Supporting Information

Stereodivergent Access to Cis- and Trans-3,5-Disubstituted-1,4-Thiazane 1Oxides by Cyclization of Homochiral β Amino Sulfoxides and Sulfones. The Preparation of Isomeric Ant Venom Alkaloids.

Stefan C. Söderman and Adrian L. Schwan*
Dept. of Chemistry, University of Guelph, Guelph, ON, Canada N1G 2W1
schwan@uoguelph.ca

Table of Contents

Optimization table for the conversion of $\mathbf{5 a}$ to $\mathbf{6 a}$ S2
Experimental procedure for preparation of alkenyl 2-aminoalkyl sulfoxides and sulfones. S3
Experimental procedure for cyclization reactions. S23
Experimental procedure for alkaloid synthesis. S34
Comparison of ${ }^{13} \mathrm{C}$ chemical shits of venom alkaloids with published data S43
References for Supporting Information S45
Selected NOESY data. S46
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds. S48

Table 1. Cyclization Optimization of $\boldsymbol{\beta}$-Amino Sulfoxide 5a to 6a

entry	base (eq.)	solvent	T	time	yield	$d r$
1	$\mathrm{CsCO}_{3}(1.0)$	DCM	RT	96 h	SM	-
2	$\mathrm{CsCO}_{3}(1.0)$	DCM	reflux	16 h	SM	-
3	$\mathrm{NEt}_{3}(1.0)$	DCM	RT	48 h	SM	-
4	$\mathrm{NEt}_{3}(1.0)$	DCM	reflux	5 h	SM	-
5	$\mathrm{~K}_{2} \mathrm{CO}_{3}(1.0)$	DCM	RT	96 h	SM	-
6	$\mathrm{~K}_{2} \mathrm{CO}_{3}(1.0)$	DCM	reflux	15 h	SM	-
7	$\mathrm{~K}_{2} \mathrm{CO}_{3}(0.96)$	MeOH	reflux	10 h	OMe incorp.	-
8	$\mathrm{Triton} \mathrm{B} \mathrm{(1.0)}$	MeOH	reflux	2 h	OMe incorp.	-
9	$\mathrm{NEt}_{3}(1.0)$	MeOH	reflux	5 h	95	$>95: 5$
10	$\mathrm{NEt}_{3}(0.2)$	MeOH	reflux	19.5 h	85	$>95: 5$
11	$\mathrm{NEt}_{3}(1.0)$	IPA	reflux	12 h	OiPr incorp.	-

General Experimental

Many general experimental methods have recently been reported. ${ }^{1}$ All dry and pure solvents were obtained from a solvent purification system expect for methanol which was distilled over calcium hydride. All chemicals were obtained from commercial sources unless otherwise noted. All air and water sensitive reagents were transferred via oven-dried nitrogen-purged syringes into flame-dried flasks. Homochiral amino iodides and β-amino sulfoxides were prepared as previously described.1,2 Thiirane S-oxides were prepared and purified as previously described. ${ }^{3-6}$

Synthesis of Boc Protected $\boldsymbol{\beta}$-Amino Sulfoxides 4.

The synthesis of the chiral amino iodides, thiirane S-oxides and most of the Bocprotected β-amino sulfoxides including 4a-c, e, $\left(R_{S}, 2 S\right)$ - N-Boc-1-phenyl-3-((E)-4-phenyl-1-butenylsulfinyl)propan-2-amine, $\left(R_{S}, 2 S\right)$ - N-Boc-1-(cyclohexenylsulfinyl)-3-phenylpropan-2-amine, ($\left.R_{S}, 2 S\right)$ - N-Boc-1-((E)-3,3-dimethyl-1-butenylsulfinyl)-3-phenylpropan-2-amine, $\quad\left(S_{S}, \quad 1 R\right)$ - N-Boc-2-((E)-3,3-dimethyl-1-butenylsulfinyl)-1phenylethanamine and $\left(S_{S}, 2 R\right)$ - N-Boc-1-((E)-3,3-dimethyl-1-butenylsulfinyl)butan-2-amine have been previously reported. ${ }^{1,2,5,7}$

Synthesis of ($\left.S_{S}, 2 R\right)-N$-Boc-1-((E)-1-hexenylsulfinyl)propan-2-amine (4d).

Under anhydrous conditions under an inert $\mathrm{N}_{2}(\mathrm{~g})$ atmosphere a solution of LiHMDS (1.0 M in THF, $3.30 \mathrm{~mL}, 3.30 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of the n-butyl thiirane S-oxide ($0.400 \mathrm{~g}, 3.03 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}(5: 2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was allowed to
stir for ca. 15 min , at which time a precooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of the $(S)-2-(N)-t-$ butoxylcarbonylamino)-iodopropane ($1.14 \mathrm{~g}, 4.0 \mathrm{mmol}$) in THF (4 mL) was added dropwise via syringe. After 1 h of stirring at $-78{ }^{\circ} \mathrm{C}$ the reaction vessel was removed from the cold bath and allowed to warm to rt stirring for $\sim 12 \mathrm{~h}$. Following completion of the reaction, solvent was removed under reduced pressure, and the residue was dissolved in EtOAc. The organic layer was washed with sat'd ammonium chloride solution, water, and brine and then dried over MgSO_{4}. The organic layer was then filtered, and solvent was removed under reduced pressure. The crude reaction mixture was subjected to flash chromatography (40\% EtOAc/hexanes), which yielded the β-amino sulfoxide 4 d as a mixture of diastereomers ($82 \%, 0.714 \mathrm{~g}, d r=89: 11$ from ${ }^{1} \mathrm{H}$ NMR analysis of reaction mixture). Recrystallization with EtOAc/hexanes provided the pure major diastereomer 4d as a white solid (58\%, 0.509 g$) . \mathrm{Mp}: 120-121^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.50(\mathrm{dt}, \mathrm{J}$ $=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 4.14(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.90(\mathrm{br}$ $\mathrm{m}, 1 \mathrm{H}), 2.85-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150.6 MHz, CDCl_{3}) $\delta 155.0,141.8,132.0,79.5,59.8,43.9,31.8$, 30.2, 28.4, 22.1, 20.4, 13.8; IR (neat) $\mathrm{cm}^{-1} 3225,3035,3001,2964,2928,2875,2859$, 1698, 1546, 1275, 1175, 1077, 1047, 1030, 772; $[\alpha]_{D}^{25}+2.5\left(c=0.8, \mathrm{CHCl}_{3}\right) ;$ Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$: C, 58.10; H, 9.40; Found: C, 57.95; H, 9.36. Minor isomer, partial characterization: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.32(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.05$ (br m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 155.0, 141.5, 131.7, 79.5, 61.0, 43.3, 31.8, 30.1, 28.4, 22.2, 21.1, 13.8.

Synthesis of $\left(R_{S}, 2 S\right)$ - N-Boc-1-((E)-1-hexenylsulfinyl)pentan-2-amine (10).

Under anhydrous conditions under an inert $\mathrm{N}_{2}(\mathrm{~g})$ atmosphere a
 (35 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a solution of the n-butyl thiirane S-oxide ($0.458 \mathrm{~g}, 3.47 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}(5: 2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was allowed to stir for ca. 15 min , at which time a precooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $(R)-2-(N)-t-$ butoxylcarbonylamino)-iodopentane ($1.30 \mathrm{~g}, 4.15 \mathrm{mmol}$) in THF (4 mL) was added dropwise via syringe. After 1 h of stirring at $-78^{\circ} \mathrm{C}$ the reaction vessel was removed from the cold bath and allowed to warm to rt stirring for $\sim 8 \mathrm{~h}$. Following completion of the reaction, workup as for $\mathbf{1 0}$ provided crude material. The crude reaction mixture was subjected to flash chromatography ($40 \% \mathrm{EtOAc} / \mathrm{hexanes}$), which yielded the β-amino sulfoxide as a mixture of diastereomers $\mathbf{1 0}: \mathbf{4 h}$ (74%, $0.931 \mathrm{~g}, d r=91: 9$ from ${ }^{1} \mathrm{H}$ NMR analysis of reaction mixture). Flash chromatography (5\% to 40\% EtOAc/hexanes) provided the pure major diastereomer 10 as a white solid ($65 \%, 0.827 \mathrm{~g}$). Mp: $73-74{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.49(\mathrm{dt}, J=15.2,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{br} \mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{sex}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.96-2.82 (m, 2H), $2.24(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.29(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$, $0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.3$, 141.7, 132.2, 79.4, 58.4, 47.6, 36.4, 31.8, 30.2, 28.4, 22.1, 19.4, 13.8 (CH3’s overlapping); IR (neat) $\mathrm{cm}^{-1} 3226,3038,3003,2960,2930,2873,1702,1541,1454$, 1363, 1270, 1253, 1175, 1041, 1025, 971, 742, 704; $[\alpha]_{D}^{25}-29.8\left(c=1.3, \mathrm{CHCl}_{3}\right)$; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 60.53$; $\mathrm{H}, 9.84$; Found: C, $60.74 ; \mathrm{H}, 9.90$.

Synthesis of ($R_{S}, 2 S$)- N-Boc-1-phenyl-3-((E)-1-hexenylsulfinyl)propan-2-amine

 (4g).

Under anhydrous conditions under an inert $\mathrm{N}_{2}(\mathrm{~g})$ atmosphere a solution of LiHMDS (1.0 M in THF, $3.30 \mathrm{~mL}, 3.30 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of the n-butyl thiirane S-oxide ($0.400 \mathrm{~g}, 3.03 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}(5: 2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was allowed to stir for ca. 15 min , at which time a precooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of the $(R)-2-(N-t-$ butoxycarbonylamino)-3-phenyl-iodopropane ($1.31 \mathrm{~g}, 3.64 \mathrm{mmol}$) in THF (4 mL) was added dropwise via syringe. After 1 h of stirring at $-78^{\circ} \mathrm{C}$ the reaction vessel was removed from the cold bath and allowed to warm to rt stirring for $\sim 12 \mathrm{~h}$. Following completion of the reaction, workup as for $\mathbf{4 g}$ provided crude material. The crude reaction mixture was subjected to flash chromatography (40\% EtOAc/hexanes), which yielded the β-amino sulfoxide $\mathbf{4 g}$ as a mixture of diastereomers ($77 \%, 0.850 \mathrm{~g}, d r=87: 13$ from ${ }^{1} \mathrm{H}$ NMR analysis of reaction mixture). Flash chromatography with (40% EtOAc/hexanes) provided the pure major diastereomer $\mathbf{4 g}$ as a white solid ($68 \%, 0.751 \mathrm{~g}$). Mp: 101-103 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.49(\mathrm{dt}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, 1 H), 5.51 (br d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.22 (br m, 1H), 3.20 (dd, $J=13.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.00 $(\mathrm{dd}, J=13.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86\left(\mathrm{AB}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=13.3 \mathrm{~Hz}, J_{\mathrm{AX}}=7.4 \mathrm{~Hz}, J_{\mathrm{BX}}=4.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2,141.8,137.5,131.7,129.4,128.7,126.7,79.6$, 56.5, 49.5, 39.8, 31.8, 30.1, 28.4, 22.2, 13.9; IR (neat) $\mathrm{cm}^{-1} 3358,3023,2958,2927$, $2857,1691,1523,1366,1267,1250,1171,1048,1020,970,700 ;[\alpha]_{D}^{25}-8.3(c=1.6$, CHCl_{3}); Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 65.72$; H, 8.55; Found: C, 65.81 ; H, 8.35. Minor
isomer, partial characterization: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.24(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.14(\mathrm{br} \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{br} \mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2$, $141.8,137.0,131.7,129.5,128.9,126.8,79.7,58.4,48.3,40.8,31.7,30.2,28.4,22.1$, 13.8.

Synthesis of $\left(S_{S}, 2 S\right)-1-((E)-1-h e x e n y l s u l f i n y l) p e n t a n-2-a m i n e ~(4 h) . ~$

A sample of β-amino sulfoxide $\mathbf{1 0} / \mathbf{4 h}$ mixture collected from the mother liquors of several recrystallization attempts ($d r \sim 70: 30$ (10: 4h), 0.504 g) was subjected to flash chromatography $(10 \%$ to 30% EtOAC/hexanes) to give pure major isomer $\left(R_{S}, 2 S\right)-1-((E)-1-$ hexenylsulfinyl)pentan-2-amine (10) (326 mg) and pure minor diastereomer (S_{S}, 2S)-1-((E)-1-hexenylsulfinyl)pentan-2-amine (4h) (111 mg). Minor diastereomer 4h: Mp 82-83 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.50(\mathrm{dt}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J$ $=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}$, 2H), 1.61-1.57 (m, 2H), 1.48-1.32 (m, 6H), $1.44(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.2,141.5,132.0,79.7,60.5,47.0$, $37.2,31.8,30.3,28.4,22.2,19.1,13.8,13.7$; IR (neat) $\mathrm{cm}^{-1} 3347,3025,2957,2928$, 2872, 1683, 1526, 1463, 1366, 1354, 1170, 1038, 1001, 969, 772; $[\alpha]_{D}^{25}-58.7$ ($c=$ 0.7, CHCl_{3}); HRMS (TOF, ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$318.2097; found: 318.2104 .

