)
S24	

N(7)-C(210)-C(212)	114.8(9)
N(7)-C(210)-C(209)	110.6(7)
C(212)-C(210)-C(209)	111.6(8)
N(7)-C(210)-C(211)	104.9(7)
C(212)-C(210)-C(211)	106.4(9)
C(209)-C(210)-C(211)	107.9(10)
C(208)-C(213)-C(214)	112.6(8)
N(7)-C(214)-C(215)	105.3(7)
N(7)-C(214)-C(216)	109.6(11)
C(215)-C(214)-C(216)	114.9(11)
N(7)-C(214)-C(213)	106.6(8)
C(215)-C(214)-C(213)	103.6(9)
C(216)-C(214)-C(213)	116.0(9)
C(306)-C(301)-C(302)	122.0(5)
C(306)-C(301)-O(5)	119.0(4)
C(302)-C(301)-O(5)	119.0(4)
C(301)-C(302)-C(303)	118.5(5)
C(304)-C(303)-C(302)	121.1(5)
C(305)-C(304)-C(303)	118.9(5)
C(305)-C(304)-C(307)	120.8(5)
C(303)-C(304)-C(307)	120.2(5)
C(304)-C(305)-C(306)	120.2(5)
C(301)-C(306)-C(305)	119.2(5)
N(8)-C(307)-C(304)	121.6(5)
N(8)-C(308)-C(313)	110.2(5)
N(8)-C(308)-C(309)	105.6(5)
C(313)-C(308)-C(309)	108.5(6)
C(308)-C(309)-C(310)	113.9(6)
N(9)-C(310)-C(311)	108.6(7)
N(9)-C(310)-C(309)	109.3(6)
C(311)-C(310)-C(309)	109.1(8)
N(9)-C(310)-C(312)	107.5(7)
S25	

C(311)-C(310)-C(312)	110.3(10)
C(309)-C(310)-C(312)	112.0(7)
C(308)-C(313)-C(314)	114.8(5)
N(9)-C(314)-C(315)	108.7(7)
N(9)-C(314)-C(313)	109.8(5)
C(315)-C(314)-C(313)	111.5(6)
N(9)-C(314)-C(316)	108.7(6)
C(315)-C(314)-C(316)	106.2(7)
C(313)-C(314)-C(316)	111.9(6)
C(406)-C(401)-C(402)	120.5(5)
C(406)-C(401)-O(7)	122.0(4)
C(402)-C(401)-O(7)	117.3(4)
C(401)-C(402)-C(403)	119.9(6)
C(402)-C(403)-C(404)	121.6(6)
C(405)-C(404)-C(403)	116.9(5)
C(405)-C(404)-C(407)	121.3(5)
C(403)-C(404)-C(407)	121.6(5)
C(404)-C(405)-C(406)	121.6(5)
C(401)-C(406)-C(405)	119.4(5)
N(10)-C(407)-C(404)	120.6(5)
N(10)-C(408)-C(413)	109.7(6)
N(10)-C(408)-C(409)	107.4(6)
C(413)-C(408)-C(409)	107.3(5)
C(408)-C(409)-C(410)	114.6(7)
N(11)-C(410)-C(411)	107.0(7)
N(11)-C(410)-C(409)	107.8(6)
C(411)-C(410)-C(409)	109.6(8)
N(11)-C(410)-C(412)	109.3(8)
C(411)-C(410)-C(412)	110.2(9)
C(409)-C(410)-C(412)	112.8(6)
C(408)-C(413)-C(414)	114.9(6)
N(11)-C(414)-C(415)	108.8(6)
S26	

