
Hardware

Source 
code

Windows
Interpreter

(JIT)

Compiler

Hardware Hardware

Linux
Interpreter

(JIT)

Mac
Interpreter

(JIT)

Machine
code

Machine
code

Machine
code

Bytecode
(P-code)

Naive
model



Bytecode portability and compilation vs interpretation. In an abstract fashion, it shows
how most interpreted computer languages work today. It starts from the source code
written by the programmer, which is assumed to be compiled to bytecode. The
bytecode represents an abstraction of the initial source code. Bytecode is then used
as it is on any platform, because there, whatever the platform is, it is met by an
adaptation of the same virtual machine. This virtual machine makes a combination
between interpretation and sporadic compilation (Just In Time compilation - JIT) to
increase the execution speed of the software implementation. Note that "native
code" and "machine code" have the exact same meaning across all figures that are
alike. This particular figure contains the words "Native code" instead of "Machine
code" in order to fit the text inside the horizontal compressed shapes. Note also that
in a different context, "native code" may refer to the only language understood by
some abstract object. For instance, Java bytecode is the "native code" to the Java
Virtual Machine. As it was the case in the old days, some interpreters of lower
performance (not necessarily VMs) made a direct interpretation of source code,
without an intermediate step like the use of bytecode. In principle, virtual machines
could be designed to directly interpret high-level source code, short circuiting the
source code security through obscurity or the multi-step optimization, or both. Thus,
in such a case the "native code" would be the Java high-level source code. Also, please
note that the abstract representation of the modules shown in the figure indicates a
lack of extreme contrast between what is commonly called an interpreter or a
compiler. That is, the compiler also does a little bit of interpreting and the interpreter
also does a little bit of compiling.

Paul A. Gagniuc. An Introduction to Programming Languages: Simultaneous Learning in Multiple Coding Environments. Synthesis 
Lectures on Computer Science. Springer International Publishing, 2023, pp. 1-280.


