Supporting Information

The Hexameric Resorcinarene Capsule is a Brønsted Acid: Investigation and Application to Synthesis and Catalysis

Qi Zhang and Konrad Tiefenbacher*
Department Chemie, Technische Universität München, D-85747 Garching, Germany

konrad.tiefenbacher@tum.de

Table of Contents

1. General information S3
2. Binding studies of resorcin[4]arene capsule I S6
2.1 With tetraethylammonium bromide (2) S6
2.2 With triethylamine (3) S7
2.3 With 3-ethyl-pentane (4) S8
3. Protonation studies of resorcin[4]arene capsule \mathbf{I} S9
3.1 Titration with NEt_{3} S9
3.2 NOESY-experiment of I with 0.6 eq $\mathrm{Et}_{3} \mathrm{~N}$ S10
3.3 DOSY-experiments of resorcin[4]arene capsule I S11
3.4 With N, N-dioctadecyl-4-tetradecylaniline (6) S13
3.5 With trioctadecylamine (5) S15
3.6 Determination of the pK a value of resorcin[4]arene \mathbf{I} S17
4. Synthetic application: Wittig reaction S20
4.1 Binding studies and reactivity test of Wittig ylide 7 S20
4.2 DOSY-experiment of resorcin[4]arene capsule I with 0.85 eq 7 S21
4.3 Binding studies with ethyl 3,3,3-triphenylpropanoate (8) S21
4.4 Competition reaction of Wittig ylides S23
5. Catalytic application: acetal hydrolysis S27
5.1 General procedure for acetalization S27
5.2 General procedure for hydrolysis of diethyl acetals in resorcin[4]arene capsule \mathbf{I} S30
5.3 Determination of occupancy ratio of acetals in resorcin[4]arene capsule S34
5.4 Competition reaction of diethyl acetals S35
6. References S37
7. NMR spectra for new compounds S38

1. General information

Experimental. Reactions were carried out under an atmosphere of argon unless otherwise indicated. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel $60 \mathrm{~F}_{254}$ glass-baked plates. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 500 MHz and 126 MHz respectively, using a Bruker AV 500 spectrometer. Chemical shifts of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR (measured at 298 K unless otherwise stated) are given in ppm by using CHCl_{3} and CDCl_{3} as references (7.26 ppm and 77.16 ppm respectively). Coupling constants (J) are reported in Hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dt (doublet of triplets), dq (doublet of quartets). 2D-DOSY spectrum was recorded with a Bruker AV 500 spectrometer using the Bruker standard DOSY routine. Infrared spectra were recorded on a JASCO FT/IR-4100 spectrometer. Mass spectra and high-resolution mass spectra were performed on a Finnigan MAT 8200 or a Thermo Scientific DFS mass spectrometer.

Source of chemicals. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and THF were taken from a solvent drying system (MBraun SPS-800). CDCl_{3} was purchased from Deutero GmbH. Anhydrous ethanol, toluene, oxalyl chloride, 4-tetradecylaniline, 1-bromooctadecane, dioctadecylamine, tetrakis-(triphenylphosphine)palladium(0), sodium borohydride, bromoacetyl bromide, triphenylphosphine, propanal, butanal, octanal were purchased from Sigma-Aldrich. 3,5-dibromobenzalaldehyde, 4-tert-butylphenylboronic acid, 3,3,3-triphenylpropionic acid, pentanal, hexanal, dodecanal, acetaldehyde diethyl acetal were purchased from Alfa Aesar. 3-ethylpentane and propionaldehyde diethyl acetal were purchased from TCI. Triethylamine, Silica gel ($0.040-0.063 \mathrm{~mm}$, 230-400 mesh ASTM) and alunimium oxide 60 active basic (activity stage I, 0.063-0.200 mm, 70-230 mesh ASTM) were purchased from Merck KGaA. Anhydrous DMF and molecular sieves $3 \AA$ powder were purchased from Acros Organics. All chemicals were used as received. Sonication was performed in a VWR Ultrasonic Cleaner USC-300TH. Transfer of liquids with a volume ranging from 1 to
$10 \mu \mathrm{~L}$ or from 10 to $100 \mu \mathrm{~L}$ was performed with a microman M1 pipette (Gilson) equipped with $10 \mu \mathrm{~L}$ or $100 \mu \mathrm{~L}$ pipette tips, respectively.

Resorcin[4]arene 1 was synthesized according to literature procedures ${ }^{1}$ and had a methanol (from recrystallization) content of $0.20 \mu \mathrm{~mol} / \mathrm{mg}(0.22 \mathrm{eq} \mathrm{MeOH} / \mathbf{1})$, which improved the solubility of $\mathbf{1}$ in CDCl_{3}. The experimental results were reproducible when a commercial available resorcin[4]arene 1 (as mono hydrate and methanol-free, purchased from Sigma Aldrich) was employed.