N(11)-C(414)-C(416)	109.5(7)
C(415)-C(414)-C(416)	111.4(6)
N(11)-C(414)-C(413)	107.5(5)
C(415)-C(414)-C(413)	108.0(6)
C(416)-C(414)-C(413)	111.5(6)
C(502)-C(501)-C(506)	120.5(5)
C(502)-C(501)-O(9)	117.0(5)
C(506)-C(501)-O(9)	122.4(5)
C(501)-C(502)-C(503)	119.6(5)
C(504)-C(503)-C(502)	121.8(5)
C(503)-C(504)-C(505)	117.6(5)
C(503)-C(504)-C(507)	120.3(5)
C(505)-C(504)-C(507)	122.1(5)
C(504)-C(505)-C(506)	121.3(6)
C(501)-C(506)-C(505)	118.9(5)
N(12)-C(507)-C(504)	122.2(5)
N(12)-C(508)-C(513)	109.0(5)
N(12)-C(508)-C(509)	108.4(5)
C(513)-C(508)-C(509)	107.7(5)
C(510)-C(509)-C(508)	114.0(5)
N(13)-C(510)-C(509)	111.4(5)
N(13)-C(510)-C(512)	107.8(5)
C(509)-C(510)-C(512)	109.5(6)
N(13)-C(510)-C(511)	108.7(6)
C(509)-C(510)-C(511)	110.7(5)
C(512)-C(510)-C(511)	108.6(6)
C(508)-C(513)-C(514)	115.4(5)
N(13)-C(514)-C(513)	108.7(5)
N(13)-C(514)-C(516)	108.5(5)
C(513)-C(514)-C(516)	109.8(6)
N(13)-C(514)-C(515)	110.7(6)
C(513)-C(514)-C(515)	110.0(6)
S27	

C(516)-C(514)-C(515)	109.1(6)
C(606)-C(601)-C(602)	121.0(5)
C(606)-C(601)-O(11)	119.0(4)
C(602)-C(601)-O(11)	119.9(4)
C(601)-C(602)-C(603)	119.5(5)
C(604)-C(603)-C(602)	120.6(4)
C(603)-C(604)-C(605)	119.4(5)
C(603)-C(604)-C(607)	120.9(4)
C(605)-C(604)-C(607)	119.7(5)
C(604)-C(605)-C(606)	119.8(5)
C(601)-C(606)-C(605)	119.5(5)
N(14)-C(607)-C(604)	122.4(5)
N(14)-C(608)-C(609)	109.5(4)
N(14)-C(608)-C(613)	107.1(4)
C(609)-C(608)-C(613)	108.3(4)
C(608)-C(609)-C(610)	113.3(4)
N(15)-C(610)-C(611)	108.5(4)
N(15)-C(610)-C(612)	109.3(4)
C(611)-C(610)-C(612)	109.7(5)
N(15)-C(610)-C(609)	109.1(4)
C(611)-C(610)-C(609)	108.5(4)
C(612)-C(610)-C(609)	111.7(4)
C(614)-C(613)-C(608)	114.2(4)
N(15)-C(614)-C(613)	111.0(4)
N(15)-C(614)-C(615)	106.2(4)
C(613)-C(614)-C(615)	109.3(5)
N(15)-C(614)-C(616)	108.9(5)
C(613)-C(614)-C(616)	112.3(4)
C(615)-C(614)-C(616)	108.9(5)
C(6)-C(1)-C(2)	117.0(17)
C(6)-C(1)-C(7)	114.6(18)
C(2)-C(1)-C(7)	127.9(19)
S28	

C(3)-C(2)-C(1)	121.8(16)
C(4)-C(3)-C(2)	125.4(19)
C(3)-C(4)-C(5)	103(2)
C(6)-C(5)-C(4)	143(2)
C(5)-C(6)-C(1)	108.9(19)
C(13)-C(8)-C(9)	121.0(12)
C(13)-C(8)-C(14)	120.5(15)
C(9)-C(8)-C(14)	117.6(15)
C(8)-C(9)-C(10)	116.1(11)
C(11)-C(10)-C(9)	125.8(14)
C(10)-C(11)-C(12)	113.8(17)
C(13)-C(12)-C(11)	123.7(17)
C(12)-C(13)-C(8)	119.5(14)
C(16)-C(15)-C(21)	136(3)
C(16)-C(15)-C(20)	104.8(17)
C(21)-C(15)-C(20)	117(2)
C(17)-C(16)-C(15)	143(2)
C(16)-C(17)-C(18)	111(2)
C(17)-C(18)-C(19)	115(2)
C(18)-C(19)-C(20)	128.9(19)
C(19)-C(20)-C(15)	116.3(18)