Synthesis of Sulfones 7

General Procedure for the Oxidation of Sulfoxides to Sulfones

β-Amino sulfoxide 4 (1.0 equiv.) was dissolved in DCM ($20 \mathrm{~mL} / \mathrm{mmol}$) and stirred at
$-78{ }^{\circ} \mathrm{C}$. MCPBA (calibrated to 77 or $83 \%, 1.2-1.5$ equiv) was added, and the reaction was slowly warmed to rt stirring for 4-8 h. The crude reaction mixture was washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq.), NaHCO_{3} (aq.), $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried over MgSO_{4} and filtered, and the solvent was removed in vacuo. The crude sulfone was purified by flash chromatography using EtOAc/hexanes as the eluent.

Synthesis of (2S)-N-Boc-1-phenyl-3-((E)-propenylsulfonyl)propan-2-amine.

A mixture of diastereomers populated principally by $\left(R_{S}, 2 S\right)-N$ -
Boc-1-phenyl-3-((E)-propenylsulfinyl)propan-2-amine
($0.487 \mathrm{~g}, 1.51 \mathrm{mmol}$) in DCM (30 mL) and MCPBA (ca $\sim 77 \%, 0.507 \mathrm{~g}$, ca ~ 2.26 mmol) in DCM (25 mL) afforded (2S)-N-Boc-1-phenyl-3-((E)-propenylsulfonyl)propan-2-amine (N -Boc protected precursor of β-amino sulfone 7a) as a white solid ($76 \%, 0.388 \mathrm{~g}$) following flash chromatography (50\% EtOAc/hexanes). Mp 190-191 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.30(\mathrm{~m}, 2 \mathrm{H})$, 7.26-7.19 (m, 3H), $6.92(\mathrm{dq}, J=14.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (br s, $1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=14.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 3.00$ (dd, $J=13.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dd}, J=6.9,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.0,145.3,136.8,130.0,129.5,128.8,126.7,79.9,56.8,48.5,40.0,28.4$, 17.5; IR (neat) $\mathrm{cm}^{-1} 3358,3045,3031,2979,2922,2852,1689,1530,1443,1277$, 1171, 1127, 1117, 1048, 954; $[\alpha]_{D}^{25}+0.2\left(c=0.4, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+340.1577$; found: 340.1569 .

Synthesis of (2S)-N-Boc-1-phenyl-3-((E)-4-phenyl-1-butenylsulfonyl)propan-

 2-amine. A mixture of diastereomers populated principally by $\left(R_{S}, 2 S\right)-\mathrm{N}-$ Boc-1-phenyl-3-((E)-4-phenyl-1-butenylsulfinyl)propan-2amine ($1.02 \mathrm{~g}, 2.46 \mathrm{mmol}$) in DCM (40 mL) and MCPBA (ca $\sim 77 \%, 0.720 \mathrm{~g}$, ca $\sim 3.22 \mathrm{mmol}$) in DCM (25 mL) afforded ($2 S$)-N-Boc-1-phenyl-3-((E)-4-phenyl-1-butenylsulfonyl)propan-2-amine (N -Boc protected precursor of β amino sulfone 7b) as a white solid ($61 \%, 0.645 \mathrm{~g}$) following flash chromatography (50\% EtOAc/hexanes). Mp: 123-124 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.24$ (m, 5H), 7.21-7.19 (m, 3H), 7.15 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{dt}, J=15.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=14.6,4.7 \mathrm{~Hz}$, 1H), $3.04(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=13.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H})$, $1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150.6 MHz, CDCl_{3}) $\delta 155.0,148.5,140.0,136.8,129.5,129.3$, $128.7,128.6,128.4,127.0,126.5,79.9,56.9,48.4,40.0,33.8,33.3,28.4$; IR (neat) cm^{-} ${ }^{1}$ 3086, 3059, 3028, 3010, 2979, 2967, 2928, 2859, 1691, 1527, 1497, 1443, 1367, 1319, 1282, 1250, 1218, 1171, 1126, 1046, $1027 ;[\alpha]_{D}^{25}-4.8\left(c=1.3, \mathrm{CHCl}_{3}\right) ;$ HRMS (TOF, ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+430.2047$; found: 430.2030.

Synthesis of (2S)-N-Boc-1-((E)-3,3-dimethyl-1-butenylsulfonyl)-3-

 phenylpropan-2-amine.

A mixture of diastereomers populated principally by $\left(R_{S}, 2 S\right)-N-$
Boc-1-((E)-3,3-dimethyl-1-butenylsulfinyl)-3-phenylpropan-2amine ($0.740 \mathrm{~g}, 2.02 \mathrm{mmol}$) in DCM (30 mL) and MCPBA (ca $\sim 77 \%, 0.524 \mathrm{~g}$, ca \sim
$2.34 \mathrm{mmol})$ in DCM (20 mL) afforded (2S)-N-Boc-1-((E)-3,3-dimethyl-1-butenylsulfonyl)-3-phenylpropan-2-amine (N-Boc protected precursor of 7c) as a white solid ($90 \%, 0.697 \mathrm{~g}$) following flash chromatography ($50 \% \mathrm{EtOAc} /$ hexanes). Mp: 137-138 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.32-7.30(m, 2H), 7.26-7.24 (m, 1H), $7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{br} \mathrm{s}$, 1H), 4.19 (app sex, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=14.4,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.08(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=13.5,7.2 \mathrm{~Hz}, \mathrm{IH}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0,154.9,136.9,129.4,128.7,126.9,124.8,79.9,56.9,48.7,40.0$, 34.3, 28.4(tBu CH_{3} S overlapping); IR (neat) $\mathrm{cm}^{-1}: 3385,3057,3029,2974,2933$, 2872, 1698, 1514, 1440, 1391, 1365, 1321, 1284, 1250, 1172, 1127, 1026, 873, 825, 774; $[\alpha]_{D}^{25}:-4.53\left(c=1.7, \mathrm{CHCl}_{3}\right)$; Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 62.96 ; \mathrm{H}, 8.19$; Found: C, 62.77 ; H, 8.02.

Synthesis of (2S)-N-Boc-1-(cyclohexenylsulfonyl)-3-phenylpropan-2-amine.

A mixture of diastereomers populated principally by $\left(R_{S}, 2 S\right)-N$ -Boc-1-(cyclohexenylsulfinyl)-3-phenylpropan-2-amine (0.329 g , 0.906 mmol) in DCM (30 mL) and MCPBA (ca $\sim 83 \%, 0.207 \mathrm{~g}$, ca $\sim 1.00 \mathrm{mmol}$) in DCM (25 mL) afforded (2S)-N-Boc-1-(cyclohexenylsulfonyl)-3-phenylpropan-2amine (N -Boc protected precursor of β-amino sulfone 7 d) as a white solid (70\%, 0.240 g) following flash chromatography (30% EtOAc/hexanes). Mp $115-116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~m}, 1 \mathrm{H}), 4.97$ (br s, 1H), $4.10(\mathrm{~m}$, 1 H), 3.19 (dd, $J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.30-2.14 (m, 4H), 1.76-1.61 (m, 4H), $1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.0, 140.9, 138.2, 137.0, 129.5, 128.7, 126.9, 79.8, 53.6, 48.7, 40.1, 28.4, 25.6, 23.2,
21.8, 20.7; IR (neat) $\mathrm{cm}^{-1} 3367,3084,3061,3028,2975,2934,2863,1699,1646$, 1517, 1453, 1306, 1289, 1250, 1167, 1131, 1079, 1047, 1022; $[\alpha]_{D}^{25}-9.8$ ($c=0.9$, CHCl_{3}); HRMS (TOF, ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+380.1890$; found: 380.1876.

Synthesis of (1R)-N-Boc-2-((E)-3,3-dimethyl-1-butenylsulfonyl)-1phenylethanamine.

A mixture of diastereomers populated principally by $\left(S_{S}, 1 R\right)-N-$ Boc-2-((E)-3,3-dimethyl-1-butenylsulfinyl)-1-phenylethanamine ($0.603 \mathrm{~g}, 1.72 \mathrm{mmol}$) in DCM (30 mL) and MCPBA (ca $\sim 77 \%, 0.503 \mathrm{~g}$, ca ~ 2.92 mmol) in DCM (25 mL) afforded (1R)-N-Boc-2-((E)-3,3-dimethyl-1-butenylsulfonyl)-1-phenylethanamine (N -Boc protected precursor of β-amino sulfone $7 \mathbf{e}$) as a white solid ($77 \%, 0.485 \mathrm{~g}$) following flash chromatography (50\% EtOAc/hexanes). Mp: 83-84 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.39-7.29 (m, 5H), 6.76 (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.56$ (dd, $J=14.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=14.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 158.9,154.8,139.6,129.0,128.2,126.4,124.7,80.2,60.5$, 50.5, 34.1, 28.3, 28.2; IR (neat) $\mathrm{cm}^{-1} 3361,3063,3031,2965,2933,2907,2870$, $1702,1626,1512,1366,1293,1249,1169,1121,1045,1019,757,732,699 ;[\alpha]_{D}^{25}$ 4.8 ($c=1.1, \mathrm{CHCl}_{3}$); HRMS (TOF, ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+368.1890$; found: 368.1880 .

Synthesis of (2R)-N-Boc-1-((E)-3,3-dimethyl-1-butenylsulfonyl)butan-2amine.

A mixture of diastereomers populated principally by $\left(S_{S}, 2 R\right)-N-$ Boc-1-((E)-3,3-dimethyl-1-butenylsulfinyl)butan-2-amine (0.460 $\mathrm{g}, 1.52 \mathrm{mmol}$) in DCM (25 mL) and MCPBA (ca $\sim 77 \%, 0.387 \mathrm{~g}$, ca $\sim 1.72 \mathrm{mmol}$) in DCM (20 mL) afforded (2R)-N-Boc-1-((E)-3,3-dimethyl-1-butenylsulfonyl)butan-2amine (N -Boc protected precursor of β-amino sulfone 7 f) as a white solid $(82 \%$, 0.393 g) following flash chromatography ($30 \% \mathrm{EtOAc} / \mathrm{hexanes}$). $\mathrm{Mp}: 75-76{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.20\left(\mathrm{AB}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=14.4 \mathrm{~Hz}, J_{\mathrm{AX}}=6.8 \mathrm{~Hz}, J_{\mathrm{BX}}=4.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.84-$ $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.5,155.1,125.1,79.5,58.2,48.5,34.1,28.3$ (tBu's overlapping), 27.6, 10.3; IR (neat) $\mathrm{cm}^{-1} 3361,3053,2966,2934,2874,1709,1518,1460,1391,1365$, 1292, 1246, 1171, 1127, 979, 772; $[\alpha]_{D}^{25}+22.7\left(c=0.7, \mathrm{CHCl}_{3}\right)$; Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 56.40 ; \mathrm{H}, 9.15$; Found: C, 56.40 ; H, 8.97.

Synthesis of (2S)-N-Boc-1-((E)-1-hexenylsulfonyl)pentan-2-amine.

A mixture of diastereomers populated principally by $\left(R_{S}, 2 S\right)-N$ -Boc-1-((E)-1-hexenylsulfinyl)pentan-2-amine (10) (1.92 g, 5.26 mmol) in DCM (30 mL) and MCPBA (ca $\sim 83 \%, 1.92 \mathrm{~g}$, ca $\sim 7.86 \mathrm{mmol}$) in DCM (25 mL) afforded (2S)-N-Boc-1-((E)-1-hexenylsulfonyl)pentan-2-amine (16) (N-Boc protected precursor of β-amino sulfone 7 g) as a white solid ($95 \%, 1.90 \mathrm{~g}$) after standard workup procedure. Mp: 82-83 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93(\mathrm{dt}, \mathrm{J}=$ $15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{br} \mathrm{d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H})$, $3.19\left(\mathrm{ABX}, J_{\mathrm{AB}}=14.4 \mathrm{~Hz}, J_{\mathrm{AX}}=6.4 \mathrm{~Hz}, J_{\mathrm{BX}}=3.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.28(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.66(\mathrm{~m}$,
$2 \mathrm{H}), 1.50-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (150.6 MHz, CDCl_{3}) $\delta 155.2,149.7,128.7,79.7,58.4,46.9,36.5,31.3,29.6$, 28.3, 22.1, 19.1, 13.7, 13.6; IR (neat) $\mathrm{cm}^{-1} 3355,3045,3010,2982,2961,2934,2860$, $1687,1526,1462,1389,1364,1301,1268,1251,1171,1129,1092,1064,976,902$, 861; $[\alpha]_{D}^{25}+17.5\left(c=0.2, \mathrm{CHCl}_{3}\right)$; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 57.63 ; \mathrm{H}, 9.37$; Found: C, 57.41; H, 9.25.