4,4"-di-tert-butyl-[1,1':3',1"-terphenyl]-5'-carbaldehyde was prepared according to a literature procedure. ${ }^{2}$

General procedure for binding/protonation studies: Water saturated CDCl_{3} was prepared by filtration of $\mathrm{CDCl}_{3}(20 \mathrm{~mL})$ through basic aluminium oxide 60 active (5 mL , activity stage I), adding distilled water $(0.10 \mathrm{~mL}$) and mixing the sample by agitation. After letting the mixture equilibrate for 30 min . the CDCl_{3}-phase was directly used for the experiments.

Preparation of resorcin[4]arene stock solution: Water saturated $\mathrm{CDCl}_{3}($ ca. 1.5 mL$)$ was added to resorcin[4]arene $1(120 \mathrm{mg})$ in a 2 mL -volumetric flask and the sample homogenized by sonication, gentle heating with a heat gun and agitation to give a clear solution. The volumetric flask was filled up to the calibration mark with water saturated CDCl_{3} and again homogenized by agitation to give a solution with a concentration of $54.3 \mathrm{mmol} / \mathrm{L}$.

Preparation of guest stock solution: Stock solutions of guests/bases were prepared with a concentration of $41.7 \mathrm{mmol} / \mathrm{L}$ in water saturated CDCl_{3}.

Sample preparation: To resorcin[4]arene stock solution ($185 \mu \mathrm{~L}, 11.1 \mathrm{mg}, 10.0 \mu \mathrm{~mol}$, 6 eq) in a NMR-tube was added water saturated $\mathrm{CDCl}_{3}(295 \mu \mathrm{~L}$) and guest stock solution ($20 \mu \mathrm{~L}, 0.834 \mu \mathrm{~mol}, 0.5 \mathrm{eq}$). The sample was homogenized by agitation.

Determination of the encapsulation/protonation ratio: In case of binding studies, the integral of the methine group ($4.29 \mathrm{ppm}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 24 \mathrm{H}$) or the o-aromatic proton $(6.11 \mathrm{ppm}, \mathrm{s}, 24 \mathrm{H})$ of the assembly of resorcin[4]arene $\mathbf{1}$ were used as references to determine the encapsulation ratio. For guest integration the terminal methyl group, located between 0 and -2 ppm after encapsulation (see SI Figure 1-2), was used. In case of protonation studies (see SI Figure 5-8), the ratio of protonation was determined by comparing the integral of the remaining phenolic protons to its original value ($9.66-9.37 \mathrm{ppm}, \mathrm{m}, 48 \mathrm{H}$). All the experiments were conducted in triplicate and the average values including standard deviations are reported. NMR spectra recorded 30 min and 12 h after the sample preparation showed comparable results, indicating that the encapsulation and protonation equilibrium of the investigated guests/bases is reached within 30 min.

2. Binding studies of resorcin[4]arene capsule I

2.1 With tetraethylammonium bromide (2)

SI-Figure 1: Binding studies with $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}(\mathbf{2})$. a) $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}(\mathbf{2})$; b) $\mathbf{2} @ \mathbf{I}: \mathbf{I}(3.30 \mathrm{mM})$, 2 (1.65 mM); c) I (3.30 mM).

2.2 With triethylamine (3)

SI-Figure 2: Binding studies with $\mathrm{Et}_{3} \mathrm{~N}(\mathbf{3})$. a) $\mathrm{Et}_{3} \mathrm{~N}(\mathbf{3})$; b) $\mathrm{HNEt}_{3}{ }^{+} @ \mathbf{I}^{-}$: I (3.30 mM), $3(1.65 \mathrm{mM})$; c) $\mathbf{I}(3.30 \mathrm{mM})$. The broad peak corresponding to water and shifted phenolic protons is highlighted by an asterisk.

SI-Figure 3: Binding studies with 3-ethylpentane (4). a) 3-ethylpentane (4); b) I (3.30 mM), $\mathbf{4}(1.65 \mathrm{mM})$; c) I (3.30 mM).

3. Protonation studies of resorcin[4]arene capsule I

3.1 Titration with NEt_{3}

To the stock solution of resorcin[4]arene $\mathbf{1}(185 \mu \mathrm{~L}, 11.1 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 6 \mathrm{eq})$ in a NMR-tube was added NEt_{3}-stock solution with a concentration of $16.7 \mathrm{mmol} / \mathrm{L}$ (a multiple of $20 \mu \mathrm{~L}, 0.334 \mu \mathrm{~mol}, 0.2$ eq.) and then diluted to a volume of 0.50 mL to prepare the sample of a desired $\mathbf{I} / \mathrm{NEt}_{3}$-ratio. After agitation the sample was allowed to equilibrate for 30 min and then subjected to NMR-spectroscopy. The quantity of the shifted phenolic peaks (see SI-Table 1) is determined by careful integration of the corresponding broad peak (maximum located between 3.22 ppm and 5.73 ppm , depending on the amount of added triethylamine) and subsequent subtraction of the water peak integral $\left(58.1 \mathrm{H}\right.$ in water saturated CDCl_{3} used for the stock solution preparation) and other overlapping peaks (methine: $24 \mathrm{H}, \quad o$-Ar-H: 24 H , $\left.m-\mathrm{Ar}-\mathrm{H}+\mathrm{CHCl}_{3}: 29.4 \mathrm{H}\right)$.