Symmetry transformations used to generate equivalent atoms

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	37(1)	45(1)	42(1)	11(1)	0(1)	8(1)
P(2)	34(1)	35(1)	50(1)	7(1)	-1(1)	4(1)
P(3)	35(1)	38(1)	44(1)	11(1)	-3(1)	2(1)
O(1)	36(2)	70(2)	53(2)	21(2)	8(2)	14(2)
O(2)	123(4)	99(3)	73(3)	21(3)	-36(3)	8(3)
O(3)	56(2)	60(2)	44(2)	3(2)	-5(2)	17(2)
O(4)	99(4)	99(4)	198(6)	6(4)	-16(4)	51(3)
O(5)	39(2)	41(2)	63(2)	-4(2)	-2(2)	3(1)
O(6)	73(3)	107(4)	99(3)	5(3)	-38(3)	-6(3)
O(7)	31(2)	39(2)	64(2)	11(2)	-6(2)	5(1)
O(8)	182(6)	85(3)	116(4)	7(3)	-10(4)	88(4)
O(9)	42(2)	40(2)	50(2)	10(2)	-8(2)	5(2)
O(10)	98(3)	73(3)	118(4)	-9(3)	9(3)	30(3)
O(11)	46(2)	43(2)	50(2)	17(2)	-8(2)	-3(2)
O(12)	59(2)	102(3)	56(2)	-6(2)	-11(2)	11(2)
N(1)	42(2)	38(2)	48(2)	9(2)	0(2)	6(2)
N(2)	44(2)	44(2)	49(3)	13(2)	1(2)	7(2)
N(3)	42(2)	38(2)	44(2)	12(2)	0(2)	5(2)
N(4)	54(3)	74(3)	64(4)	13(3)	-6(3)	8(2)
N(5)	75(3)	67(3)	66(3)	12(3)	-18(3)	5(3)
N(6)	95(5)	123(5)	100(5)	14(4)	-21(4)	15(4)
N(7)	80(4)	67(4)	137(5)	-2(4)	-5(4)	22(3)
N(8)	63(3)	86(4)	77(4)	1(3)	-22(3)	-15(3)
N(9)	54(3)	73(3)	75(3)	2(3)	-25(3)	1(3)
N(10)	112(4)	55(3)	67(3)	13(3)	5(3)	41(3)
N(11)	118(5)	64(4)	89(4)	11(3)	-4(4)	40(4)
N(12)	108(4)	57(3)	67(4)	19(3)	-11(3)	25(3)
S30						

Table S5. Anisotropic displacement parameters (Å²x 10³) for geotem. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