Deprotection Protocols of $\boldsymbol{\beta}$-Amino Sulfones/Sulfoxides

General Deprotection of Boc-Protected $\boldsymbol{\beta}$-Amino Sulfones and Sulfoxides to

Free Amines.

To a $1: 1$ solution of TFA:DCM ($10 \mathrm{~mL} / \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ was added a solution of protected β-amino sulfone or sulfoxide in DCM ($1.5 \mathrm{~mL} / \mathrm{mmol}$). The reaction mixture was stirred for 1 hr at rt to reach completion. Following completion solvent was removed in vacuo to give an oily residue. The residue was dissolved in DCM (10 $\mathrm{mL} / \mathrm{mmol})$ and washed with a 2 M NaOH solution until a basic $\mathrm{pH}(\mathrm{pH} \sim 8)$ was achieved. The aqueous layer was extracted with DCM. The organic layers were combined, washed sequentially with water, brine, then dried over MgSO , filtered and concentrated under reduced pressure to yield the free amine.

Synthesis of ($S_{S}, 2 R$)-1-phenyl-3-((E)-propenylsulfinyl)propan-2-amine (5a).

$2.24 \mathrm{mmol})$ in $\operatorname{DCM}(3 \mathrm{~mL})$ provided $\left(S_{S}, 2 R\right)$-1-phenyl-3-($(E)-$
propenylsulfinyl)propan-2-amine (5a) as a clear colorless solid (80\%, 0.399 g); Mp $41-42{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21-$ $7.19(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{dq}, J=15.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dq}, J=15.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~m}$, $1 \mathrm{H}), 2.89(\mathrm{dd}, J=13.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{dd}, J=13.2,10.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.03 (br s, 2H), 1.93 (dd, $J=6.8,1.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.5$, 136.8, 133.2, 129.4, 128.8, 126.9, 60.4, 47.9, 44.0, 17.9; IR (neat) $\mathrm{cm}^{-1} 3364,3286$, 3038, 3060, 3004, 2914, 2852, 1633, 1601, 1494, 1453, 1440, 1396, 1353, 1091, 1030, 951, 880, 825, 800, 746, 701; $[\alpha]_{D}^{25}+24.0\left(c=0.8, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$224.1104; found: 224.1109.

Synthesis of ($\left.S_{S}, 2 R\right)-1-((E)-1-h e x e n y l s u l f i n y l) p r o p a n-2-a m i n e ~(5 d) . ~$

A mixture of a $1: 4$ solution of TFA:DCM $(25 \mathrm{~mL})$ and $\left(S_{S}, 2 R\right)-N-$
Boc-3-((E)-1-hexenylsulfinyl)propan-2-amine (4d) $(0.487 \mathrm{~g}$, $1.68 \mathrm{mmol})$ in DCM (3 mL) provided $\left(S_{s}, 2 R\right)-1-((E)-1-$ hexenylsulfinyl)propan-2-amine (5d) as a clear colorless oil (73\%, 0.231 g); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.50(\mathrm{dt}, J=15.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{br}$ $\mathrm{m}, 1 \mathrm{H}), 2.68\left(\mathrm{AB}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=13.0 \mathrm{~Hz}, J_{\mathrm{AX}}=9.7 \mathrm{~Hz}, J_{\mathrm{BX}}=3.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.26(\mathrm{~m}, 2 \mathrm{H})$, 1.85 (br s, 2H), 1.48-1.43(m, 2H), 1.39-1.32 (m, 2H), $1.24(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.3,131.9,63.4,42.3,31.8,30.2,24.2$, 22.1, 13.8; IR (neat) $\mathrm{cm}^{-1} 3408,3296,2958,2930,2871,1677,1459,1378,1201$, 1173, 1129, 1018, 772; $[\alpha]_{D}^{25}+3.8\left(c=1.2, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]+190.1260$; found: 190.1253 .

Synthesis of ($\left.R_{s}, 2 S\right)$-1-((E)-1-hexenylsulfinyl)pentan-2-amine (5f).

A mixture of a $1: 1$ solution of TFA:DCM $(30 \mathrm{~mL})$ and $\left(R_{S}, 2 S\right)-\mathrm{N}-$ Boc-1-((E)-1-hexenylsulfinyl)pentan-2-amine (10) (1.19 g, 3.27 $\mathrm{mmol})$ in DCM (3 mL) provided ($\left.R_{S}, 2 S\right)$-1-((E)-1-hexenylsulfinyl)pentan-2-amine $5 \mathbf{f}$ as a clear colorless semi-solid (91\%, 0.647); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 6.53(\mathrm{dt}, \mathrm{J}$ $=15.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.84-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.32$ $(\mathrm{m}, 2 \mathrm{H}), 1.53-1.37(\mathrm{~m}, 8 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150.6 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 143.3,132.6,61.4,47.4,40.7,32.8,31.5,23.2,20.0,14.2,15.0$; IR (neat) $\mathrm{cm}^{-1} 3288,2957,2929,2871,1665,1630,1464,1378,1200,1127,1034$, 970; $[\alpha]_{D}^{25}-5.0\left(c=0.50, \mathrm{CHCl}_{3}\right)$; Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NOS}: \mathrm{C}, 60.78 ; \mathrm{H}, 10.66$; Found: C, 60.87; H, 10.47.

Synthesis of ($\left.R_{S}, 2 S\right)$-1-phenyl-3-((E)-1-hexenylsulfinyl)propan-2-amine (5 g).

A mixture of a $1: 4$ solution of TFA:DCM $(25 \mathrm{~mL})$ and $\left(R_{S}, 2 S\right)-\mathrm{N}-$
Boc-1-phenyl-3-((E)-1-hexenylsulfinyl)propan-2-amine
(4g)
$(0.701 \mathrm{~g}, 1.92 \mathrm{mmol})$ in DCM $(3 \mathrm{~mL})$ provided $\left(R_{S}, 2 S\right)$-1-phenyl-3-((E)-1-hexenylsulfinyl)propan-2-amine (5 g) as a clear colorless oil (79\%, 0.401 g); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.34-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.49(\mathrm{dt}, J=15.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=15.1$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.71(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.92-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.36(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.30$ $(\mathrm{m}, 4 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.6,137.4,131.6$, $129.3,128.7,126.9,60.2,47.8,43.8,31.8,30.2,22.2,13.9$; IR (neat) $\mathrm{cm}^{-1} 3307,3273$, 3025, 2955, 2926, 2869, 2857, 1494, 1454, 1029, 968; $[\alpha]_{D}^{25}+7.8\left(c=0.8, \mathrm{CHCl}_{3}\right) ;$ HRMS (TOF, ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]+266.1573$; found: 266.1564 .

Synthesis of ($S_{S, 2 S}$)-1-((E)-1-hexenylsulfinyl)pentan-2-amine (5h).

To a $0^{\circ} \mathrm{C}$ solution of $(S, 2 S)-1-((E)-1$-hexenylsulfinyl)pentan-2amine ($4 \mathbf{h}$) ($0.075 \mathrm{~g}, 0.21 \mathrm{mmol})$ in DCM (5 mL) was added TFA (4 mL) via syringe. The ice bath was removed and the reaction mixture was stirred for 1 hr at rt . Following completion the reaction mixture was poured into a saturated solution of NaHCO_{3}. The pH was tested to ensure a basic $\mathrm{pH}(\mathrm{pH} \sim 8)$ was achieved. The aqueous layer was extracted with DCM ($3 \times 5 \mathrm{~mL}$). Organic layers were combined, washed with brine $(1 \times 5 \mathrm{~mL})$, then dried over MgSO_{4}, filtered and concentrated under reduced pressure. $\left(S_{S}, 2 S\right)-1-((E)$-1-Hexenylsulfinyl)pentan-2amine (5h) was obtained as a clear colorless oil (93\%, 0.042 g$) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.49(\mathrm{dt}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 2.79-$ $2.68(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.57-1.31(\mathrm{~m}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.4,132.5,61.9,47.9,40.2$, 31.8, 30.2, 22.1, 18.9, 13.9, 13.8; IR (neat) $\mathrm{cm}^{-1} 3363,3280,2957,2929,2872,1659$, 1630, 1464, 1379, 1131, 1028, 970, 772; $[\alpha]_{D}^{25}-4.8\left(c=0.5, \mathrm{CHCl}_{3}\right) ;$ HRMS (TOF, ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]+218.1573$; found: 218.1566.

Synthesis of (2S)-1-phenyl-3-((E)-propenylsulfonyl)propan-2-amine (7a).

mmol) in DCM (3 mL) provided (2S)-1-phenyl-3-((E)-propenylsulfonyl)propan-2amine (7a) and its corresponding thiazane (8a) ($\sim 5: 1$) as a clear colorless oil (77\%, $0.181 \mathrm{~g}) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{dq}$,
$J=15.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dq}, J=15.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=14.2$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=14.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{dd}, J=6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H})$, 1.74 (br s, 2H); ${ }^{13} \mathrm{C}$ NMR (150.6 MHz, CDCl_{3}) $\delta 144.7,137.2,130.24,129.4,128.8$, 127.0, 60.9, 48.0, 42.1, 16.9. See below for full characterization data of cyclized heterocycle 8a.

Synthesis of (2S)-1-phenyl-3-((E)-4-phenyl-1-butenylsulfonyl)propan-2-amine

 (7b).

A mixture of a $1: 1$ solution of TFA:DCM $(20 \mathrm{~mL})$ and $(2 S)-\mathrm{N}$-Boc-
1-phenyl-3-((E)-4-phenyl-1-butenylsulfonyl)propan-2-amine ($0.636 \mathrm{~g}, 2.48 \mathrm{mmol}$) in DCM (3 mL) provided ($2 S$)-1-phenyl-3-((E)-4-phenyl-1-butenylsulfonyl)propan-2-amine (7b) as a cloudy oil (74\%, 0.359 $\mathrm{g}) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.15(\mathrm{~m}$, $4 \mathrm{H}), 6.91(\mathrm{dt}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=$ 14.2, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.88(\mathrm{dd}, J=14.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{~m}$, 2H), 1.71 (br s, 2H); ${ }^{13} \mathrm{C}$ NMR (150.6 MHz, CDCl_{3}) $\delta 147.9,139.9,137.2,129.6,129.4$, 128.8, 128.7, 128.4, 127.0, 126.5, 61.0, 48.0, 43.9, 33.8, 33.2; IR (neat) $\mathrm{cm}^{-1} 3308$, 3083, 3060, 3026, 3003, 2923, 2854, 1754, 1494, 1453, 1382, 1296, 1129, 1029, 879, 750, 700; $[\alpha]_{D}^{25}+6.7$ ($c=0.9, \mathrm{CHCl}_{3}$); HRMS (TOF, ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 330.1522$; found: 330.1507 .

Synthesis of (2S)-1-((E)-3,3-dimethyl-1-butenylsulfonyl)-3-phenylpropan-2-

 amine (7c).

A mixture of a $1: 1$ solution of TFA:DCM (25 mL) and (2S)-N-Boc-1-((E)-3,3-dimethyl-1-butenylsulfonyl)-3-phenylpropan-2-amine $(0.548 \mathrm{~g}, 1.44 \mathrm{mmol})$ in DCM $(3 \mathrm{~mL})$ provided $(2 S)$-1-((E)-3,3-dimethyl-1-butenylsulfonyl)-3-phenylpropan-2-amine (7c) as a cloudy oil (77\%, 0.312 g$) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 2 \mathrm{H})$, $6.88(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=9.0,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=13.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150.6 MHz, CDCl_{3}) $\delta 158.7,137.3,129.3,128.8,127.0,124.9,61.0,48.2,43.9$, 34.3, 28.4; IR (neat) $\mathrm{cm}^{-1} 3377,3312,3060,3027,2962,2932,2869,1624,1603$, $1495,1476,1366,1293,1240,1127,1030,877,830,764,702 ;[\alpha]_{D}^{25}-1.1 \quad(c=1.1$, CHCl_{3}); HRMS (TOF, ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$282.1522; found: 282.1511.

Synthesis of (2S)-1-(cyclohexenylsulfonyl)-3-phenylpropan-2-amine (7d).

