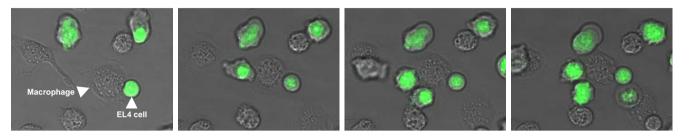


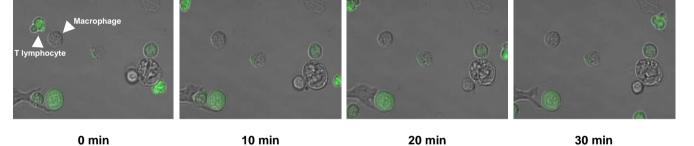
Supplementary Figure 1. IL-13 induces caspase independent necrosis of EL4 tumor cells through IL-13 receptor-coupled STAT-6 signaling in macrophages. A-D, number (A), cell death (B), cell cycle (C) and cell proliferation (D) of EL4-luc2 cultured in presence or not of IL-13 were respectively determined by the quantification of bioluminescence intensity and by flow cytometry using annexin-V/PI staining, PI DNA staining and fluorescent dye CFSE. E, number of EL4-luc2 cells cultured in presence of untreated or IL-13-treated peritoneal macrophages from *Il4ra-/-* or *Stat6-/-* mice and their corresponding WT counterpart (*Il4r+/+* or *Stat6+/+*). F and G, number (F) and cell death (G) of EL4-luc2 in presence of macrophages treated or not with IL-13 in presence or not of Necrostatin-1. Results correspond to mean \pm SEM of triplicates and are representative of at least three independent experiments. **p < 0.01 compared to respective untreated macrophages and ##p < 0.01 compared to IL-13-treated WT littermate. P values were determined using Bonferroni-Dunnett method.

Supplementary Figure 2. The physical contact with EL4 tumor cells switches IL-13-activated macrophages toward cytotoxic phenotype characterized by a pro-inflammatory signature. A, gene expression analysis of polarization markers in untreated or IL-13-treated macrophages in presence or not of EL4-luc2 cells, determined using RT-PCR. **B**, cell-surface protein levels for the indicated receptors in untreated or IL-13-treated macrophages in presence or not of EL4-luc2 cells were quantified by flow cytometry. **C**, cytokine production of untreated or IL-13-treated macrophages in presence or not of EL4-luc2 cells was quantified by ELISA. For geomean fluorescence and mRNA expression, data are expressed as fold induction relative to the corresponding untreated macrophages. Results correspond to mean \pm SEM of triplicates and are representative of at least three independent experiments. *p < 0.05, **p < 0.01 compared to the respective untreated macrophages without EL4. P values were determined using Bonferroni-Dunnett method.