SI-Table 1: Integral and chemical shift of the shifted phenolic peaks.

ratio: I/NEt	integral of encapsulated Me protons	chemical shift of the broad peak in ppm		phenolic protons		
remaining	shifted	total				
$1: 0.2$	1.84	3.22	41.5	6.60	48.1	
$1: 0.4$	3.57	3.91	31.6	16.1	47.7	
$1: 0.6$	5.37	4.51	23.0	24.5	47.5	
$1: 0.8$	7.20	5.03	14.4	33.4	47.8	
$1: 1.0$	9.01	5.39	8.15	38.5	46.7	
$1: 1.2$	10.4	5.63	3.44	41.7	45.2	
$1: 1.4$	12.5	5.73	1.69	46.0	47.6	

3.2 NOESY-experiment of I with 0.6 eq $\mathrm{Et}_{3} \mathrm{~N}$

OH

SI-Figure 4: NOESY spectrum of the sample with a $\mathbf{I} / \mathrm{NEt}_{3}$-ratio of 1:0.6. The important cross-peaks of the original phenolic protons (yellow) and of the shifted phenolic protons (green) are highlighted. The broad peak corresponding to water and shifted phenolic protons is highlighted by an asterisk.

3.3 DOSY-experiments of resorcin[4]arene capsule I

b)

> Bayesian DOSY Transform QZK414-10.coaxial.11.ser

SI-Figure 5: DOSY spectra of resorcin[4]arene capsule I. The diffusion coefficients of CHCl_{3} and resorcin[4]arene capsule \mathbf{I} are given in $\mathrm{cm}^{2} / \mathrm{s}$. a) $\mathbf{I} / \mathrm{NEt}_{3}=1 / 0.4$, \mathbf{I} $(3.30 \mathrm{mM}), \mathrm{NEt}_{3}(1.32 \mathrm{mM}) ;$ b) $\left.\mathbf{I} / \mathrm{NEt}_{3}=1 / 1.4, \mathbf{I}(3.30 \mathrm{mM}), \mathrm{NEt}_{3}(4.62 \mathrm{mM}) ; \mathrm{c}\right) \mathbf{I} / \mathbf{5}=$ $1 / 0.6, \mathbf{I}(3.30 \mathrm{mM})$, trioctadecylamine (5) (1.98 mM).

3.4 With N, N-dioctadecyl-4-tetradecylaniline (6)

3.4.1 Synthesis of N, N-dioctadecyl-4-tetradecylaniline (6)

A mixture of 4-tetradecylaniline $(1.00 \mathrm{~g}, 3.45 \mathrm{mmol})$ and 1-bromooctadecane $(3.43 \mathrm{~g}$, 10.4 mmol) was stirred at $110^{\circ} \mathrm{C}$ for 16 h . After the sample was allowed to cool to rt, the reaction mixture was dissolved in diethylether, washed with 2 M aq. NaOH $(70 \mathrm{~mL})$ and the aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic phases were dried over sodium sulfate. After removing all volatiles under vacuum, the crude product was treated with 1-bromooctadecane ($2.01 \mathrm{~g}, 6.08 \mathrm{mmol}$) and stirred for another 16 h at $110^{\circ} \mathrm{C}$. After the sample was allowed to cool to rt , the reaction mixture was dissolved in diethylether, washed with $2 \mathrm{Maq} . \mathrm{NaOH}(70 \mathrm{~mL})$ and the aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic phases were evaporated under vacuum and subjected to flash column chromatography (150 mL silica gel, pentane to pentane/EtOAc $=60 / 1$) to afford N, N-dioctadecyl-4-tetradecylaniline (6) ($574 \mathrm{mg}, 21 \%$) as a pale yellow solid.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.47(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 84 \mathrm{H}), 0.88(\mathrm{t}, J=6.6$ Hz, 9H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.4,129.7,129.2,111.9,77.4,77.2,76.9,51.4$, 35.0, 29.9, 29.9, 29.8, 29.8, 29.8, 29.8, 29.7, 29.6, 29.5, 27.4, 27.4, 22.9, 14.3.