 (2S)-N-Boc-1mmol) in DCM (3 mL) provided (2S)-1-(cyclohexenylsulfonyl)-3-phenylpropan-2amine ($7 \mathbf{d}$) as a clear colorless oil ($90 \%, 0.134 \mathrm{~g}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-$ $7.18(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=14.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (dd, $J=$ 14.1, 9.3 Hz, 1H), $2.74\left(\mathrm{AB}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=13.4 \mathrm{~Hz}, J_{\mathrm{AX}}=7.2 \mathrm{~Hz}, J_{\mathrm{BX}}=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.30-$ $2.25(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.72-1.54(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.4,138.2,137.4,129.3,128.8,126.9,57.5,48.3,43.7,25.5,23.2$, 21.8, 20.8; IR (neat) $\mathrm{cm}^{-1} 3376,3310,3060,3026,2933,2860,1643,1495,1452$,1304, 1289, 1129, 1049, 1026, 941, 856, 749, 702; $[\alpha]_{D}^{25}+7.2\left(c=0.8, \mathrm{CHCl}_{3}\right) ;$ HRMS (TOF, ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+280.1366$; found: 280.1357.

Synthesis of (1R)-2-((E)-3,3-dimethyl-1-butenylsulfonyl)-1-phenylethanamine

 (7e).

A mixture of a $1: 1$ solution of TFA:DCM $(15 \mathrm{~mL})$ and $(1 R)-\mathrm{N}$-Boc-2-
((E)-3,3-dimethyl-1-butenylsulfonyl)-1-phenylethanamine (0.404 $\mathrm{g}, 1.10 \mathrm{mmol})$ in DCM (3 mL) provided (1R)-2-((E)-3,3-dimethyl-1-butenylsulfonyl)-1-phenylethanamine (7e) as a white solid (86\%, 0.252 g); Mp: 75-76 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl_{3}) $\delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.64(\mathrm{dd}, J=9.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27\left(\mathrm{AB}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=14.1 \mathrm{~Hz}, J_{\mathrm{AX}}=9.3 \mathrm{~Hz}, J_{\mathrm{BX}}=3.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.92 (br s, 2H), 1.08 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (150.6 MHz, CDCl_{3}) δ 158.7, 143.1, $130.0,128.1,126.4,125.0,63.3,51.2,34.3,28.4$; IR (neat) $\mathrm{cm}^{-1} 3361,3274,3194$, 3045, 3026, 2961, 2933, 2907, 2869, 1475, 1314, 1306, 1270, 1130, 1098, 982, 899, 830; $[\alpha]_{D}^{25}-14.1\left(c=1.3, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 268.1366; found: 268.1360 .

Synthesis of (2R)-1-((E)-1-hexenylsulfonyl)-2-pentanamine (7g).

A mixture of a $1: 1$ solution of TFA:DCM (25 mL) and protected β amino sulfone 16 ($1.89 \mathrm{~g}, 24.9 \mathrm{mmol}$) in DCM (3 mL) provided the deprotected β-amino sulfone $\mathbf{7 g}$ as a clear colorless oil ($95 \%, 1.10 \mathrm{~g}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.94(\mathrm{dt}, J=15.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dt}, J=15.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~m}$, $1 \mathrm{H}), 2.98\left(\mathrm{AB}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=14.0 \mathrm{~Hz}, J_{\mathrm{AX}}=9.5 \mathrm{~Hz}, J_{\mathrm{BX}}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.30(\mathrm{~m}, 2 \mathrm{H}), 1.64$ (br s, 2H), 1.52-1.32 (m, 8H), $0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (neat) $\mathrm{cm}^{-1} 3382,3322,3045,2958,2931,2872,1634,1465,1380,1306,1287$, 1123, 977, 816; $[\alpha]_{D}^{25}-14.3\left(c=0.4, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ [M+H]+ 234.1522; found: 234.1532.

General Deprotection of Boc-Protected β-Amino Sulfones and Sulfoxides to

 Ammonium TFA Salts.To a $1: 1$ solution of TFA:DCM ($10 \mathrm{~mL} / \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ was added a solution of protected β-amino sulfone or sulfoxide in DCM ($1.5 \mathrm{~mL} / \mathrm{mmol}$). The reaction mixture was stirred for 1 hr at rt to reach completion. Solvent was removed under reduced pressure, and then 20 mL of hexanes was added to the residue and removed under reduced pressure. This process was repeated three times in order to ensure removal of trifluoroacetic acid. Excess solvent was removed in vacuo to yield the TFA ammonium salt. The product was purified by flash chromatography if necessary.

Synthesis of ($R_{S}, 2 S$)-1-phenyl-3-((E)-propenylsulfinyl)propan-2-ammonium

 TFA salt of 5a. A mixture of a $1: 1$ solution of TFA:DCM $(15 \mathrm{~mL})$ and $\left(R_{s}, 2 S\right)$ -N-Boc-1-phenyl-3-((E)-propenylsulfinyl)propan-2-amine (4a) ($0.673 \mathrm{~g}, 2.08 \mathrm{mmol}$) in DCM (3 mL) provided the $\left(R_{s}\right.$, 2S)-1-phenyl-3-((E)-propenylsulfinyl)propan-2-ammonium trifluoroacetate (5a.TFA) as a clear colorless oil (95\%, 0.668 g) following flash chromatography (10
\% MeOH/DCM); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78$ (br s, 3 H), 7.34-7.16 (m, 5H), 6.51 (dq, $J=14.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (dd, $J=14.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.41$ (dd, $J=$ $14.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.34(\mathrm{dd}, J=13.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=13.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (dd, $J=14.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=6.8,1.6 \mathrm{~Hz}, 3 \mathrm{H}) ; 13 \mathrm{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 140.5,134.2,129.2,129.1,128.6,127.9,49.4,48.3,38.6,17.8$; IR (neat) $\mathrm{cm}^{-1} 3420$, 3032, 2977, 2923, 1680, 1497, 1436, 1203, 1135, 1009, 952, 837, 801, 747; $[\alpha]_{D}^{25}-$ 56.8 ($c=2.0, \mathrm{CHCl}_{3}$). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 49.84$; $\mathrm{H}, 5.38$. Found: $\mathrm{C}, 49.83$; H, 5.31.

Synthesis of ($S_{S}, 2 R$)-1-phenyl-3-((E)-propenylsulfinyl)propan-2-ammonium

 TFA salt of 5 e .

A mixture of a $1: 1$ solution of TFA:DCM $(15 \mathrm{~mL})$ and $\left(S_{s}, 2 R\right)-N-$
Boc-1-phenyl-3-((E)-propenylsulfinyl)propan-2-amine
$(0.502 \mathrm{~g}, 1.55 \mathrm{mmol})$ in DCM $(3 \mathrm{~mL})$ provided $\left(S_{S}, 2 R\right)$-1-phenyl-3-((E) -propenylsulfinyl)propan-2-ammonium trifluoroacetate (5e.TFA) as a clear colorless oil ($94 \%, 0.493 \mathrm{~g}$) following flash chromatography (10 \% MeOH/DCM); Spectral data identical as above for TFA salt of 5a; $[\alpha]_{D}^{25}+55.8\left(c=2.0, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$224.1109; found: 224.1104.

Synthesis of ($R_{s, 2} 2 S$)-((E)-1-propenylsulfinyl)propan-2-ammonium TFA salt of

 5b.

A mixture of a $1: 1$ solution of TFA:DCM $(15 \mathrm{~mL})$ and $\left(R_{S}, 2 S\right)-\mathrm{N}-$
0.959 mmol) in DCM (3 mL) provided ($R_{S}, 2 S$)-((E)-1-propenylsulfinyl)propan-2-
ammonium trifluoroacetate (5b.TFA) as a clear colorless oil (52\%, 0.137 g) following flash chromatography ($10 \% \mathrm{MeOH} / \mathrm{DCM}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.51(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 6.58(\mathrm{dq}, J=15.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\operatorname{app~dd}, J=15.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ $(\mathrm{m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=14.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=14.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=6.8$, $1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5,130.0,51.6$, 44.3, 18.9, 17.9; IR (neat) $\mathrm{cm}^{-1} 3428,2980,2923,2853,2739,1677,1429,1202$, 1132, 1026, 1016, 955; $[\alpha]_{D}^{25}+3.3\left(c=0.3, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]+148.0791$; found: 148.0797.

Synthesis of ($\left.R_{S}, \quad 2 S\right)$-3-methyl-1-((E)-1-propenylsulfinyl)butan-2-

 ammmonium TFA salt of 5 c .

A mixture of a $1: 1$ solution of TFA:DCM $(15 \mathrm{~mL})$ and $\left(R_{S}, 2 S\right)-N-$ Boc-3-methyl-1-((E)-1-propenylsulfinyl)butan-2-amine
$(0.431 \mathrm{~g}, 1.33 \mathrm{mmol})$ in DCM $(3 \mathrm{~mL})$ provided $\left(R_{S}, 2 S\right)$-3-methyl-1-((E)-1-propenylsulfinyl)butan-2-ammmonium trifluoroacetate (5c.TFA) as a clear colorless oil ($98 \%, 0.337 \mathrm{~g}$) following flash chromatography ($10 \% \mathrm{MeOH} / \mathrm{DCM}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) $\delta 8.40(b r s, 3 H), 6.57(d q, J=14.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}=$ $14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{~J}=$ 6.0 Hz, 3H), $1.01(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.5,129.7,52.6,48.3,30.9$, 18.4, 17.8, 17.4; IR (neat) $\mathrm{cm}^{-1} 3436,2973,1677,1634,1524,1428,1400,1202$, 1180, 1026, 956; $[\alpha]_{D}^{25}+2.8\left(c=0.3, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NOS}$ $[\mathrm{M}+\mathrm{H}]+176.1104$; found: 176.1110 .

TFA Salt of 7f

A mixture of a $1: 1$ solution of TFA:DCM $(15 \mathrm{~mL})$ and $(2 R)-N-$ $(0.220 \mathrm{~g}, 0.689 \mathrm{mmol})$ in DCM $(3 \mathrm{~mL})$ provided $(2 R)$-1-((E)-3,3-dimethyl-1-butenylsulfonyl)butan-2-ammonium trifluoroacetate (7f.TFA) as a white solid ($98 \%, 0.224 \mathrm{~g}$) following flash chromatography (10 \% MeOH/DCM); Mp: 100-101 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.04(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H})$, $1.13(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{t}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4,123.2,54.3$, 49.1, 34.7, 28.0, 25.9, 9.3; IR (neat) $\mathrm{cm}^{-1}: 3188,3052,2968,2910,2874,1674,1622$, 1530, 1464, 1295, 1202, 1181, 1133, 836, 799, 772, 721; $[\alpha]_{D}^{25}-7.5\left(c=0.9, \mathrm{CHCl}_{3}\right)$; Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$: C, 43.24; H, 6.65; Found: C, 43.34; H, 6.55 .

Cyclization Reaction Experiments

General Procedure for Cyclizations of TFA Salts (Cyclization Method A)

The TFA salt (1.0 equiv.) was dissolved in MeOH ($30 \mathrm{~mL} / \mathrm{mmol}$) and stirred at rt. Triethylamine (2.0-2.5 equiv.) was added to the reaction mixture via syringe which was stirred at the indicated temperature until completion (monitored by TLC). The solvent was removed in vacuo to give a crude residue, which was dissolved into DCM ($30 \mathrm{~mL} / \mathrm{mmol}$) and transferred to a separatory funnel. The organic layer was successively with 1 M aqueous $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, and brine then dried over MgSO_{4}, filtered and concentrated in vacuo to give the cyclized product.

General Procedure for Cyclizations of Free Amines (Cyclization Method B)

The free amine (1.0 equiv.) was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL} / \mathrm{mmol}$) and stirred at rt. Triethylamine (1.0-10.0 equiv.) was added to the reaction mixture via syringe which was stirred at the indicated temperature until completion (monitored by TLC). The solvent and excess triethylamine was removed in vacuo to give the cyclized product.

Synthesis of (1S, 3S, 5S)-5-methyl-3-phenylmethylthiomorpholine-1-oxide (6a).

Using Cyclization Method A, a mixture of the TFA salt 5a (0.333 g,
$0.99 \mathrm{mmol})$ and triethylamine ($0.34 \mathrm{~mL}, 2.5 \mathrm{mmol}$) in methanol (15 $\mathrm{mL})$ refluxed for 8 h provided $(1 S, 3 S, 5 S)$-5-methyl-3-phenylmethylthiomorpholine1 -oxide (6a) as a single diastereomer ($93 \%, 0.124 \mathrm{~g}$). Greyish solid. Mp: $59-60{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl ${ }_{3}$) $\delta 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 2H), 3.87 (m, 1H), $3.45(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=13.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=13.8,6.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.98 (dd, $J=13.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.89-2.85 (m, 1H), 2.82 (dd, $J=12.8 \mathrm{~Hz}, 2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=13.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 138.2,129.2,128.8,126.7,54.4,51.6,51.0,41.3,41.2,21.0$; IR (neat) $\mathrm{cm}^{-1} 3447,3284,3060,3025,2965,2915,1601,1494,1453,1376,1249$, 1200, 1050, 1028, 913, 743, 701; $[\alpha]_{D}^{25}-18.7\left(c=0.95, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]+224.1104$; found: 224.1099.

