Supporting Information

Nanocomposites with Graft Copolymertemplated Mesoporous MgTiO₃ Perovskite for CO₂ Capture Applications

Dong Kyu Roh, Sang Jin Kim, Harim Jeon and Jong Hak Kim*

Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, South Korea

* To whom correspondence should be addressed:

Tel: +82-2-2123-5757; Fax: +82-2-312-6401

E-mail: jonghak@yonsei.ac.kr

Figure S1. SEM-EDS result of mesoporous MgTiO₃ perovskite. The presence of Pt is due to the Pt sputtering performed for the SEM measurements.

Figure S2. Surface SEM images of the MMM consisting of PVC-g-POEM and mesoporous MgTiO₃ perovskite at a MgTiO₃ loading of 25 wt%: (a) top and (b) bottom.

Figure S3. Cross-sectional SEM image of the MMM consisting of PVC-g-POEM and mesoporous MgO.

Figure S4. SEM image of MgO synthesized using the PVC-g-POEM graft copolymer as a template.

Figure S5. Relationship between CO₂ permeability and CO₂/N₂ selectivity of neat PVC-g-POEM and the PVC-g-POEM MMMs containing mesoporous MgTiO₃ perovskite, mesoporous MgO and mesoporous TiO₂. All mesoporous metal oxides were synthesized using PVC-g-POEM graft copolymer as a structure directing agent. The upper bound 1991 was calculated.