N(13)	77(3)	54(3)	69(3)	-1(2)	4(3)	16(3)
N(14)	57(3)	70(3)	58(3)	-19(2)	-14(2)	19(3)
N(15)	48(3)	65(3)	44(3)	-4(2)	-15(2)	10(2)
C(101)	31(2)	54(3)	53(3)	20(3)	3(2)	1(2)
C(102)	42(3)	54(3)	64(4)	2(3)	3(3)	10(2)
C(103)	45(3)	62(3)	64(4)	6(3)	2(3)	4(3)
C(104)	39(3)	64(3)	51(4)	13(3)	1(2)	5(3)
C(105)	47(3)	81(4)	77(5)	6(4)	8(3)	27(3)
C(106)	49(3)	76(4)	60(4)	5(3)	4(3)	24(3)
C(107)	39(3)	76(4)	84(5)	7(3)	5(3)	4(3)
C(108)	50(3)	82(4)	69(4)	10(3)	-11(3)	16(3)
C(109)	75(4)	74(4)	94(5)	22(4)	-35(4)	-10(3)
C(110)	88(5)	68(4)	108(6)	4(4)	-45(4)	-4(4)
C(111)	179(9)	112(7)	183(10)	98(7)	-89(8)	-68(7)
C(112)	184(10)	121(7)	134(8)	-47(6)	-82(7)	89(7)
C(113)	70(4)	68(4)	73(4)	5(3)	-8(3)	-4(3)
C(114)	59(3)	76(4)	60(4)	5(3)	-12(3)	-11(3)
C(115)	147(7)	99(6)	80(5)	9(4)	-23(5)	-30(5)
C(116)	59(4)	176(9)	91(6)	31(5)	3(4)	2(5)
C(201)	42(3)	52(3)	42(3)	2(2)	-3(2)	5(2)
C(202)	61(4)	75(4)	57(4)	26(3)	-13(3)	-15(3)
C(203)	52(4)	113(5)	70(4)	5(4)	-1(3)	-23(3)
C(204)	48(3)	89(4)	45(3)	-1(3)	-7(3)	3(3)
C(205)	58(4)	79(4)	50(3)	14(3)	-9(3)	12(3)
C(206)	54(3)	67(4)	53(3)	12(3)	3(3)	10(3)
C(207)	46(4)	215(10)	73(5)	-39(6)	14(4)	-8(5)
C(208)	77(5)	117(6)	72(4)	28(4)	0(4)	52(4)
C(209)	102(6)	122(7)	182(10)	6(7)	-33(7)	11(6)
C(210)	85(5)	77(5)	215(11)	-16(6)	-34(7)	15(4)
C(211)	144(9)	130(8)	224(13)	28(9)	63(9)	-32(7)
C(212)	170(10)	96(6)	166(9)	-21(6)	-97(8)	14(6)
C(213)	69(5)	77(6)	343(17)	-20(8)	-28(7)	23(4)
S31						

C(214)	117(7)	96(6)	151(9)	10(6)	29(6)	10(5)
C(215)	125(7)	73(5)	190(10)	13(6)	10(7)	-8(5)
C(216)	277(18)	380(20)	75(7)	56(10)	48(9)	182(17)
C(301)	45(3)	38(3)	51(3)	0(2)	0(3)	-1(2)
C(302)	51(3)	70(4)	58(4)	11(3)	2(3)	-1(3)
C(303)	58(3)	68(4)	50(3)	15(3)	-7(3)	-1(3)
C(304)	47(3)	55(3)	50(3)	1(3)	-5(3)	-7(3)
C(305)	54(3)	67(3)	58(4)	9(3)	-7(3)	-17(3)
C(306)	59(3)	55(3)	46(3)	3(3)	-19(3)	-7(3)
C(307)	58(3)	63(3)	65(4)	-1(3)	-14(3)	-15(3)
C(308)	53(3)	80(4)	75(4)	-7(3)	-23(3)	-8(3)
C(309)	67(4)	142(7)	105(6)	-38(5)	-38(4)	27(4)
C(310)	73(4)	120(6)	95(5)	-42(5)	-28(4)	36(4)
C(311)	124(8)	275(15)	136(9)	-108(10)	-47(7)	55(9)
C(312)	171(10)	66(5)	279(15)	-13(7)	-120(11)	16(6)
C(313)	61(4)	88(5)	115(6)	-33(4)	-19(4)	-12(4)
C(314)	67(4)	70(4)	102(5)	-20(4)	-26(4)	0(3)
C(315)	88(6)	81(6)	248(12)	-19(7)	-31(7)	15(5)
C(316)	90(6)	169(9)	107(6)	-46(6)	2(5)	-34(6)
C(401)	35(2)	35(3)	53(3)	1(2)	-2(2)	11(2)
C(402)	148(6)	74(4)	48(3)	18(3)	21(4)	58(4)
C(403)	185(8)	73(4)	54(4)	5(3)	15(5)	76(5)
C(404)	64(3)	45(3)	51(4)	-3(3)	2(3)	21(3)
C(405)	82(4)	56(3)	53(3)	5(3)	2(3)	26(3)
C(406)	65(3)	51(3)	53(4)	-5(3)	10(3)	25(3)
C(407)	96(4)	43(3)	52(3)	10(3)	5(3)	24(3)
C(408)	123(6)	52(4)	62(4)	9(3)	0(4)	38(4)
C(409)	103(5)	57(4)	108(6)	-1(3)	-22(5)	29(4)
C(410)	120(6)	75(5)	104(6)	-11(4)	-24(5)	41(5)
C(411)	108(7)	161(9)	183(11)	-18(8)	-16(7)	44(7)
C(412)	241(13)	123(7)	101(7)	-19(6)	-70(8)	93(8)
C(413)	101(5)	59(4)	77(4)	7(3)	10(4)	25(4)
S32						