Synthesis of (1S, 3S, 5S)-3,5-dimethylthiomorpholine-1-oxide (6b).

Using Cyclization Method A, a mixture of the TFA salt $5 \mathbf{b}$ (0.103 g, $0.394 \mathrm{mmol})$ and triethylamine ($0.110 \mathrm{~mL}, 0.788 \mathrm{mmol}$) in methanol
(15 mL) refluxed for 8 h provided $(1 S, 3 S, 5 S)$-3,5-dimethylthiomorpholine-1-oxide (6b) as a single diastereomer (91\%, 0.053 g$).{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.79$ (m, $1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dt}, J=12.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dq}, J=12.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (dd, $J=12.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.46(\mathrm{dd}, J=12.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 56.3,55.2,44.6,43.9$, 22.3, 20.6; IR (neat) $\mathrm{cm}^{-1} 3398,3279,2972,1650,1134,1005,772 ;[\alpha]_{D}^{25}+0.3(c=$ 0.6, CHCl_{3}); HRMS (TOF, ESI) calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]+148.0791$; found: 148.0797.

Synthesis of (1S, 3S, 5S)-5-methyl-3-(1-methylethyl)thiomorpholine-1-oxide

 (6c). Using Cyclization Method A, a mixture of the TFA salt $5 \mathbf{c}$ ($0.095 \mathrm{~g}, 0.33$ mmol) and triethylamine ($0.092 \mathrm{~mL}, 0.66 \mathrm{mmol}$) in methanol (15 mL) refluxed for 7 h provided (1S, 3S, 5S)-5-methyl-3-(1-methylethyl)thiomorpholine-1oxide ($6 \mathbf{c}$) as a single diastereomer ($97 \%, 0.056 \mathrm{~g}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.76$ (m, 1H), 3.20-3.06 (m, 2H), 2.88-2.82 (m, 1H), 2.68 (dd, $J=12.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ (dd, $J=12.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{app} \operatorname{sex}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 55.7, 53.6, 52.5, 44.8, 31.8, 20.5, 18.9, 18.8; IR (neat) $\mathrm{cm}^{-1} 3445,3293,2962,2930$, 2872, 1465, 1375, 1025, 772; $[\alpha]_{D}^{25}-8.3\left(c=4.1, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]+176.1104$; found: 176.1107 .

Synthesis of (1R, 3S, 5S)-3-butyl-5-methylthiomorpholine-1-oxide (6d).

Using Cyclization Method B, a mixture of the amine $5 \mathbf{d}(0.107 \mathrm{~g}, 0.57$ $\mathrm{mmol})$ and triethylamine ($0.079 \mathrm{~mL}, 0.57 \mathrm{mmol}$) in methanol (10 mL) refluxed for 8 h provided $(1 R, 3 S, 5 S)$-3-butyl-5-methylthiomorpholine-1-oxide (6d) as a single diastereomer (93\%, 0.100 g$).{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{dd}, \mathrm{J}=$ $12.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=11.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H})$, 1.37-1.27 (m, 7H), $0.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 56.8,54.1$, 50.0, 43.7, 33.0, 28.6, 22.4, 22.3, 14.0; IR (neat) $\mathrm{cm}^{-1} 3291,2957,2929,2860,1650$, 1459, 1338, 1032, 1011, 772; $[\alpha]_{D}^{25}-4.7\left(c=0.9, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]+190.1260$; found: 190.1264.

Synthesis of (1R, 3R, 5R)-5-methyl-3-phenylmethylthiomorpholine-1-oxide

 (6e)

Using Cyclization Method A, a mixture of the TFA salt $\mathbf{5 e}(0.201 \mathrm{~g}$,
0.596 mmol) and triethylamine ($0.17 \mathrm{~mL}, 1.2 \mathrm{mmol}$) in methanol $(15 \mathrm{~mL})$ refluxed for 8 h provided (1R, $3 R, 5 R)$-5-methyl-3-phenylmethylthiomorpholine-1-oxide ($\mathbf{6 e}$) as a single diastereomer ($93 \%, 0.124 \mathrm{~g}$). Greyish solid. Mp 59-60 ${ }^{\circ} \mathrm{C}$; Spectral data as above for $\mathbf{6 a} ;[\alpha]_{D}^{25}+18.3(c=0.2$, CHCl_{3}); HRMS (TOF, ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+} 224.1104$; found: 224.1107.

Synthesis of (1S, 3R, 5R)-3-butyl-5-propylthiomorpholine-1-oxide (6f).

Using Cyclization Method B, a mixture of the amine $\mathbf{5 f}$ ($0.304 \mathrm{~g}, 1.4$ $\mathrm{mmol})$ and triethylamine ($0.975 \mathrm{~mL}, 7.0 \mathrm{mmol}$) in methanol (20 mL)
was refluxed for 8 h affording ($1 S, 3 R, 5 R$)-3-butyl-5-propylthiomorpholine-1-oxide (6f) as single diastereomer (96\%, 292 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.47$ (m, $1 \mathrm{H}), 3.21-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=12.0$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.26(\mathrm{~m}, 11 \mathrm{H}), 0.96-0.90(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 55.3, 54.5, 49.4, 47.9, 37.9, 33.1, 28.5, 22.4, 19.3, 14.0, 13.9; IR (neat) $\mathrm{cm}^{-1} 3442$, 3287, 2956, 2929, 2871, 1465, 1378, 1203, 1168, 1035, 771; $[\alpha]_{D}^{25}+21.0(c=0.5$, CHCl_{3}); HRMS (TOF, ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+} 218.1573$; found: 218.1568.

Synthesis of (1R, 3R, 5R)-5-butyl-3-phenylmethylthiomorpholine-1-oxide (6 g).

Using Cyclization Method B, a mixture of the amine $\mathbf{5 g}$ ($0.214 \mathbf{g}, 0.81$ mmol) and triethylamine ($0.11 \mathrm{~mL}, 0.81 \mathrm{mmol}$) in methanol (20 mL) refluxed for 8 h provided $(1 R, 3 R, 5 R)$-5-butyl-3-phenylmethylthiomorpholine-1-oxide ($\mathbf{6 g}$) and unreacted starting material $\mathbf{5 g}$ in a 92:8 molar ratio (${ }^{1} \mathrm{H}$ NMR of crude reaction mixture). Flash chromatography with MeOH/DCM (5:95) as the eluent provided $\mathbf{6 g}$ as a single diastereomer (84\%, 0.180 g). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}$, 2H), $3.52(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.97(\operatorname{app} \mathrm{dd}, J=13.3,5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.80(\mathrm{dd}, J=12.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.49-$ $1.41(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 137.9,129.2,128.7,126.8,53.8,53.2,50.2,47.3,41.6,33.4,28.0,22.3,13.9$; IR (neat) $\mathrm{cm}^{-1} 3273,3061,3025,2954,2858,1602,1453,1038,915,770 ;[\alpha]_{D}^{25}$ +96.2 ($c=0.4, \mathrm{CHCl}_{3}$); HRMS (TOF, ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]+266.1573$; found: 266.1586.

Synthesis of (1R, 3S, 5R)-3-butyl-5-propylthiomorpholine-1-oxide (6h).

Using Cyclization Method B, a mixture of the amine $\mathbf{5 h}$ ($0.040 \mathrm{~g}, 0.184$ mmol) and triethylamine ($0.256 \mathrm{~mL}, 1.84 \mathrm{mmol}$) in methanol (8 mL) refluxed for $42 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture revealed a single diastereomer of cyclized product and 20% unreacted starting material. Flash chromatography $(5 \% \quad \mathrm{MeOH} / \mathrm{DCM})$ afforded $(1 R, 3 S, \quad 5 R)$-3-butyl-5-propylthiomorpholine-1-oxide (6h) as a clear colorless oil (75\%; 94\% based on consumed starting material, 30 mg$).{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 3.61-3.53(\mathrm{~m}, 2 \mathrm{H})$, 2.41 (m, 2H), 1.54 (dd, $J=13.2,11.2 \mathrm{~Hz}, 2 \mathrm{H}$, overlapping axial methylene ring protons), 1.18-0.98(m, 11H), $0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150.6 MHz, CDCl_{3}) $\delta 50.4,46.0,45.8,38.6,36.2,27.4,22.7,18.4,13.9,13.8 ;$ IR (neat) $\mathrm{cm}^{-1} 3438,3267,2957,2929,2871,1678,1465,1380,1328,1153,1139,1068$, 1026; $[\alpha]_{D}^{25}-3.6\left(c=1.4, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$ 218.1573; found: 218.1566 .

Synthesis of Thiazane 8a.

Using Cyclization Method B, a ~ 5:1 (uncyclized/cyclized) mixture of amine ($\mathbf{7 a} / 8 \mathbf{a}$) ($0.175 \mathrm{~g}, 0.73 \mathrm{mmol}$) and triethylamine (0.102 mL , $0.73 \mathrm{mmol})$ in methanol (15 mL) at $0{ }^{\circ} \mathrm{C}$ slow warming to rt over 1 h gave the cyclized product 8a as a yellow solid ($97 \%, 90 \mathrm{mg}, d r=91: 9$ by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture). Major isomer ((3S, 5R)-5-methyl-3-phenylmethylthiomorpholine-1,1-dioxide): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.28-7.26 $(\mathrm{m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.84$
$(\mathrm{m}, 2 \mathrm{H}), 2.72-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{dd}, J=13.4,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=13.1,11.4 \mathrm{~Hz}$, 1 H); 1.74 (br s, 1 H), 1.08 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.2, 129.2, 129.0, 127.3, 58.3, 56.4, 55.4, 49.9, 42.1, 21.6; IR (neat) $\mathrm{cm}^{-1} 3320,3083$, 3061, 3027, 2971, 2925, 2852, 1495, 1455, 1298, 1257, 1124, 755, 701; $[\alpha]_{D}^{25}-2.9(c$ $=2.3, \mathrm{CHCl}_{3}$, for $91: 9$ mixture); HRMS (TOF, ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 240.1053; found: 240.1044. Minor isomer, partial characterization: ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.68-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.98(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.0,129.3,128.9,126.9,57.8,54.2,52.8,45.6,38.6,20.4$.

Synthesis of Thiazane $\mathbf{8 b}$.

Using Cyclization Method B, a mixture of the amine 7b (0.096 g, (15 mL) refluxed for $\sim 7 \mathrm{~h}$ to give the cyclized product $\mathbf{8 b}$ as a pale pink solid $(94 \%$, $90 \mathrm{mg}, d r=91: 9$ by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. Recrystallization from EtOAc/hexanes gave the major cis-isomer as a white solid. Major isomer ($(3 S$, 5R)-5-(2-phenylethyl)-3-phenylmethylthiomorpholine-1,1-dioxide): Mp $104-105{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.17(\mathrm{~m}, 8 \mathrm{H}), 6.93-6.90(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.06-$ $2.92(\mathrm{~m}, 3 \mathrm{H}), 2.80(\mathrm{dd}, J=13.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{app} \mathrm{t}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{app} \mathrm{t}, J$ $=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.2,136.4,129.3,129.0,128.7,128.2,127.4,126.4,57.2,57.0,55.3$, 53.3, 42.0, 37.0, 31.6; IR (neat) $\mathrm{cm}^{-1} 3542,3306,3061,3026,2922,2853,1602$, 1494, 1454, 1297, 1129, 1071; $[\alpha]_{D}^{25}+12.7\left(c=2.8, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S} \quad[\mathrm{M}+\mathrm{H}]^{+}$330.1522; found: 330.1534. Minor isomer, partial characterization: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03-7.02(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3}) $\delta 140.5,137.3,129.2,128.9,128.5,128.3,127.1,126.2,56.1$, 55.9, 55.2, 53.2, 42.5, 39.7, 32.1.

Synthesis of Thiazane 8c.