HRMS (EI, 70eV): calcd. for $\mathrm{C}_{42} \mathrm{H}_{79} \mathrm{~N}$ [(M-C $\left.\left.\mathrm{C}_{14} \mathrm{H}_{28}\right)^{+}\right]$: 597.6207, found: 597.6213.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2921,2851,1518$.
TLC: $R_{\mathrm{f}}=0.80($ pentane $/ \mathrm{EtOAc}=20 / 1)$ [UV]

3.4.2 Protonation studies with dioctadecylaniline 6

SI-Figure 6: Protonation studies with dioctadecylaniline 6. a) $\mathrm{Bu}_{4} \mathrm{NBr} @ \mathbf{I}^{-}$, dioctadecylaniline 6: $\mathbf{I}(3.30 \mathrm{mM}), \mathrm{Bu}_{4} \mathrm{NBr}(3.30 \mathrm{mM}), \mathbf{6}(3.30 \mathrm{mM})$; b) $\mathrm{Bu}_{4} \mathrm{NBr} @ \mathbf{I}$: I (3.30 mM), $\mathrm{Bu}_{4} \mathrm{NBr}(3.30 \mathrm{mM})$; c) $\mathbf{I}(3.30 \mathrm{mM})$; d) $\mathbf{I}(3.30 \mathrm{mM})$, $\mathbf{6}(3.30 \mathrm{mM})$; e) dioctadecylaniline 6; f) $\mathrm{Bu}_{4} \mathrm{NBr}(3.30 \mathrm{mM}), 6(3.30 \mathrm{mM})$. The broad peak corresponding to water and shifted phenolic protons is highlighted by an asterisk.

3.5 With trioctadecylamine (5)

3.5.1 Synthesis of trioctadecylamine (5)

Trioctadecylamine was synthesized according to the synthetic procedure of aniline 6 using dioctadecylamine $(1.00 \mathrm{~g}, 1.92 \mathrm{mmol})$ and 1 -bromooctadecane (962 mg , 2.89 mmol). The crude product was purified by flash column chromatography (110 mL silica gel, pentane/EtOAc $=50 / 1$ to $30 / 1$) to yield trioctadecylamine (5) ($603 \mathrm{mg}, 41 \%$) as a white solid.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.35-$ 1.17 (m, 90H), 0.88 (t, $J=6.9 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 32.1,29.9$ (br), 29.8 (br), 29.5, 22.9, 14.3.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2953,2914,2843,1471,717$.
TLC: $R_{\mathrm{f}}=0.50($ pentane $/ \mathrm{EtOAc}=10 / 1)\left[\mathrm{KMnO}_{4}\right]$

3.5.2 Synthesis of trioctadecylammonium 2,2,2-trifluoroacetate (21)

Stock solutions of trioctadecylamine (5) and trifluoroacetic acid were prepared in water saturated CDCl_{3} with a concentration of $41.7 \mathrm{mmol} / \mathrm{L}$. To the stock solution of trioctadecylamine (5) ($20 \mu \mathrm{~L}, 0.83 \mu \mathrm{~mol}, 1 \mathrm{eq}$) in a NMR-tube was added water saturated $\mathrm{CDCl}_{3}(0.46 \mathrm{~mL})$ and the stock solution of trifluoroacetic acid $(20 \mu \mathrm{~L}$, $0.83 \mu \mathrm{~mol}, 1 \mathrm{eq})$. The sample was homogenized by agitation and then subjected to NMR-spectroscopy.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.65(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{dt}, J=12.5,4.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.74-$
$1.53(\mathrm{~m}, 6 \mathrm{H}), 1.43-1.11(\mathrm{~m}, 90 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 9 \mathrm{H})$.
3.5.3 Protonation studies with trioctadecylamine (5)

SI-Figure 7: Protonation studies with trioctadecylamine (5). a) I (3.30 mM); b) $\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{3} \mathrm{~N}^{+} \mathrm{TFA}^{-}(\mathbf{2 1})$; c) $\mathbf{I}(3.30 \mathrm{mM}), \mathbf{5}(1.65 \mathrm{mM})$; d) trioctadecylamine (5). The broad peak corresponding to water and shifted phenolic protons is highlighted by an asterisk.

3.6 Determination of the pKa value of resorcin[4]arene I

3.6.1 With pyridine

SI-Figure 8: Protonation studies with pyridine. a) pyridine $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$; b) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+} @ \mathbf{I}^{-}$: I $(3.30 \mathrm{mM})$, pyridine $(1.65 \mathrm{mM})$; c) $\mathbf{I}(3.30 \mathrm{mM}) .53 \pm 1 \%$ of added pyridine was protonated by \mathbf{I} as indicated by the integral of remaining phenolic protons. The broad peak corresponding to water and shifted phenolic protons is highlighted by an asterisk.

3.6.2 With aniline

SI-Figure 9: Protonation studies with aniline. a) aniline $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$; b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+} @ \mathbf{I}$: I $(3.30 \mathrm{mM})$, aniline $(1.65 \mathrm{mM})$; c) $\mathbf{I}(3.30 \mathrm{mM}) .23 \pm 2 \%$ of added aniline was protonated by \mathbf{I} as indicated by the integral of remaining phenolic protons. The broad peak corresponding to water and shifted phenolic protons is highlighted by an asterisk.

