Supporting Information Figure S1. SEM image of ITO (a) and pictures of ITO (b) and Ru/ITO (c). **Figure S2**. EDX of Ru/ITO. **Figure S3.** XRD Patterns of ITO and Ru/ITO. These patterns were obtained with step length of 0.02° and step during of 1s. In₂O₃, JCPDS 00-006-0416; SnO₂, JCPDS 00-001-0657; Ru, JCPDS 03-065-7645. **Figure S4**. Pore size distributions of SP, Ru/ITO, and ITO, and their BET surface area and pore volume (inset). **Figure S5.** CV curve of the Li-O₂ cell with ITO as cathode in the electrolyte of LiTFSA and G3 with a molar ratio of 1 to 5 and under O₂ atmosphere at 0.1 mV/s from 2.3 to 4.2 V. **Figure S6.** Electrochemical impendence spectroscopy (EIS) of the Li- O_2 cells with ITO and Ru/ITO as cathodes in the electrolyte of LiTFSA and G3 with a molar ratio of 1 to 5 and under O_2 atmosphere at open circuit potentials. The intercept on x-axis, 10.3 Ohm, is the resistance of the electrolyte and the ITO or Ru/ITO cathode. The charge transfer resistance corresponds to the semicircle in this figure. **Figure S7.** IR spectra of the pristine, discharged and charged cathode with Ru/ITO, standard Li₂O₂, and Li₂CO₃. The characteristic IR absorbance of Li_2CO_3 is highlighted with red dash-dot-dot lines in the figure.