Using Cyclization Method B, a mixture of the amine 7c (0.246 g, $0.878 \mathrm{mmol})$ and triethylamine ($0.488 \mathrm{~mL}, 3.50 \mathrm{mmol}$) in methanol (15 mL) refluxed for 8 h to give the cyclized product $\mathbf{8 c}$ as a pale pink solid (99%, $0.244 \mathrm{~g}, d r=92: 8$ by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture). Recrystallization from EtOAc/hexanes provided the major cis diastereomer (76\%, 0.187 g). Major cis-isomer ((3R, 5S)-3-(2,2-dimethylethyl)-5-phenylmethylthiomorpholine-1,1-dioxide): $\mathrm{Mp} 133-134{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 7.07-7.05 (m, 2H), 7.02-7.00 (m, 1H), $6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{~m}, 1 \mathrm{H})$, $2.72(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{dd}, J=13.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=13.2$, $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17\left(\mathrm{AB}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=13.8 \mathrm{~Hz}, J_{\mathrm{AX}}=9.1 \mathrm{~Hz}, J_{\mathrm{BX}}=4.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.11(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 0.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.4,129.3,129.0,127.2,63.0,57.3$, 55.1, 53.7, 41.9, 33.4, 25.8; IR (neat) $\mathrm{cm}^{-1} 3355,3312,3084,3062,3025,2961,2904$, 2868, 2842, 1493, 1477, 1454, 1291, 1263, 1125, 893, 775, 747, 701; $[\alpha]_{D}^{25}-13.6(c$ $=1.2, \mathrm{CHCl}_{3}$); HRMS (TOF, ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$282.1522; found: 282.1530. Minor isomer, partial characterization: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.78$ (m, 1H), 3.22-3.17 (m, 3H), 3.01-3.05 (m, 2H), 0.87 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.6,129.5,128.7,126.7,56.9,54.1,54.0,52.6,36.7,33.7,26.3$.

Synthesis of Thiazane 8d.

 Using Cyclization Method B, a mixture of the amine $7 \mathbf{d}(0.119 \mathrm{~g}, 0.43$ mmol) and triethylamine ($0.06 \mathrm{~mL}, 0.43 \mathrm{mmol}$) in methanol (15 mL) refluxed for $7 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture revealed a single diastereomer of cyclized product $(2 S, 3 R, 5 S)$-2,3-tetramethylene-5-phenylmethylthiomorpholine-1,1-dioxide (8d) and 5\% unreacted starting material. Flash chromatography (50\% EtOAc/hexanes) afforded heterocycle as a white solid (79\%, 94 mg$) . \mathrm{Mp} 149-150{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 7.13-7.10 (m, 2H), 7.07$7.05(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.48$ $(\mathrm{dd}, J=13.8,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=13.2,3.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27\left(\mathrm{AB}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=$ $\left.13.8 \mathrm{~Hz}, J_{\mathrm{AX}}=7.8 \mathrm{~Hz}, J_{\mathrm{BX}}=6.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.32$ $(\mathrm{m}, 1 \mathrm{H}), 1.05(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~m}, 1 \mathrm{H}), 0.82-0.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.4,129.5,129.0,127.1,61.6,55.6,52.7,52.2,42.1,32.2,25.4,22.1$, 19.4; IR (neat) $\mathrm{cm}^{-1} 3330,3082,3063,3029,2987,2969,2936,2892,2854,1446$, 1290, 1255, 1221, 1114, 1104, 1067,1011, 766, 748; $[\alpha]_{D}^{25}-38.4\left(c=1.0, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+280.1366$; found: 280.1360.

Synthesis of Thiazane 8e.

Using Cyclization Method B, a mixture of the amine $7 \mathbf{e}(0.095 \mathrm{~g}, 0.36$ $\mathrm{mmol})$ and triethylamine ($0.05 \mathrm{~mL}, 0.36 \mathrm{mmol}$) in methanol (15 mL) refluxed for $10 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture revealed a single diastereomer of cyclized product (3R, 5S)-5-(2,2-dimethylethyl)-3-phenylthiomorpholine-1,1-dioxide (8e) and 5\% unreacted starting material. Flash chromatography with EtOAc/hexanes/TEA (30:65:5) afforded $\mathbf{8 e}$ as a white solid $(79 \%, 75 \mathrm{mg}) . \mathrm{Mp} 125-127^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.33(\mathrm{~m}, 5 \mathrm{H}), 4.24$
$(\mathrm{dd}, J=11.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\operatorname{app} \mathrm{br} \mathrm{d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.03-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.83$ $(\operatorname{appt} \mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $140.8,129.1,128.6,126.7,63.3,58.8,58.4,53.1,33.8,26.3$; IR (neat) $\mathrm{cm}^{-1} 3316$, 3062, 3031, 2959, 2903, 2871, 2838, 1704, 1494, 1299, 1130, 878, 769, 751, 699; $[\alpha]_{D}^{25}-51.0\left(c=4.1, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+268.1366$; found: 268.1360 .

Synthesis of Thiazane $\mathbf{8 f}$.

 Using Cyclization Method A, a mixture of the TFA salt $7 \mathrm{f}(0.164 \mathrm{~g}, 0.49$ mmol) and triethylamine ($0.14 \mathrm{~mL}, 0.98 \mathrm{mmol}$) in methanol (15 mL) refluxed for 8 h provided $\mathbf{8 f}$ as a pale yellow solid ($70 \%, 75 \mathrm{mg}, d r=91: 9$ by ${ }^{1} \mathrm{H}$ NMR analysis). Diastereomers were separated by flash chromatography (50\% EtOAc/hexanes) as the eluent (68 mg of cis-isomer; 7 mg of trans-isomer). cisIsomer [(3S, 5R)-5-ethyl-3-(2,2-dimethylethyl)thiomorpholine-1,1-dioxide]: Mp: 76$77{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, C ${ }_{6} \mathrm{D}_{6}$), $\delta: 2.84-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{dd}, J=11.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.61(\mathrm{dt}, J=13.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=12.9,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=12.8,11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 0.97(\mathrm{~m}, 2 \mathrm{H}), 0.59-0.53(\mathrm{~m}, 4 \mathrm{H}), 0.58(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right), \delta:$ 62.8, 56.6, 55.5, 53.4, 33.2, 28.6, 25.7, 9.7; IR (neat) $\mathrm{cm}^{-1} 3313,2961,2875,1465$, 1368, 1294, 1242, 1151, 1130, 874, 772; $[\alpha]_{D}^{25}+7.64\left(c=1.4, \mathrm{CHCl}_{3}\right)$; Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 54.76$; H, 9.65; Found: C, 55.12; H, 9.57. Minor isomer, partial characterization: $\mathrm{Mp} 84-85{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.39$ (br m, 1), 3.12 (m, 1H), $3.02(\mathrm{~m}, 3 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.97(\mathrm{~s}$,

9H), $0.94(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 56.6,54.2,53.9,33.8$, 29.7, 26.2, 23.3, 11.4; IR (neat) $\mathrm{cm}^{-1} 3399,2964,2938,2869,1295,1219,1130,798$.

Synthesis of Thiazane $\mathbf{8 g}$.

Using Cyclization Method B, a mixture of the amine $7 \mathbf{g}$ ($0.854 \mathrm{~g}, 3.7$ mmol) and triethylamine ($0.51 \mathrm{~mL}, 3.7 \mathrm{mmol}$) in methanol (15 mL) was stirred for 1 h at $40^{\circ} \mathrm{C}$ to give the cyclized product 8 g as a white $(99 \%, 852 \mathrm{mg}$, $d r=92: 8$ by ${ }^{1} \mathrm{H}$ NMR analysis of the mixture). Flash chromatography (30\% EtOAc/hexanes) on 1.16 g of the diastereomeric mixture ($d r=92: 8$) from multiple combined different reactions provided the pure major diastereomer $(82 \%, 0.966 \mathrm{~g})$ ((3S, 5R)-3-butyl-5-propylthiomorpholine-1,1-dioxide). Mp: 34-35 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.19-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.97(\operatorname{app~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\operatorname{app} \mathrm{t}, J=12.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.53-1.34(\mathrm{~m}, 11 \mathrm{H}), 0.97-0.91(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.1$ (overlapping $\mathrm{SO}_{2}-\underline{\mathrm{CH}}_{2}{ }_{2} \underline{\mathrm{~s}}$), $54.4,54.1,37.9,35.5,27.6,22.4,18.7,13.9$ (overlapping terminal $\mathrm{CH}_{3} \underline{\mathrm{~S}}^{\mathbf{s}}$); IR (neat) $\mathrm{cm}^{-1} 3305,2958,2931,2872,1466,1380,1300,1236$, 1128, 1082, 992, 957, 904, 870, 770; $[\alpha]_{D}^{25}+1.33\left(c=0.75, \mathrm{CHCl}_{3}\right)$; Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$: C, 56.61 ; H, 9.93; Found: C, 56.38 ; H, 9.87. Minor isomer, partial characterization: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.42(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.82$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 56.3,56.2,50.5,50.2,35.2,32.8,28.4,22.4$, 19.4, 14.0, 13.8.

Synthesis of Venom Alkaloids 15 \& 20

The syntheses of butyl thiirane S-oxide ${ }^{7}$ and chiral iodide $\mathbf{9}^{8}$ have been reported previously. Spectral data for these compounds was in good agreement with literature reports.

Synthesis of Boc-Protected Sulfoxide 10

Under anhydrous conditions under an inert $\mathrm{N}_{2}(\mathrm{~g})$ atmosphere a

solution of LiHMDS (1.0 M in THF, $3.81 \mathrm{~mL}, 3.81 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$
(35 mL) at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of the n-butyl thiirane S-oxide $\mathbf{8}$ ($0.458 \mathrm{~g}, 3.47 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}(5: 2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was allowed to stir for ca. 15 min , at which time a precooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of the amino iodide 9 ($1.30 \mathrm{~g}, 4.15 \mathrm{mmol}$) in THF (4 mL) was added dropwise via syringe. After 1 h of stirring at $-78^{\circ} \mathrm{C}$ the reaction vessel was removed from the cold bath and allowed to warm to rt stirring for $\sim 8 \mathrm{~h}$. Following completion the solvent was removed under reduced pressure, and the residue was dissolved in EtOAc. The organic layer was washed with sat'd ammonium chloride solution, water, and brine and then dried over MgSO_{4}. The organic layer was then filtered, and solvent was removed under reduced pressure. The crude reaction mixture was subjected to flash chromatography ($40 \% \mathrm{EtOAc} /$ hexanes), which yielded the β-amino sulfoxide as a mixture of diastereomers $\left(74 \%, 0.931 \mathrm{~g}, d r=91: 9\right.$ from ${ }^{1} \mathrm{H}$ NMR analysis of reaction mixture). Flash chromatography (5\% to 40% EtOAc/hexanes) provided the pure major diastereomer 10 as a white solid ($65 \%, 0.827 \mathrm{~g}$). Mp: $73-74{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.49(\mathrm{dt}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{br} \mathrm{d}, J=$
$7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{sex}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.62(\mathrm{~m}$, $2 \mathrm{H}), 1.51-1.29(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3,141.7,132.2,79.4,58.4,47.6,36.4,31.8,30.2$, 28.4, 22.1, 19.4, $13.8\left(\mathrm{CH}_{3}\right.$'s overlapping); IR (neat) $\mathrm{cm}^{-1} 3226,3038,3003,2960$, 2930, 2873, 1702, 1541, 1454, 1363, 1270, 1253, 1175, 1041, 1025, 971, 742, 704; $[\alpha]_{D}^{25}-29.8\left(c=1.3, \mathrm{CHCl}_{3}\right)$; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 60.53 ; \mathrm{H}, 9.84$; Found: C , 60.74; H, 9.90.

Synthesis of Cbz-Protected Heterocycle 11

Compound $\mathbf{5 f}$ was prepared from $\mathbf{1 0}$ as on page S15 above and from it, thiazine $\mathbf{6 f}$ was prepared as per Table 1 . To a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($4.00 \mathrm{~g}, 37.8 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O} /$ DCM ($12 \mathrm{~mL}: 15 \mathrm{~mL}$) at rt was added a solution of unprotected amine $\mathbf{6 f}(0.547 \mathrm{~g}, 2.52 \mathrm{mmol}$, prepared from $\mathbf{5 f}$, as per Table 1) in DCM (3 mL). Next, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and benzyl chloroformate ($1.21 \mathrm{~mL}, 12.6 \mathrm{mmol}$) was added via syringe. Reaction completion was reached after 2 h of stirring at rt . The reaction mixture was extracted with DCM $(3 \times 10 \mathrm{~mL})$ then the organic layers were combined and washed sequentially with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and brine. The organic phase was dried over MgSO_{4}, filtered and solvent was removed in vacuo to give the crude sulfoxide. The sulfoxide was purified via column chromatography eluting first with EtOAc/hexanes (50\%), followed by elution with $\mathrm{EtOAc} / \mathrm{MeOH}$ (50\%) to give the pure Cbz-protected sulfoxide 11 as a white solid ($0.638 \mathrm{~g}, 72 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27$ $(\mathrm{m}, 5 \mathrm{H}), 5.14(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=13.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-$ $2.76(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.31$
$(\mathrm{m}, 6 \mathrm{H}), 0.93-0.88(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), mixture of rotamers δ 156.1, 136.2, 128.6, 128.3, 128.2, 67.5, 52.1, 51.8, 50.6, 50.5, 49.1, 49.0, 47.6, 47.4, 35.5, $35.3,33.1,33.0,29.0,28.6,22.3,22.2,20.1,19.7,14.0,13.9,13.7,13.6$; IR (neat) cm^{-1} 3063, 3032, 2957, 2930, 2871, 1700, 1455, 1406, 1316, 1285, 1233, 1218, 1087, 1039, 770; $[\alpha]_{D}^{25}+13.4\left(c=0.8, \mathrm{CHCl}_{3}\right)$; Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 64.92 ; \mathrm{H}, 8.32$; Found: C, 64.64; H, 8.22.