3.6.3 Calculation of the pKa value of resorcin[4]arene I

In case of pyridine, $\mathrm{K}_{\mathrm{a}}=10^{-5.2}, \mathrm{x}=53 \%, \rightarrow \mathrm{p} K_{\mathrm{I}}=5.6$.
In case of aniline, $\mathrm{K}_{\mathrm{a}}=10^{-4.6}, \mathrm{x}=23 \%, \rightarrow \mathrm{p} K_{\mathrm{I}}=5.9$.

4. Synthetic application: Wittig reaction

4.1 Binding studies and reactivity test of Wittig ylide 7

SI-Figure 10: Binding of protonated Wittig ylide 7 and EtCHO. a) I (8.00 mM); b)
 EtCHO (80.0 mM); d) EtCHO@I: I (8.00 mM), EtCHO (80.0 mM).

4.2 DOSY-experiment of resorcin[4]arene capsule I with 0.85 eq 7

SI-Figure 11: DOSY spectrum of the I with 0.85 eq Wittig ylide 7. I (3.30 mM), $\mathbf{7}$ (2.81 mM). The diffusion coefficients of CHCl_{3} and resorcin[4]arene capsule \mathbf{I} are given in $\mathrm{cm}^{2} / \mathrm{s}$.

4.3 Binding studies with ethyl 3,3,3-triphenylpropanoate (8)

4.3.1 Synthesis of ethyl 3,3,3-triphenylpropanoate (8)

To a stirred solution of 3,3,3-triphenylpropionic acid ($500 \mathrm{mg}, 1.65 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5 \mathrm{~mL})$ was added anhydrous DMF ($6.40 \mu \mathrm{~L}, 83.1 \mu \mathrm{~mol}$) and $(\mathrm{COCl})_{2}(0.23 \mathrm{~mL}, 3.44 \mathrm{mmol})$. After gas formation has stopped, the reaction mixture was concentrated under vacuum, dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ and added to a mixture of anhydrous $\mathrm{EtOH}(0.29 \mathrm{~mL}, 4.97 \mathrm{mmol})$ and triethylamine $(0.47 \mathrm{~mL}$,
$3.37 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$. The reaction was stirred for 30 min , quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic phases were dried over sodium sulfate and concentrated under vacuum. The crude product was purified by flash column chromatography (20 mL silica gel, pentane/EtOAc $=20 / 1)$ to yield ethyl 3,3,3-triphenylpropanote ($\mathbf{8})(448 \mathrm{mg}, 82 \%)$ as a white solid.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.28-7.18(\mathrm{~m}, 15 \mathrm{H}), 3.83(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}$, $2 \mathrm{H}), 0.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

The ${ }^{1} \mathrm{H}$-spectrum is consistent with that reported in literature. ${ }^{3}$

4.3.2 Binding studies with ethyl 3,3,3-triphenylpropanoate (8)

$\begin{array}{llllllllllllllllllllllllllllll}3.5 & 13.0 & 12.5 & 12.0 & 11.5 & 11.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0 . t\end{array}$
SI-Figure 12: Binding studies with ethyl 3,3,3-triphenylpropanoate (8). a) ethyl 3,3,3-triphenylpropanoate (8); b) I (8.00 mM), $\mathbf{8}(4.00 \mathrm{mM})$; c) I $(8.00 \mathrm{mM})$.

4.4 Competition reaction of Wittig ylides

4.4.1 Synthesis of Wittig ylide 9

(4,4'-di-tert-butyl-[1,1':3',1''-terphenyl]-5'-yl)methanol (22)

To a cooled suspension $\left(0^{\circ} \mathrm{C}\right)$ of 4,4 "-di-tert-butyl-[1, $1^{\prime}: 3^{\prime}, 1$ "-terphenyl]-5'-carbaldehyde ($680 \mathrm{mg}, 1.84 \mathrm{mmol}$) in anhydrous EtOH (17 mL) was added NaBH_{4} ($36.0 \mathrm{mg}, 0.95 \mathrm{mmol}$) portionswise. The reaction was stirred at the same temperature for 1 h and afterwards quenched with water (5 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic phases were dried over sodium sulfate. Evaporation under vacuum yielded alcohol 22 ($589 \mathrm{mg}, 87 \%$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.74(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.56$ (d, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.7,142.1,141.9,138.2,127.0,125.9,125.4$, 124.5, 65.7, 34.7, 31.5.

The ${ }^{1} \mathrm{H}$-spectrum is consistent with that reported in the literature. ${ }^{4}$

To a stirred solution of alcohol $22(560 \mathrm{mg}, 1.50 \mathrm{mmol})$ and triethylamine ($520 \mu \mathrm{~L}$, 3.73 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added bromoacetyl bromide (0.40 mL , 4.60 mmol) dropwise. After TLC (pentane/EtOAc $=10 / 1$) showed complete conversion of alcohol 22, the reaction mixture was quenched with saturated aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic phases were dried over sodium sulfate, filtered and concentrated under vacuum. The crude product was purified by flash column chromatography (110 mL silica gel, eluted with pentane/EtOAc $=15 / 1$) to afford ester $23(703 \mathrm{mg}, 95 \%)$ as colorless oil.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.55$ (d, $J=1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.50 (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3,150.9,142.2,137.9,135.9,127.0,126.3$, 126.0, 125.8, 68.2, 34.7, 31.5, 26.0.

HRMS(EI, 70eV): calcd. for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{2}{ }^{79} \mathrm{Br}\left[\mathrm{M}^{+}\right]: 492.1658$, found: 492.1652.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2960,1741,1600,1515,1457,1272,828$.
TLC: $R_{\mathrm{f}}=0.52($ pentane $/ \mathrm{EtOAc}=10 / 1)[\mathrm{UV}]$

Wittig ylide 9

A solution of ester $23(636 \mathrm{mg}, 1.29 \mathrm{mmol})$ and triphenylphosphine (429 mg , 1.64 mmol) in anhydrous toluene (2.8 mL) was stirred at $45^{\circ} \mathrm{C}$. After TLC
(pentane/EtOAc $=10 / 1$) showed complete conversion of ester 23, the reaction mixture was filtered and washed with toluene. The filtrate was dissolved in water (20 mL) and basified with 2 M aq. NaOH to $\mathrm{pH} 8-9$. The resulting suspension was extracted with EtOAc (3x) and the combined organic phases were dried over sodium sulfate and concentrated under vacuum. The crude product was subjected to flash column chromatography (75 mL silica gel, pentane/EtOAc/ $\mathrm{NEt}_{3}=3 / 1 / 0.01$) to afford Wittig ylide 9 ($530 \mathrm{mg}, 61 \%$) as a white solid.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.64-7.35(\mathrm{~m}, 26 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}$, 18H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.3,141.5,138.6,133.1,133.1,132.0,128.9$, $128.8,128.2,127.5,127.1,125.7,125.5,124.8,64.3,34.7,31.6$.

HRMS (ESI): calcd. for $\mathrm{C}_{47} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{P}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 675.3386, found: 675.3386.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2960,1735,1618,1515,1105,829,719,691$.
TLC: $R_{\mathrm{f}}=0.12\left(\right.$ pentane $\left./ E t O A c / \mathrm{NEt}_{3}=3 / 1 / 0.01\right)$ [UV]

4.4.2 Competition reaction of Wittig ylides

(Ethoxycarbonylmethylene)triphenylphosphorane (7) ($15.0 \mathrm{mg}, 44.5 \mu \mathrm{~mol}$) and Wittig ylide 9 ($30.1 \mathrm{mg}, 44.5 \mu \mathrm{~mol}$) were added simultaneously to a stirred solution of resorcin[4]arene $\mathbf{1}(360 \mathrm{mg}, 326 \mu \mathrm{~mol})$ in water saturated $\mathrm{CDCl}_{3}(6.5 \mathrm{~mL})$. After 1 h , propionaldehyde ($5.5 \mu \mathrm{~L}, 66.8 \mu \mathrm{~mol}$) was added and stirring continued for 23 h at $30^{\circ} \mathrm{C}$. Afterwards the reaction mixture was concentrated under vacuum and purified by flash column chromatography (40 mL silica gel, pentane/EtOAc $=40 / 1$ to pentane $\left./ E t O A c / \mathrm{NEt}_{3}=5 / 1 / 0.01\right)$ to yield (Z)-alkene $23(0.4 \mathrm{mg}, 2 \%)$ and (E)-alkene 11 ($14.2 \mathrm{mg}, 72 \%$) both as a colorless oil and to recover unreacted (ethoxycarbonylmethylene)triphenylphosphorane (7) (11.2 mg, 72\%) as a white solid.

(Z)-(4,4''-di-tert-butyl-[1,1':3',1''-terphenyl]-5'-yl)methyl-pent-2-enoate (24)

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.54(\mathrm{~s}, 2 \mathrm{H})$, $7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.26(\mathrm{dt}, J=11.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.27(\mathrm{~s}, 2 \mathrm{H}), 2.70$ (quintet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.37(\mathrm{~s}, 18 \mathrm{H}), 1.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,153.0,150.7,142.1,138.1,137.1,127.1$, $125.9,125.9,125.7,118.9,65.9,34.7,31.5,22.7,13.6$.

HRMS (ESI): calcd. for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{~N}\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$: 472.3210, found: 472.3212.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2961,1720,1618,1600,1516,1166,828$.
TLC: $R_{\mathrm{f}}=0.75($ pentane $/ \mathrm{EtOAc}=20 / 1)[\mathrm{UV}]$

() -(4,4'-di-tert-butyl-[1,1':3',1'-terphenyl]-5'-yl)methyl-pent-2-enoate (11)

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.56(\mathrm{~s}, 2 \mathrm{H})$, $7.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{dt}, J=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.30(\mathrm{~s}, 2 \mathrm{H}), 2.33-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}), 1.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.8,151.7,150.7,142.1,138.1,137.1,127.1$, $125.9,125.9,125.8,120.2,66.2,34.7,31.5,25.5,12.2$.