C(414)	127(6)	46(4)	69(4)	11(3)	11(4)	12(4)
C(415)	155(8)	68(5)	102(6)	6(4)	23(5)	0(5)
C(416)	220(11)	83(5)	99(6)	39(5)	63(7)	33(6)
C(501)	36(3)	41(3)	54(3)	12(3)	-1(2)	1(2)
C(502)	64(3)	63(3)	45(4)	1(3)	-14(3)	16(3)
C(503)	87(4)	68(4)	45(3)	19(3)	-9(3)	17(3)
C(504)	55(3)	47(3)	57(4)	16(3)	0(3)	4(3)
C(505)	114(5)	67(4)	57(4)	20(3)	15(4)	46(4)
C(506)	117(5)	80(4)	53(4)	25(3)	9(4)	44(4)
C(507)	73(4)	50(3)	62(4)	21(3)	-3(3)	13(3)
C(508)	89(4)	61(4)	64(4)	5(3)	3(3)	25(4)
C(509)	69(4)	67(4)	80(4)	2(3)	6(3)	16(3)
C(510)	74(4)	60(4)	81(4)	6(3)	27(3)	11(3)
C(511)	142(7)	89(5)	107(6)	42(5)	51(6)	47(5)
C(512)	81(4)	71(4)	127(6)	-9(4)	6(4)	-1(4)
C(513)	82(4)	60(4)	72(4)	7(3)	-19(4)	-2(3)
C(514)	79(4)	82(4)	63(4)	-5(3)	-12(3)	6(4)
C(515)	135(7)	83(5)	95(6)	-3(4)	-49(5)	33(5)
C(516)	60(4)	125(6)	117(7)	-9(5)	3(4)	-3(4)
C(601)	46(3)	35(3)	47(3)	10(2)	-1(2)	-4(2)
C(602)	45(3)	63(3)	48(3)	-1(3)	-4(2)	8(3)
C(603)	37(3)	58(3)	65(4)	0(3)	0(3)	4(2)
C(604)	44(3)	33(2)	58(3)	2(3)	-2(3)	-2(2)
C(605)	52(3)	43(3)	71(4)	-7(3)	-10(3)	4(3)
C(606)	44(3)	52(3)	86(4)	4(3)	-7(3)	8(3)
C(607)	54(3)	45(3)	52(3)	-1(2)	3(3)	-1(3)
C(608)	58(3)	56(3)	49(3)	-13(3)	-10(3)	12(3)
C(609)	66(3)	50(3)	39(3)	-1(2)	-6(3)	6(3)
C(610)	59(3)	49(3)	54(3)	-4(3)	-4(3)	2(3)
C(611)	80(4)	79(4)	62(4)	-10(3)	1(3)	-26(4)
C(612)	107(5)	55(3)	63(4)	-17(3)	-14(4)	9(3)
C(613)	55(3)	59(3)	57(3)	-2(3)	0(3)	6(3)
S33						

C(614)	47(3)	65(4)	57(3)	5(3)	-4(3)	12(3)
C(615)	81(4)	72(4)	104(5)	37(4)	-7(4)	5(4)
C(616)	63(4)	111(5)	51(4)	2(3)	0(3)	11(4)

Table S6. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for geotem.

