Supporting Information

Electrogeneration of Single Nanobubbles at Sub-50 nm Radius Platinum Nanodisk Electrodes

Long Luo and Henry S. White* Department of Chemistry, University of Utah 315 S 1400 E, Salt Lake City, UT 84112, United States

Contents

1.	Characterization of Pt nanodisk electrodes	2
2.	Cyclic voltammetric response of an 11-nm-radius nanodisk electrode as a function of scan	
	rate	3
3.	Cyclic voltammetric response of an 11-nm-radius nanodisk electrode as a function of	
	H_2SO_4 concentration	4
4.	Finite element simulation of H ₂ profile at the critical current i_{nb}^{p}	5
5.	Simulated H_2 concentration profile for a 226-nm-radius nanodisk electrode at the critical	
	current <i>i</i> ^p _{nb}	6

1. Characterization of Pt nanodisk electrodes

Figure SI1. The steady-state voltammetric response of Pt nanodisk electrodes with various radii immersed in a 5.0 mM ferrocene (Fc) in acetonitrile (supporting electrolyte 0.1 M TBAPF₆; scan rate = 10 mV/s). The electrode radii, *a*, were calculated from the limiting current, i_{lim} , using the expression $i_{lim} = 4nFDC^*a$, where *D* and *C** are the diffusivity and bulk concentration of Fc and *n* = 1. The curves show the forward and reverse scans. See main text for other details.

2. Cyclic voltammetric response of an 11-nm-radius nanodisk electrode as a function of scan rate.

Figure SI2. Cyclic voltammetric response for an 11-nm-radius Pt nanodisk in a $0.5 \text{ M H}_2\text{SO}_4$ solution recorded at scan rates between 10 and 200 mV/s.

3. Cyclic voltammetric response of an 11-nm-radius nanodisk electrode as a function of H_2SO_4 concentration.

Figure SI3. Cyclic voltammetric response at an 11-nm-radius Pt nanodisk as a function of H_2SO_4 solution concentration: (a) 0.01 to 0.05 M and (b) 0.1 to 0.5 M. Scan rate = 100 mV/s.

4. Finite element simulation of H₂ profile at the critical current i_{nb}^{p}

We used Fick's first law combined with the relation between i_{nb}^{ρ} and the H₂ outflux J_{out,H_2} (SI 1) to obtain the H₂ concentration at the nanodisk surface (C^o) as well as the H₂ distribution. Since C^o is an unknown variable and \mathbf{J}_{out,H_2} is a function of C^o, eq. SI1 can be written as f(C^o) $i_{nb}^{\rho} = 0$ and solved to obtain C^o using the Newton-Raphson method. f(C^o) is defined by *integrating coupling boundary variable* \mathbf{J}_{out,H_2} (ntflux_c_chekf in COMSOL) over the nanodisk surface.

$$\dot{I}_{nb}^{\rho} = 2F \int \mathbf{J}_{out,H_2} \bullet \mathbf{n} ds \tag{SI1}$$

Figure SI4. The 2D axial-symmetric geometry of the nanodisk electrode embedded in glass and the mesh for the finite-element simulation (red dash line: the symmetry axis).

5. Simulated H₂ concentration profile for a 226-nm-radius nanodisk electrode at the critical current i_{nb}^{p} .

Figure SI5. Simulated H₂ distribution near a 226-nm-radius Pt nanodisk at the experimental critical current i_{nb}^{p} of 770 nA. The white line is the 0.1 M H₂ contour line, within which the concentration of H₂ is greater than the saturation concentration (0.102 M) to form a spherical nanobubble with a diameter of 20 nm. See main text for discussions of the H₂ saturation concentration and simulation.