Synthesis of Heterocyclic Sulfone 12

Using the general method for oxidizing β-amino sulfoxides to β amino sulfones. A mixture of sulfoxide $11(0.547 \mathrm{~g}, 1.55 \mathrm{mmol})$ in DCM (30 mL) and MCPBA (ca $\sim 83 \%, 0.612 \mathrm{~g}$, ca $\sim 2.95 \mathrm{mmol}$) in DCM (25 mL) afforded (3R, 5R)-3-butyl-5-propylthiomorpholine-1,1-dioxide (12) as a clear colorless oil $(90 \%, 0.511 \mathrm{~g})$ after standard workup procedure. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.39-7.33 (m, 5H), $5.14(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 3.12-3.03(\mathrm{~m}, 4 \mathrm{H}), 2.15-$ $2.09(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 6 \mathrm{H}), 0.93-0.88(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150.6 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 155.8,135.8,128.7,128.5,128.3,67.9,55.1,52.0,51.8,33.8$, 31.5, 29.7, 28.6, 22.2, 19.7, 13.9, 13.6; IR (neat) $\mathrm{cm}^{-1} 3065,3023,2958,2932,2872$, $1703,1456,1430,1379,1237,1129,1088,998,770,752,698 ;[\alpha]_{D}^{25}+13.1(c=0.6$, CHCl_{3}); Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 62.10 ; \mathrm{H}, 7.95$; Found: C, $62.30 ; \mathrm{H}, 7.86$.

Synthesis of Pyrroline 13

Sulfone 12 ($472 \mathrm{mg}, 1.29 \mathrm{mmol}$) was dissolved in THF:tBuOH (5 $\mathrm{mL} / 15 \mathrm{~mL}$) and stirred at rt. $\mathrm{KOH}-\mathrm{Al}_{2} \mathrm{O}_{3}(24.5 \mathrm{mmol}, 3.09 \mathrm{~g}$) was added to the reaction mixture followed by a solution of 1,2-
dibromotetrachloroethane ($0.755 \mathrm{~g}, 2.32 \mathrm{mmol}$) in THF (2 mL) was added slowly via syringe. The reaction mixture was stirred for 45 min at $70^{\circ} \mathrm{C}$ to reach completion. The reaction mixture was flushed through a silica plug with EtOAc to remove inorganic components. Fractions were combined and concentrated. Purification by flash chromatography (5\% EtOAc/hexanes) gave the pure ($2 R, 5 R$)-N-Cbz-2-butyl-5-propyl-3-pyrroline (13) as a clear colorless oil (50\%, 0.195). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.67(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{dd}, J=12.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=$ $12.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.03(\mathrm{~m}, 6 \mathrm{H}), 0.92-0.85(\mathrm{~m}$, $3 \mathrm{H})$, 0.81-0.77 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), mixture of rotamers δ 154.1, 137.0, 136.9, 129.2, 129.1, 128.4, 128.1, 128.0, 127.9, 66.5, 66.4, 64.6, 35.7, 34.1, 33.1, 31.5, 26.3, 25.8, 22.8, 22.7, 17.5, 17.0, 14.2, 14.1, 14.0; IR (neat) $\mathrm{cm}^{-1} 3089$, 3065, 3033, 2958, 2932, 2872, 1717, 1525, 1498, 1455, 1393, 1351, 1304, 1239, 1103, 1054, 1028, 984, 773; $[\alpha]_{D}^{25}-25.7\left(c=0.9, \mathrm{CHCl}_{3}\right)$; Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2}$: C , 75.71; H, 9.03; Found: C, 75.88; H, 8.79.

Synthesis of Pyrrolidine 14

To a suspension of $\mathrm{Pt} / \mathrm{C}(10 \%$ by wt., 15 mg$)$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ under $\mathrm{H}_{2}(\mathrm{~g})(1 \mathrm{~atm})$ a solution of pyrroline $13(0.111 \mathrm{~g}, 0.368 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added. Reaction completion was reached after stirring for 15 min at rt . The reaction mixture was filtered through Celite ${ }^{\circledR}$ column, which was washed with EtOAc. The solvent was removed in vacuo to yield a diastereomeric mixture of pyrrolidine $14\left[96 \%, 0.107 \mathrm{~g}, d r=93: 7\right.$ by ${ }^{1} \mathrm{H}$ NMR integration; major isomer: ($2 R$, 5R)-N-Cbz-2-butyl-5-propylpyrrolidine]; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.19$ (m ,
$5 \mathrm{H}), 5.14-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 3 \mathrm{H})$, 1.28-1.12 (m, 8H), 0.87-0.74 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)(mixture of rotamers) $\delta 154.3,137.2,128.4,127.9,127.8,127.7,66.4,66.3,58.2,58.0,57.7,57.5$, 36.2, 34.9, 33.7, 32.3, 28.9, 28.8, 27.6, 26.7, 22.7, 22.6, 19.9, 19.8, 14.2, 14.1, 14.0, 13.9; IR (neat) $\mathrm{cm}^{-1} 3023,2957,2931,2872,2862,1695,1405,1206,1135,790$; $[\alpha]_{D}^{25}-14.8\left(c=0.3, \mathrm{CHCl}_{3}\right) ;$ HRMS (TOF, ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]+304.2271$; found: 304.2264.

Synthesis of TFA Salt 15

To a suspension of $\mathrm{Pd} / \mathrm{C}(10 \%$ by wt., 20 mg) in MeOH (10 mL) under $\mathrm{H}_{2}(\mathrm{~g})(1 \mathrm{~atm})$ a solution of pyrrolidine $14(0.094 \mathrm{~g}, 0.31$ mmol) in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added. Reaction completion was reached after stirring for 15 min at rt . The reaction mixture was filtered through Celite ${ }^{\circledR}$ column, which was washed with EtOAc. The solvent was removed in vacuo to give crude pyrrolidine as a clear oily residue. The residue was immediately dissolved in DCM (10 mL) and chilled to $0^{\circ} \mathrm{C}$. Trifluoroacetic acid (5 mL) was added via syringe and the mixture was stirred for 1 h at rt . Solvent was removed in vacuo and then 20 mL of hexanes was added and evaporated three times to ensure removal of excess TFA which provided TFA salt 15 as a diastereomeric mixture ($84 \%, 0.074 \mathrm{~g}, d r=93: 7$). Major trans diastereomer ((2R, 5R)-2-butyl-5-propylpyrrolidine): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.33(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.43-$ $1.30(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 59.6,59.4,34.6,32.2,30.8\left(\mathrm{CH}_{2}\right.$'s overlapping), 28.5, 22.3, 19.9, 13.7, 13.6. NMR spectra are in good agreement with literature values. ${ }^{9}[\alpha]_{D}^{25}-2.7\left(c=0.5, \mathrm{CHCl}_{3}\right.$,
for 93:7 diastereomeric mixture). To get a comparative optical rotation the TFA salt was converted to the free amine. TFA salt $15(0.074 \mathrm{~g}, 0.261 \mathrm{mmol})$ was dissolved in 5 mL DCM and washed with an aqueous solution of $2 \mathrm{M} \mathrm{NaOH}(4 \mathrm{~mL})$. The organic layer was washed with brine (1 mL) dried over MgSO_{4}, filtered, and then concentrated by blowing $\mathrm{N}_{2}(g)$ over the solution to give the corresponding free amine of 15 in an improved diastereomeric ratio ($70 \%, 31 \mathrm{mg}, d r=95: 5$ (trans/cis) by ${ }^{1} \mathrm{H}$ NMR analysis. Major isomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.51(\mathrm{~m}, 2 \mathrm{H}), 2.14-$ $2.11(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.25(\mathrm{~m}, 7 \mathrm{H}), 0.96-0.84(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 58.5,58.4,37.6,35.2,31.7\left(\mathrm{CH}_{2}\right.$'s overlapping), 29.2, 22.7, 20.3, 14.1, 14.0; GC-MS: m/z 170 [M+H]+ (100), 168 (8), 126 (9), 111 (10); $[\alpha]_{D}^{25}-2.0\left(c=1.6, \mathrm{CHCl}_{3}\right)$; lit. value for 94% ee of enantiomer $[\alpha]_{D}^{25}+2.0(c=$ $\left.0.5, \mathrm{CHCl}_{3}\right) .{ }^{9}$ (See page S 43 for ${ }^{13} \mathrm{C}$ NMR comparison to literature data)

Synthesis of Cbz-protected Heterocycle 17

Sulfone 16 was prepared from 10 as describe on page S12 above. Sulfone $\mathbf{1 6}$ is deprotected to the free amine $\mathbf{7 g}$ as described on p S19 above. To a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.13 \mathrm{~g}, 20.1 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{DCM}(12 \mathrm{~mL}: 15 \mathrm{~mL})$ at rt was added a solution of unprotected amine $\mathbf{8 g}(0.312 \mathrm{~g}, 1.34 \mathrm{mmol}$, obtained by cyclization of $\mathbf{7 g}$ as per Table 2) in DCM (3 mL). Next, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and benzyl chloroformate ($0.941 \mathrm{~mL}, 6.69 \mathrm{mmol}$) was added via syringe. Reaction completion was reached after 48 h of stirring at rt. The reaction mixture was extracted with DCM ($3 \times 10 \mathrm{~mL}$) then the organic layers were combined and washed sequentially with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and brine. The organic phase was dried over MgSO_{4}, filtered and solvent was removed in
vacuo to give the crude sulfone. The sulfone was purified via column chromatography eluting first with EtOAc/Hexanes (50\%), followed by elution with EtOAc/MeOH (50\%) to give the pure Cbz-protected sulfone 17 as a white solid (53\%, 0.262 g); Mp: 85-86 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.15$ (s, 2H), 4.85 (br m, 2H), 3.21-3.05 (m, 4H), 2.03-1.84 (m, 4H), 1.39-1.25 (m, 6H), $0.92(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (150.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.6,135.8$, 128.6, 128.4, 128.2, 68.3, 53.1, 52.9, 51.6 (overlapping CH_{2} 's), 35.4, 33.0, 29.2, 22.3, 20.3, 13.9, 13.6; IR (neat) $\mathrm{cm}^{-1} 3065,3033,2958,2932,2871,1693,1456,1413$, 1386, 1319, 1218, 1114, 1088, 1002, 771; $[\alpha]_{D}^{25}+2.67\left(c=0.5, \mathrm{CHCl}_{3}\right) ;$ Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 62.10 ; \mathrm{H}, 7.95$; Found: C, 62.14; H, 8.17.

Synthesis of Pyrroline 18

Sulfone 17 ($461 \mathrm{mg}, 1.26 \mathrm{mmol}$) was dissolved in THF:tBuOH (5 $\mathrm{mL} / 15 \mathrm{~mL}$) and stirred at rt. $\mathrm{KOH}-\mathrm{Al}_{2} \mathrm{O}_{3}(23.8 \mathrm{mmol}, 3.01 \mathrm{~g}$) was added to the reaction mixture followed by a solution of 1,2dibromotetrachloroethane ($0.766 \mathrm{~g}, 2.35 \mathrm{mmol}$) in THF (2 mL) was added slowly via syringe. The reaction mixture was stirred for 3.5 h at rt . The reaction mixture was flushed through a silica plug with EtOAc to remove inorganic components. Fractions were combined and concentrated. Purification by flash chromatography (5\% EtOAc/hexanes) gave the pure ($2 S, 5 R$)-N-Cbz-2-butyl-5-propyl-3-pyrroline (18) as a clear colorless oil ($65 \%, 0.246 \mathrm{~g}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$), mixture of rotamers δ 7.37-7.29 (m, 5H), 5.76 (m, 2H), 5.19-5.14 (m, 2H), 4.53-4.48 (m, 2H), 1.95-1.75 (m, 2H), 1.44-1.29 (m, 8H), 0.95-0.85 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($150.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$), mixture of rotamers $\delta 155.1,137.1,129.4,129.3,129.2,129.1,128.4,127.8,127.7,66.5,65.7$, (neat) $\mathrm{cm}^{-1} 3067,3033,2957,2931,2871,1703,1455,1406,1357,1312,1212$, 1184, 1094, 1029, 990, 793, 732, 697; $[\alpha]_{D}^{25} 5.3\left(c=0.6, \mathrm{CHCl}_{3}\right)$; Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2}$: C, 75.71 ; H, 9.03; Found: C, 75.56; H, 8.97.