	Х	У	Z	U(eq)
H(102)	7405	1816	5354	64
H(103)	6676	2191	4790	68
H(105)	5988	3320	5913	82
H(106)	6721	2966	6482	74
H(107)	5519	3362	5085	79
H(108)	5061	3559	4416	81
H(10A)	5824	4319	4174	97
H(10B)	5967	3866	3686	97
H(11A)	5294	5150	3015	237
H(11B)	5824	4630	3013	237
H(11C)	5801	5216	3431	237
H(11D)	4531	5103	3709	219
H(11E)	5002	5139	4160	219
H(11F)	4555	4523	4133	219
H(11G)	5460	2795	3536	84
H(11H)	4962	2546	3919	84
H(11G)	4278	3108	2714	163
H(11H)	4429	2430	3015	163
H(11I)	4935	2841	2734	163
H(11J)	3796	3551	3486	163
H(11K)	4135	3611	4019	163

H(11L)	3953	2888	3803	163
H(202)	9523	2823	6404	77
H(203)	10443	2447	6718	94
H(205)	9640	1375	7810	75
H(206)	8723	1728	7505	69
H(207)	10701	1389	7819	134
H(208)	11652	1129	7806	107
H(20A)	12131	1120	6786	163
H(20B)	12254	1688	7204	163
H(21A)	13529	564	6990	249
H(21B)	13290	1275	6797	249
H(21C)	13012	595	6580	249
H(21D)	13322	878	7909	216
H(21E)	12716	1220	8060	216
H(21F)	13151	1594	7676	216
H(21G)	11480	205	7026	196
H(21H)	11132	216	7556	196
H(21G)	11871	-818	7071	194
H(21H)	11550	-1017	7593	194
H(21I)	12236	-1126	7537	194
H(21J)	12134	402	8352	365
H(21K)	12384	-348	8373	365
H(21L)	11698	-220	8408	365
H(302)	8160	1180	4408	72
H(303)	7195	923	4180	70
H(305)	6982	-87	5512	71
H(306)	7949	184	5746	64
H(307)	6177	-95	4871	74
H(308)	5456	-202	4316	83
H(30A)	5992	-612	3594	126
H(30B)	5924	93	3308	126
H(31A)	4942	-790	2540	267
S35				

H(31B)	5595	-986	2689	267
H(31C)	5438	-227	2542	267
H(31D)	4827	-1027	3909	258
H(31E)	5194	-1496	3531	258
H(31F)	4550	-1268	3378	258
H(31G)	5396	1038	3752	105
H(31H)	5132	925	4311	105
H(31G)	3924	984	3390	208
H(31H)	4528	1366	3301	208
H(31I)	4203	1421	3841	208
H(31J)	3851	32	3962	183
H(31K)	4126	477	4411	183
H(31L)	4407	-234	4268	183
H(402)	10103	334	5181	108
H(403)	10499	-628	5529	125
H(405)	9879	-114	6911	76
H(406)	9521	887	6564	68
H(407)	10443	-1188	6841	76
H(408)	10846	-2190	6809	95
H(40A)	11752	-1750	6498	107
H(40B)	11662	-2133	5967	107
H(41A)	12746	-3200	6438	226
H(41B)	12760	-2397	6425	226
H(41C)	12514	-2807	5944	226
H(41D)	11569	-2770	7296	232
H(41E)	12177	-2379	7268	232
H(41F)	12166	-3183	7267	232
H(41G)	10771	-2753	5799	95
H(41H)	10274	-2812	6224	95
H(41G)	10973	-3883	5629	163
H(41H)	10402	-4077	5946	163
H(41I)	11006	-4445	6066	163
S36				

H(41J)	10842	-3311	7137	201
H(41K)	10931	-4089	7004	201
H(41L)	10324	-3730	6881	201
H(502)	7950	3394	3909	69
H(503)	7441	4381	3693	80
H(505)	7111	4724	5174	96
H(506)	7632	3741	5399	100
H(507)	6895	5405	3911	74
H(508)	6515	6389	4027	86
H(50A)	6933	6937	4990	87
H(50B)	7278	6980	4460	87
H(51A)	6550	7540	3712	169
H(51B)	7127	7931	3881	169
H(51C)	6515	8314	3876	169
H(51D)	6686	8645	4793	139
H(51E)	7289	8244	4794	139
H(51F)	6806	8083	5218	139
H(51G)	5971	6385	5011	86
H(51H)	5713	6022	4516	86
H(51G)	5188	7451	3838	157
H(51H)	5129	6651	3871	157
H(51I)	5733	6984	3702	157
H(51J)	4826	7506	4760	151
H(51K)	5170	7128	5208	151
H(51L)	4804	6705	4799	151
H(602)	10121	3073	5165	63
H(603)	10818	3428	5763	64
H(605)	9632	4681	6402	67
H(606)	8937	4333	5788	73
H(607)	10616	4599	6797	60
H(608)	11391	4510	7256	65
H(60A)	12064	4850	6611	62
S37				