HRMS (ESI): calcd. for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{~N}\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$: 472.3210, found: 472.3212.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2961,1718,1600,1513,1459,1171,828$.
TLC: $R_{\mathrm{f}}=0.49($ pentane $/ \mathrm{EtOAc}=20 / 1)[\mathrm{UV}]$

5. Catalytic application: acetal hydrolysis

5.1 General procedure for acetalization

To a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of p-toluenesulfonic acid mono hydrate ($241 \mathrm{mg}, 1.40 \mathrm{mmol}$) in anhydrous $\mathrm{EtOH}(6.0 \mathrm{~mL}$) was added the respective aldehyde (7.00 mmol) dropwise and molecular sieves powder $3 \AA(900 \mathrm{mg}$). The reaction was stirred for 20 min at $0^{\circ} \mathrm{C}$ and then at $\mathrm{rt}(18 \mathrm{~h})$. Afterwards the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, filtered and basified with 2 M aq. NaOH . The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$ and the combined organic phases were washed with brine, dried over sodium sulfate and carefully concentrated at $30^{\circ} \mathrm{C}$ under reduced pressure (300 mbar in case of 1,1-diethoxybutane 14, 250 mbar in case of 1,1-diethoxypentane 15, 200 mbar in case of 1,1-diethoxyhexane 16, 100 mbar in case of 1,1-diethoxyoctane 17, 3 mbar in case of 1,1-diethoxydodecane 18). The crude product was then purified by flash column chromatography (50 mL basic aluminium oxide, activity stage I , pentane $/ \mathrm{Et}_{2} \mathrm{O}=50 / 1$) to yield the corresponding acetal $(10 \%$ for $\mathbf{1 4}, 12 \%$ for $\mathbf{1 5}, 75 \%$ for $\mathbf{1 6}, 15 \%$ for $\mathbf{1 7}, 33 \%$ for $\mathbf{1 8}$) as a colorless oil.

1,1-diethoxybutane (14)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.49(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dq}, J=9.2,7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.49 (dq, $J=9.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 102.9,60.9,35.8,18.2,15.5,14.1$.

IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2933,2853,1738,1600,1463,1272$.
TLC: $R_{\mathrm{f}}=0.33$ (pentane/EtOAc/ $\mathrm{NEt}_{3}=100 / 1 / 1$) [2,4-dinitrophenylhydrazine]

1,1-diethoxypentane (15)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.48(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dq}, J=9.3,7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.49(\mathrm{dq}, J=9.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.27(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

The ${ }^{1} \mathrm{H}$-spectrum is consistent with that reported in the literature. ${ }^{5}$

1,1-diethoxyhexane (16)

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.48(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dq}, J=9.3,7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.49(\mathrm{dq}, J=9.3,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.24(\mathrm{~m}, 6 \mathrm{H}), 1.20(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 103.1,60.9,33.7,31.8,24.6,22.8,15.5,14.2$.
IR (ATR): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2929,2872,1374,1125,1112,1061$.
TLC: $R_{\mathrm{f}}=0.30$ (pentane/EtOAc/ $\mathrm{NEt}_{3}=100 / 1 / 1$) [2,4-dinitrophenylhydrazine]

1,1-diethoxyoctane (17)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.50(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dq}, J=9.2,7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.51 (dq, $J=9.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.59$ (m, 2H), $1.40-1.24$ (m, 10H), 1.22 (t, $J=$ $7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

The ${ }^{1} \mathrm{H}$-spectrum is consistent with that reported in the literature. ${ }^{6}$

1,1-diethoxydodecane (18)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.48(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dq}, J=9.3,7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.49 (dq, $J=9.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.57$ (m, 2H), $1.37-1.20$ (m, 18H), 1.20 (d, $J=$ $7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

The ${ }^{1} \mathrm{H}$-spectrum is consistent with that reported in the literature. ${ }^{7}$

5.2 General procedure for hydrolysis of diethyl acetals in resorcin[4]arene capsule I

Stock solutions of acetals in water saturated CDCl_{3} were prepared with a concentration of $837 \mathrm{mmol} / \mathrm{L}$. To resorcin[4]arene $\mathbf{1}$ stock solution ($185 \mu \mathrm{~L}, 11.1 \mathrm{mg}$, $10.0 \mu \mathrm{~mol}, 6 \mathrm{eq}$) in a NMR-tube was added water saturated $\mathrm{CDCl}_{3}(295 \mu \mathrm{~L}$ in case of hydrolysis of a single acetal, $275 \mu \mathrm{~L}$ in case of a competition reaction) and the acetal stock solution ($20 \mu \mathrm{~L}, 16.7 \mu \mathrm{~mol}, 10 \mathrm{eq}$, in case of hydrolysis of a single acetal; $20 \mu \mathrm{~L}$ of each acetal in case of a competition reaction). The sample was homogenized by agitation and then subjected to the NMR-spectroscopy.

In order to examine the reproducibility of the measurement, all the acetal hydrolysis reactions were carried out in duplicate. The two independent measurements of the same acetal hydrolysis gave comparable results (see SI Figure 13-14).

Figure 13: Comparison of the conversion after about 10 min to encapsulated alkyl signals (${ }^{1} \mathrm{H}-\mathrm{NMR}$ region: 0.6 to -2 ppm).

Figure 14: Catalytic hydrolysis of various diethyl acetals inside I.

5.3 Determination of occupancy ratio of acetals in resorcin[4]arene capsule I

The cavity of resorcin[4]arene capsule I and the volumes of different diethyl acetals were computed with Swiss-PdbViewer ${ }^{8}$ (Surface preference: Quality $=6$). According to the computation, resorcin[4]arene capsule has a cavity of $1422 \AA^{3}$. The volumes of acetals and the corresponding occupancy ratios are listed in the following table.

SI-Table 2: Determination of occupancy ratio of acetal in I.

substrate	\mathbf{R}	volume / $\left(\AA^{3}\right)$	occupancy ratio
1,1-diethoxyethane $\mathbf{1 2}$	methyl	129	9%
1,1-diethoxypropane $\mathbf{1 3}$	ethyl	145	10%
1,1-diethoxybutane $\mathbf{1 4}$	propyl	163	11%
1,1-diethoxypentane 15	butyl	181	13%
1,1-diethoxyhexane 16	pentyl	198	14%
1,1-diethoxyoctane $\mathbf{1 7}$	heptyl	232	16%
1,1-diethoxydodecane $\mathbf{1 8}$	undecyl	311	22%

5.4 Competition reaction of diethyl acetals

$$
R \text { = propyl, butyl, pentyl, heptyl, undecyl }
$$

SI-Figure 15: Substrate selectivity versus time profile in the competition reaction.

SI-Table 3: Substrate selectivity of competition reactions in I.

competitor	MeCHO:RCHO	yield of		
		10 min	1 h	MeCHO, 1h
1,1-diethoxybutane $\mathbf{1 4}$		$76: 24$	$60: 40$	64%
1,1-diethoxypentane 15	butyl	$83: 7$	$72: 28$	67%
1,1-diethoxyhexane 16	pentyl	$91: 9$	$77: 23$	74%
1,1-diethoxyoctane 17	heptyl	$95: 5$	$90: 10$	82%
1,1-diethoxydodecane 18	undecyl	$98: 2$	$98: 2$	83%

The selectivity of acetal hydrolysis reaction was tested with a mixture of 1,1-diethoxyethane 12 and a second longer diethyl acetal (14-18). In all cases, the S35
formation of ethanal in the initial phase $(0-10 \mathrm{~min})$ was more selective than after longer reaction time. The selectivity rose when the size difference between the two substrates increased.

6. References

(1) a) Tunstad, L. M.; Tucker, J. A.; Dalcanale, E.; Weiser, J.; Bryant, J. A.; Sherman, J. C.; Helgeson, R. C.; Knobler, C. B.; Cram, D. J. J. Org. Chem. 1989, 54, 1305; b) Elidrisi, I.; Negin, S.; Bhatt, P. V.; Govender, T.; Kruger, H. G.; Gokel, G. W.; Maguire, G. E. M. Org. Biomol. Chem. 2011, 9, 4498.
(2) Sommer, J. R.; Shelton, A. H.; Parthasarathy, A.; Ghiviriga, I.; Reynolds, J. R.; Schanze, K. S. Chem. Mater. 2011, 23, 5296.
(3) Jean, A.; Lequan, M. C. R. Acad. Sci. 1971, 273, 1662.
(4) Kimura, M.; Shiba, T.; Yamazaki, M.; Hanabusa, K.; Shirai, H.; Kobayashi, N. J. Am. Chem. Soc. 2001, 123, 5636.
(5) Savoia, D.; Tagliavini, E.; Trombini, C.; Umanironchi, A. J. Org. Chem. 1980, 45, 3227.
(6) Crossley, M. J.; Gorjian, S.; Sternhell, S.; Tansey, K. M. Aust. J. Chem. 1994, 47, 723.
(7) Maegawa, T.; Otake, K.; Goto, A.; Fujioka, H. Org. Biomol. Chem. 2011, 9, 5648.
(8) Swiss Industry Bioinformatics, http://www.expasy.org/spdbv.

7. NMR spectra for new compounds

QZK295.1C-1/1H 500cr
we proton $\mathrm{CDCl} \overline{\mathrm{C}}$: akbach

「~N

(13C

ल
 T

16

16