0 min

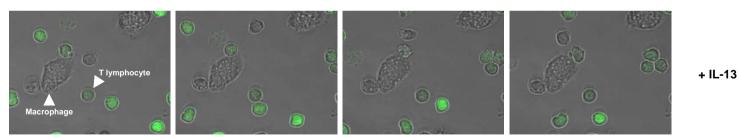
10 min


20 min

30 min

+ IL-13

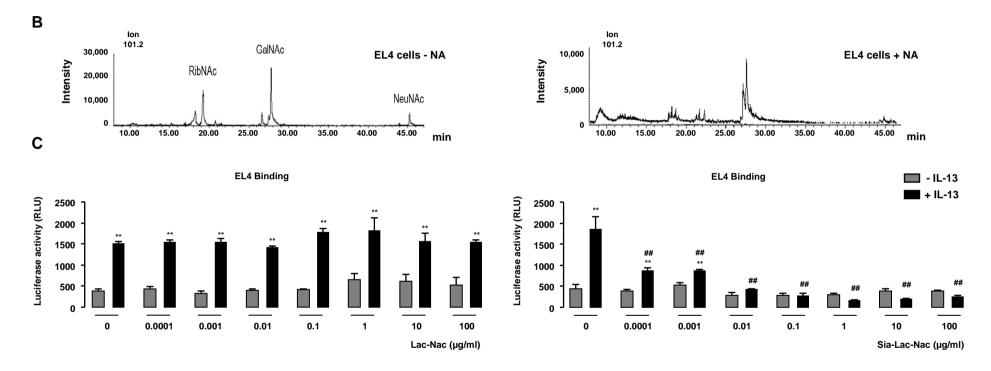
- IL-13



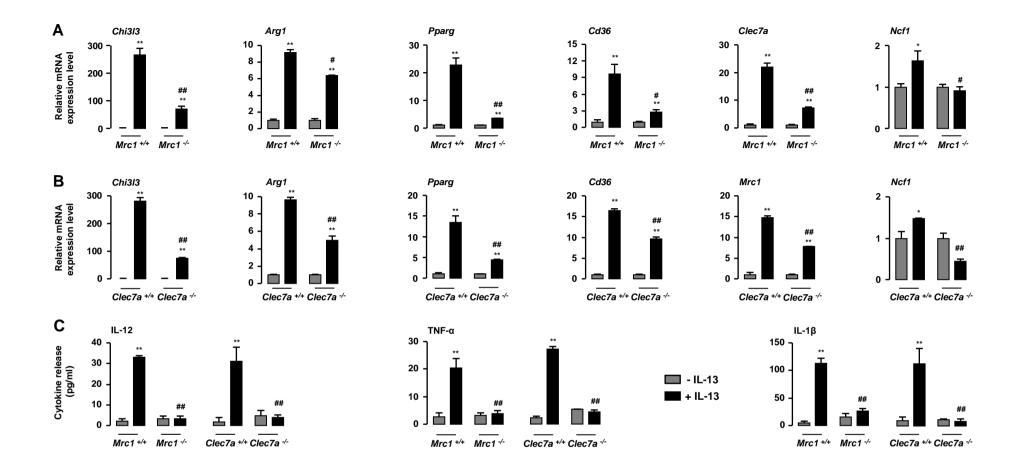
- IL-13

0 min

10 min

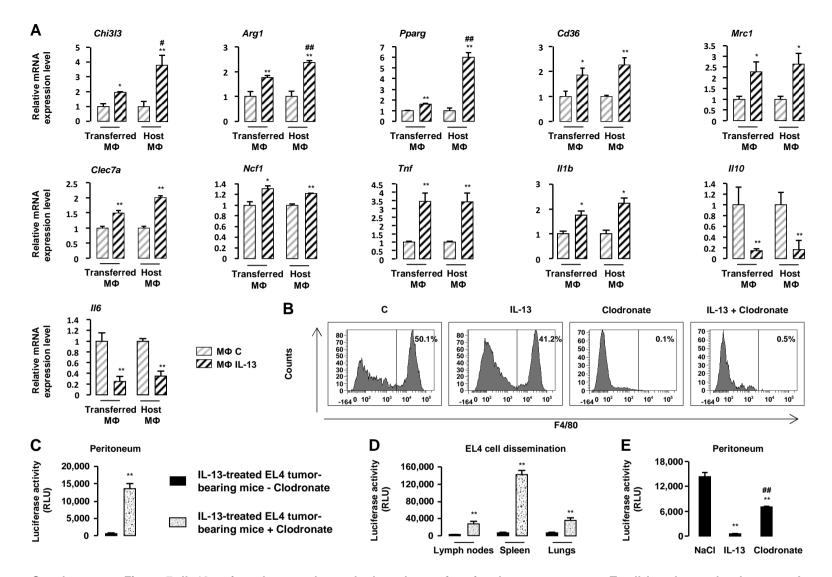

30 min

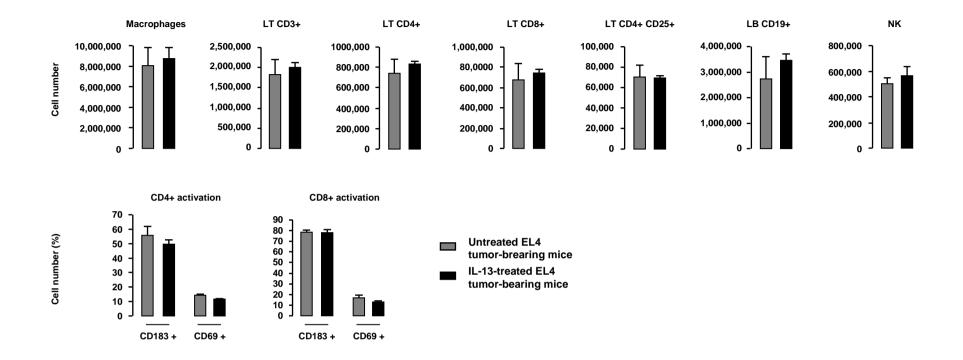
Supplementary Figure 3. IL-13-activated macrophages strongly bind EL4 tumor cells and not normal T lymphocytes. A and B, EL4 tumor cells (A) and mouse normal T cells (B) were labeled with CFSE, co-cultured with untreated or IL-13-treated macrophages and observed by confocal microscopy. The images (40X) were assessed after 0, 10, 20 and 30 min of co-culture. Results are representative of at least three independent experiments.


В

		Fucosamine	Quinovosamine	Glucosamine	Galactosamine	Mannosamine	N-Acetyl-Galactosamine (GalNAc)	N-Acetyl-Neuraminic acid (NeuNAC)
	LT	14	8	31	37	30	4	6
	EL4 cells	16	4	32	32	28	38	40

Supplementary Figure 4. Sialic acid is the critical epitope at the surface of EL4 cells responsible of their interaction with IL-13-activated macrophages. A, carbohydrate relative amounts at the surface of T lymphocytes and EL4 cells, obtained by EI+ GC-MS measurements. Numbers are intensities x104. Deviations over 3 essays were +/- 5 104. B, chromatogram of ion m/z 101 specific of acetylated and methylated amino-sugars at the surface of EL4 cells pretreated or not with NA. Numbers are intensities x104. C, binding of EL4-luc2 cells on IL-13-stimulated macrophages pre-treated or not with Lac-Nac (N-acetyllactosamine) using luminescence assay. Results correspond to mean \pm SEM of triplicates and are representative of at least three independent experiments. *p < 0.05, **p < 0.01 compared to respective untreated macrophages and #p < 0.05, ##p < 0.01 compared to IL-13-treated macrophages without Lac-Nac and Sia-Lac-Nac. P values were determined using Bonferroni-Dunnett method.


Α


Supplementary Figure 5. The switch of IL-13-activated macrophages toward cytotoxic phenotype requires both MR and Dectin-1. A and B, gene expression analysis of polarization markers in untreated or IL-13-treated macrophages from *Mrc1-/-* (A) or *Clec7a-/-* (B) mice and their corresponding WT counterpart (*Mrc1+/+* or *Clec7a+/+*) in response to EL4-luc2 cells, determined using RT-PCR. Data are expressed as fold induction relative to the corresponding untreated macrophages. C, cytokine production of untreated or IL-13-treated macrophages from *Mrc1-/-* or *Clec7a-/-* mice and their corresponding WT counterpart (*Mrc1+/+* or *Clec7a+/+*) in response to EL4-luc2 cells were quantified by ELISA. Results correspond to mean \pm SEM of triplicates and are representative of at least three independent experiments. *p < 0.05, **p < 0.01 compared to respective untreated macrophages and #p < 0.05, ##p < 0.01 compared to IL-13-treated WT littermate. P values were determined using Bonferroni-Dunnett method.

Supplementary Figure 6. IL-4 treatment inhibits T-cell lymphoma progression and enhances macrophage antitumor properties. A-D, C57BL/6 mice were injected intraperitoneally with 1 x 106 EL4-luc2 tumor cells and the following day the mice were treated or not by i.p. with IL-4. A, Tumor burden in ascites of untreated and IL-4-treated EL4 tumor-bearing mice was determined by the quantification of bioluminescence intensity. B-D, killing activity (B), ROS production (C) and arginase activity (D) of peritoneal macrophages collected on day 12 from untreated and IL-4-treated EL4 tumor-bearing mice. E-G and J, C57BL/6 mice were injected with 1 x 106 EL4-luc2 cells or NaCl and peritoneal macrophages were collected on day-12. E, gene expression analysis of polarization markers in peritoneal macrophages from non-tumor-bearing mice or EL4 tumor-bearing mice. F, killing activity against EL4 cells of peritoneal macrophages from non-tumor-bearing mice or EL4 tumor-bearing mice was determined by the quantification of bioluminescence intensity. G, ROS production of peritoneal macrophages from non-tumor-bearing mice or EL4 tumor-bearing mice was determined by the quantification of bioluminescence intensity. G, ROS production of peritoneal macrophages from non-tumor-bearing mice was determined by the quantification of bioluminescence intensity. G, ROS production of peritoneal macrophages from non-tumor-bearing mice was determined by the quantification of bioluminescence intensity. G, ROS production of peritoneal macrophages from non-tumor-bearing mice was determined by the quantification of polarization markers of peritoneal macrophages from non-tumor-bearing mice was determined by the quantification of bioluminescence intensity. G, ROS production of peritoneal macrophages from non-tumor-bearing mice or EL4 tumor-bearing mice or EL4 tumor-bearing mice was determined by the quantification of polarization markers of peritoneal macrophages from non-tumor-bearing mice was determined by the quantification of bioluminescence intensity. G

Supplementary Figure 7. IL-13-activated macrophages had a relevant functional consequence on T-cell lymphoma development. A, Gene expression analysis of polarization markers of transferred (F4/80+ MHC-2+ Cell trace+) and host (F4/80+ MHC-2+ Cell trace-) macrophages collected on day 12 from EL4 tumor-bearing mice injected with macrophages harvested from untreated C57BL/6 (M Φ C) or IL-13-treated mice (M Φ IL-13). (B-D), C57BL/6 mice were injected with 1 x 106 EL4-luc2 cells and treated *i.p.* by IL-13. Macrophage depletion was performed by clodronate *i.p.* administration. B, quantification of F4/80 positive cells in ascites from EL4 tumor-bearing mice and IL-13-treated EL4 tumor-bearing mice by flow cytometry. C and D, number of EL4-luc2 cells in peritoneum (B), in lymph nodes, spleen and lungs (C) of IL-13-treated EL4-luc2 cells in peritoneum of EL4 tumor-bearing mice injected or not with clodronate were determined by the quantification of bioluminescence intensity. E, number of EL4-luc2 cells in peritoneum of EL4 tumor-bearing mice treated or not with IL-13 or clodronate from day 3 post-tumor injection. *p < 0.05 and **p < 0.01 compared to respective macrophages harvested from untreated mice, IL-13-treated EL4 tumor-bearing mice without clodronate or untreated mice (NaCl) and, #p < 0.05 and ##p < 0.01 compared to respective transferred macrophages harvested from IL-13-treated mice or IL-13-treated EL4-tumor bearing mice. P values were determined using Bonferroni-Dunnett method.

Supplementary Figure 8. IL-13 administration to EL4 tumor bearing mice did not impact the tumor adaptive immunity. Number of immune cells infiltrated in peritoneal cavity of untreated and IL-13-treated EL4 tumor-bearing mice at day 12 post-injection by flow cytometry.