H(60B)	12332	4109	6598	62
H(61A)	13318	4350	6830	111
H(61B)	13475	4889	7263	111
H(61C)	13163	5126	6746	111
H(61D)	12016	5227	7688	113
H(61E)	12382	5672	7292	113
H(61F)	12682	5402	7805	113
H(61G)	11356	3344	7467	68
H(61H)	11892	3196	7094	68
H(61G)	12699	3022	8201	129
H(61H)	12620	2767	7624	129
H(61I)	12114	2645	8035	129
H(61J)	12130	4000	8528	112
H(61K)	11540	3623	8376	112
H(61L)	11664	4365	8167	112

4. Variable-temperature EPR study.

Figure S3. EPR spectra of a 10^{-4} M solution of **3-Gc₀T** recorded at different temperatures in dichloromethane:toluene (1:1).

The alternating linewidth effect is clearly visible in the 260 K spectrum but at 350 K there is a strong reduction of this effect because we are in the fast exchange region.

5. EPR spectra in different solvents.

The shape of EPR spectra of $3-Gc_0T$ depends slightly on the nature of the solvent, as shown in Figure S3. This is originated because the line widths are smaller in polar solvents than in apolar solvents.

Figure S4. EPR spectra of a 10^{-4} M solution of **3-Gc₀T** recorded at room temperature in a) dichloromethane:toluene (1:1), b) toluene, c) dichloromethane, d) tetrahydrofuran and e) acetonitrile.

6. Simulations of N-containing triradical system.

Figure S5. Simulation of two limit cases for a N-containing triradical system. A) When the radical fulfil the condition $|J| \ll |a_N|$, the spectrum exhibits three lines separated by the hyperfine coupling a_N with relative intensities 1:1:1. B) When the radical fulfil the condition $|J| \gg |a_N|$, it shows a seven line hyperfine pattern with a separation of 1/3 a_N and relative intensities of 1:3:6:7:6:3:1.

7. References.

1.- Badetti, E.; Caminade, A.M.; Majoral, J.P.; Moreno-Mañas, M.; Sebastián, R.M. Langmuir 2008, 24, 2090.

2.- H. R. Allcock, D. C. Ngo, M. Parvez, K. B. Visscher, Inorg. Chem. 1994, 33, 2090.

3.- J. Sopkova-de Oliveira Santos, D. Bauchart, C. Besset, I. Dez, Acta Crystallogr., Sect. C 2004, 60, 751.

4.- N. Lejeune, I. Dez, P. A. Jaffrès, J. F. Lohier, P. J. Madec, J. Sopkova-de Oliveira Santos, *Eur. J. Inorg. Chem.* **2008**, 138.

5.- Ç. Albayrak, B. Kos, ar, M. Odabas, oglu, O. Büyükgüngör, *Crystallogr. Rep.* **2010**, 55 (7), 1203.

6.- A. Özek, Ç. Albayrak, M. Odaba o lu, O. Büyükgüngör, *Acta Crystallogr. C* 2007, 63, ol77.

7.- N. Karadayi, Ç. Albayrak, M. Odabas, oglu, O. Büyükgüngör, Acta Crystallogr. E 2006, 62, ol699.

8.- N. Karadayi, Ç. Albayrak, M. Odabas,oglu, O. Büyükgüngör, Acta Crystallogr. E 2006, 62, ol727.

9.- M. Odabas, oglu, O. Büyükgüngör, Ç. Albayrak, Acta Crystallogr. E 2005, 61, o2525.

10.- M. Odabas, oglu, O. Büyükgüngör, Ç. Albayrak, Acta Crystallogr. E 2005, 61, e4.