Synthesis of Pyrrolidine 19

To a suspension of Pt/C (10\% by wt., 25 mg) in $\mathrm{MeOH}(10 \mathrm{~mL})$ under $\mathrm{H}_{2}(\mathrm{~g})(1 \mathrm{~atm})$ a solution of pyrroline $18(0.130 \mathrm{~g}, 0.431 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added. Reaction completion was reached after stirring for 15 min at rt . The reaction mixture was filtered through Celite ${ }^{\circledR}$ column, which was washed with EtOAc. The solvent was removed in vacuo to yield a diastereomerically pure (2S, 5R)-N-Cbz-2-butyl-5-propylpyrrolidine (19) (94\%, 0.122 g$) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.37-7.28 (m, 5H), $5.12(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.61(\mathrm{~m}, 6 \mathrm{H}), 1.28-126$ $(\mathrm{m}, 8 \mathrm{H}), 0.88(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), mixture of rotamers δ 155.4, 137.2, 128.4, 127.7 (overlapping $\underline{C}-H$ carbons), $66.4,59.0,58.9,58.3,58.2,38.2,37.9$, 35.7, 35.3, 29.7, 29.3, 28.6, 22.7, 19.6, 14.2, 14.1; IR (neat) $\mathrm{cm}^{-1} 3065,3033,2957$, 2931, 2872, 1698, 1464, 1456, 1405, 1354, 1317, 1251, 1207, 1131, 1099, 770, 732, 696; $[\alpha]_{D}^{25}+8.3\left(c=0.4, \mathrm{CHCl}_{3}\right)$; HRMS (TOF, ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 304.2271; found: 304.2261.

Synthesis of TFA Salt 20

To a suspension of $\mathrm{Pd} / \mathrm{C}(10 \%$ by wt., 15 mg$)$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ under $\mathrm{H}_{2}(\mathrm{~g})(1 \mathrm{~atm})$ a solution of pyrrolidine $19(0.093 \mathrm{~g}, 0.31 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added. Reaction completion was reached after stirring for 15 min
at rt . The reaction mixture was filtered through Celite ${ }^{\circledR}$ column, which was washed with EtOAc. The solvent was removed in vacuo to give crude pyrrolidine as a clear oily residue. The residue was immediately dissolved in DCM (10 mL) and chilled to 0 ${ }^{\circ} \mathrm{C}$. Trifluoroacetic acid (5 mL) was added via syringe and the mixture was stirred for 1 h at rt . Solvent was removed in vacuo and then 20 mL of hexanes was added and evaporated three times to ensure removal of excess TFA which provided TFA salt 20 as a the pure cis diastereomer [(2S, 5R)-2-butyl-5-propylpyrrolidine] (95\%, $0.083 \mathrm{~g}) . \mathrm{Mp} 33-34{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.13$ (br s, 1 H), 8.62 (br s 1 H), $3.46(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.30(\mathrm{~m}$, $6 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 60.3$, 60.0, 34.3, 31.8, 28.8, 28.7, 28.6, 22.2, 21.9, 13.7, 13.6; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were in good agreement with literature data. ${ }^{9}[\alpha]_{D}^{25} 0.0\left(c=1.6, \mathrm{CHCl}_{3}\right)$. To get a comparative optical rotation the TFA salt was converted to the free amine. TFA salt 20 ($0.074 \mathrm{~g}, 0.261 \mathrm{mmol}$) was dissolved in 5 mL DCM and washed with an aqueous solution of $2 \mathrm{M} \mathrm{NaOH}(4 \mathrm{~mL})$. The organic layer was washed with brine (1 mL) dried over MgSO_{4}, filtered, and then concentrated by blowing $\mathrm{N}_{2}(\mathrm{~g})$ over the solution to give the corresponding free amine of 20 ($79 \%, 15 \mathrm{mg}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.95(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.22(\mathrm{~m}, 14 \mathrm{H}), 0.93-0.85(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 59.4,59.1,39.0,36.5,31.3$ (CH_{2} 's overlapping), 29.7, 22.9, 20.7, 14.3, 14.1; The NMR spectra are in good agreement with literature data (See page S43). ${ }^{9}$; GC-MS: m/z 170 [M+H] (50), 126 (81), 112 (100), 95 (12), 67 (19), 56 (17); $[\alpha]_{D}^{25} 0.0\left(c=0.75, \mathrm{CHCl}_{3}\right)$ lit. value: $[\alpha]_{D}^{]_{D}^{25}} 0.0\left(c=0.6, \mathrm{CHCl}_{3}\right) .{ }^{9}$

Comparison of ${ }^{13} \mathrm{C}$ chemical shits of venom alkaloids with published data

The following tables are presented for corroboration of the assigned stereochemistries of compounds $\mathbf{1 5}$ and $\mathbf{2 0}$ to literature data. ${ }^{9}$

It is well recognized that over time and with exposure to light CDCl_{3} can decompose to make acidic by-products such as HCl . This is known to have an effect on NMR chemical shifts values for nitrogen containing compounds dissolved in CDCl_{3} as noted in the literature ${ }^{10}$ and by Prof. Coldham for the compounds subjected to this comparison. ${ }^{9} 11$ The phenomenon was also observed in the current work wherein some acquired NMR spectra of the ant venom alkaloids gave variable chemical shifts from sample to sample. Trans compound 15 demonstrated particular variability and the table below shows the data from two different acquisitions using different CDCl_{3}. One set of data matches the literature reasonably well. Spectra for compounds 15 and $\mathbf{2 0}$ are shown in the latter part of this Supporting Information

Comparison of ${ }^{13} \mathrm{C}$ NMR data of $(2 S, 5 R)$-2-butyl-5-propylpyrrolidine (20, free amine) with that from Coldham and Leonori). ${ }^{9,11}$

Literature data a	20 in current paper
59.4	59.4
59.2	59.1
38.7	39.0
36.2	36.5
31.2 (2 peaks) b	31.3 (2 peaks)
29.7	29.7
22.9	22.9
20.6	20.7
14.2	14.3
14.0	14.1

a Data for the (2R,5S)-2-butyl-5-propylpyrrolidine enantiomer. The ${ }^{13} \mathrm{C}$ NMR numerical listings of the two venom alkaloid isomers are reversed in the experimental section of Reference 9. The spectra shown in the Supporting Information of that paper are correct. See refs. 9 and 11.
b The two peaks are NOT noted in the literature, but the high intensity of the resonance is recognizable through our inspection of the Supporting Information of ref. 9.

Comparison of ${ }^{13} \mathrm{C}$ NMR data of $(2 R, 5 R)$-2-butyl-5-propylpyrrolidine (15, free amine) with that from Coldham and Leonori).9,11

Literature data a	$\mathbf{1 5}$ in current paper (spectrum 1)	$\mathbf{1 5}$ in current paper (spectrum 2)
59.6	59.4	58.5
59.3	59.2	58.4
34.6	35.1	37.6
32.2	32.7	35.2
$30.8(2$ peaks)	$30.6(2$ peaks)	$31.7(2$ peaks)
28.5	28.9	29.2
22.3	22.4	22.7
19.8	20.1	20.3
13.7	14.0	14.1
13.6	13.8	14.0

a Data for the ($2 S, 5 S$)-2-butyl-5-propylpyrrolidine enantiomer. The ${ }^{13} \mathrm{C}$ NMR numerical listings of the two venom alkaloid isomers are reversed in the experimental section of Reference 9. The Spectra shown in the Supporting Information of that paper are correct. See refs. 9 and 11.
b The two peaks are NOT noted in the literature, but the high intensity of the resonance is recognizable through our inspection of the Supporting Information of ref. 9.

References for Supporting Information.

(1) Soderman, S. C.; Schwan, A. L. J. Org. Chem. 2013, 78, 1638.
(2) Soderman, S. C.; Schwan, A. L. Org. Lett. 2011, 13, 4192.
(3) Schwan, A. L.; Roche, M. R.; Gallagher, J. F.; Ferguson, G. Can. J. Chem. 1994, 72, 312.
(4) Schwan, A. L.; Strickler, R. R.; Lear, Y.; Kalin, M. L.; Rietveld, T. E.;

Xiang, T.-J.; Brillon, D. J. Org. Chem. 1998, 63, 7825.
(5) Kondo, K.; Negishi, A. Tetrahedron 1971, 27, 4821.
(6) Kondo, K.; Negishi, A.; Fukuyama, M. Tetrahedron Lett. 1969, 2461.
(7) Refvik, M. D.; Froese, R. D. J.; Goddard, J. D.; Pham, H. H.; Pippert, M. F.; Schwan, A. L. J. Am. Chem. Soc. 1995, 117, 184.
(8) Jo, E.; Na, Y.; Chang, S. Tetrahedron Lett. 1999, 40, 5581.
(9) Coldham, I.; Leonori, D. J. Org. Chem. 2010, 75, 4069.
(10) Magolan, J.; Carson, C.A.; Kerr, M.A. Org. Lett. 2008, 10, 1437.
(11) Coldham, I. University of Sheffield, Sheffield, U.K. Personal

Communication, 2013.

${ }^{1} \mathrm{H}$ NMR NOESY data

8a, CDCl_{3}; single gradient $\mathrm{NOE}-400 \mathrm{MHz}$

$\mathbf{6 g}, \mathrm{CDCl}_{3}$; single gradient $\mathrm{NOE}-600 \mathrm{MHz}$
H_{a} irradiated

$$
\operatorname{sHI} \quad \int
$$

$$
\iint\{r r r r r r d\}
$$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

(2S)-N-Boc-1-(cyclohexenylsulfonyl)-3-phenylpropan-2-amine, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-400 MHz; ${ }^{13} \mathrm{C}$ NMR-100 MHz

[^0]

6a, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-600 MHz; ${ }^{13} \mathrm{C}$ NMR- 100 MHz

6b, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-300 MHz; ${ }^{13} \mathrm{C}$ NMR-75 MHz

6c, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-300 MHz; ${ }^{13} \mathrm{C}$ NMR- 75 MHz

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | ppm |
| :--- |

6d, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-600 MHz; ${ }^{13} \mathrm{C}$ NMR-150.6 MHz

6e, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-300 MHz; ${ }^{13} \mathrm{C}$ NMR-100 MHz

6f, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-400 MHz; ${ }^{13} \mathrm{C}$ NMR-100 MHz

6g, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-600 MHz; ${ }^{13} \mathrm{C}$ NMR-75 MHz

6h, $\mathrm{C}_{6} \mathrm{D}_{6} ;{ }^{1} \mathrm{H}$ NMR-400 MHz; ${ }^{13} \mathrm{C}$ NMR-150.6 MHz

8a, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-600 MHz; ${ }^{13} \mathrm{C}$ NMR-100 MHz

8b, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-400 MHz; ${ }^{13} \mathrm{C}$ NMR-100 MHz

8c, $\mathrm{C}_{6} \mathrm{D}_{6} ;{ }^{1} \mathrm{H}$ NMR-600 MHz; ${ }^{13} \mathrm{C}$ NMR-150.6 MHz

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

8d, $\mathrm{C}_{6} \mathrm{D}_{6} ;{ }^{1} \mathrm{H}$ NMR-600 MHz; ${ }^{13} \mathrm{C}$ NMR-150.6 MHz

8e, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-400 MHz; ${ }^{13} \mathrm{C}$ NMR-100 MHz

8f, $\mathrm{C}_{6} \mathrm{D}_{6} ;{ }^{1} \mathrm{H}$ NMR-400 MHz; ${ }^{13} \mathrm{C}$ NMR-100 MHz

8f, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-400 MHz; ${ }^{13} \mathrm{C}$ NMR-100 MHz

8g, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-300 MHz; ${ }^{13} \mathrm{C}$ NMR- 75 MHz

11, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-400 MHz; ${ }^{13} \mathrm{C}$ NMR-100 MHz

12, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-600 MHz; ${ }^{13} \mathrm{C}$ NMR-150.6 MHz

13, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-400 MHz; ${ }^{13} \mathrm{C}$ NMR-100 MHz

$14 \mathrm{dr}=93: 7, \mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-600 MHz; ${ }^{13} \mathrm{C}$ NMR-150.6 MHz

[^1]

17, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-400 MHz; ${ }^{13} \mathrm{C}$ NMR-150.6 MHz

[^2]

18, $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-600 MHz; ${ }^{13} \mathrm{C}$ NMR-150.6 MHz

20 (TFA salt), $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-400 MHz; ${ }^{13} \mathrm{C}$ NMR- 100 MHz

190	180	170	160	150	140	130	120	110	100	90	80	0	0	50	40	30	20	

20 (free amine), $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR-400 MHz; ${ }^{13} \mathrm{C}$ NMR-100 MHz

[^0]: $\begin{array}{lllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} \quad \mathrm{ppm}$

[^1]: $\left.\begin{array}{llllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) \mathrm{ppm}$

[^2]:

