Enantioselective Functionalization of Allylic C-H Bonds Following a Strategy of Functionalization and Diversification

Ankit Sharma and John F. Hartwig

Department of Chemistry, University of California, Berkeley, California, 94720, United States E-mail: jhartwig@berkeley.edu

Supporting Information

Table of Contents

General Experimental Details	2
Equipment and methods Solvents and reagents	2 2
General procedure (I): Sequential C-H functionalization reactions	3
General procedure II: Hydroboration and Vinylation of 3	3
General procedure III: Hydroboration and Alkylation of 3	3
Procedures and spectral data for isolated products	4
Reference	19
Spectral Data of Isolated Compounds	20
HPLC Data	63

General Experimental Details

Equipment and methods

All air-sensitive manipulations were conducted in a nitrogen-filled glovebox or by standard Schlenk technique under nitrogen. All glassware was heated in an oven and cooled under an inert atmosphere prior to use.

NMR spectra were acquired on 400 MHz, 500 MHz, or 600 MHz Bruker instruments at the University of California. NMR spectra were processed with MestReNova 5.0 (Mestrelab Research SL). Chemical shifts are reported in ppm and referenced to residual solvent peaks (CHCl₃ in CDCl₃: 7.26 ppm for ¹H and 77.36 ppm for ¹³C). Coupling constants are reported in hertz. HPLC analyses were conducted on a Waters chromatography system (1525 binary pump, 717+ autosampler, 2487 dual wavelength detector) with using chiral stationary columns (0.46 cm x 25 cm) from Daicel. Optical rotations were measured on a Perkin Elmer 241 Automatic Polarimeter. High-resolution mass spectra were obtained via the Micro-Mass/Analytical Facility operated by the College of Chemistry, University of California, Berkeley. GC analyses were obtained on an Agilent 6890 GC equipped with an HP- 5 column (25 m x 0.20 mm ID x 0.33 m film) and an FID detector.

Solvents and reagents

Substrate alkenes, dodacane and *tert*-butyl perbenzoate were purchased from Sigma-Aldrich and used without further purification unless mentioned otherwise. 2-(But-3-en-1-yl)-2-methyl-1,3-dioxolane,¹ (but-3-en-1-yloxy)(*tert*-butyl)dimethylsilane,² but-3-en-1-yl benzoate, 2-(but-3-en-1-yl)isoindoline-1,3-dione,³ 1-(hept-6-en-1-ylsulfonyl)-4-methylbenzene⁴ and *N*,*N*-diethylundec-10-enamide⁴ were prepared according to reported procedures. Enantioenriched alkenes were derived from commercially available glycidol (ee 98%) following reported procedures.⁵ Pd(OAc)₂ and Ir(COD)Cl]₂ were obtained from Johnson-Matthey and used without further purification. Phosphoramidite ligands (L9 and L10)⁶ and iridium complexes ([Ir(COD)(κ 2-L9)(ethylene)] (1) and [Ir(COD)(κ 2-L10)(ethylene)] (11))⁷ were prepared according to literature procedures. DCM, toluene and THF were degassed by purging with argon for 15 minutes and dried with a solvent purification system containing a one-meter column of activated alumina.

L9: Ar= C₆H₅ **L10**: Ar 2-OMe-C₆H₄

General procedure (I): Sequential C-H functionalization reactions

To a dry 4 ml vial containing a magnetic stirbar, Pd(OAc)₂ (3.3 mg, 5 mol%) and L5 (3.0 mg, 5.5 mol%) were added, followed by 25.0 μ L of DCM. The reaction mixture was stirred for 15 min at room temperature. The solvent was removed under vacuum, and dodecane (25.0 μ L) and alkene (0.6 or 0.3 mmol) were added, followed by *tert*-butyl perbenzoate (58.27 mg, 0.3 mmol). The vial was sealed with a cap containing a PTFE septum and then heated at 65 or 80 °C (as mentioned in Chart 1, 2 and 3) for 6-8 h (monitored by ¹H-NMR for consumption of oxidant). The vial was kept at high vacuum for 3-4 h to remove volatile materials and brought into a glove box. The reaction mixture was dissolved in 0.5 ml of dry toluene. To the resulting solution K₃PO₄ (95.5 mg, 0.45 mmol) and the aniline (2.0 mmol) were added, followed by solution of iridium catalyst 1 (13.0 mg, 5 mol%) in 0.5 ml of dry toluene. The resulting reaction mixture was stirred at 25 °C until the linear benzoyl ester was fully consumed, as determined by GC or TLC. The crude reaction mixture was then treated with 5 ml of EtOAc and extracted with brine. The solvent was evaporated from the organic layer, and the product was purified by flash column chromatography on silica gel eluting with a mixture of hexane and ethyl acetate.

General procedure II: Hydroboration and Vinylation of 3

To a dry 4-mL vial equipped with a magnetic stirring bar in the glove box, alkene **3** (0.5 mmol), followed by a solution of 9-BBN (0.5 M solution in THF, 1.2 ml) were added. The mixture was stirred at room temperature (20 °C) for 10 h to give a solution of B-alkyl-9-BBN. To above solution, $K_3PO_4 \cdot H_2O$ (230.3 mg, 1.0 mmol) was added, and the heterogeneous mixture was stirred for 5 min. Vinyl bromide (1.0 M solution in THF, 1.5 ml), followed by Pd(dppf)Cl₂ (5 mol%, 0.025 mmol) in DMF (2.5 ml), were added. The reaction was sealed with a cap containing a PTFE septum and then heated at 50 °C for 6-8 h. The crude reaction mixture was then treated with 5 mL of EtOAc and extracted with water, followed by a saturated CuSO₄ solution (in water) to remove the remaining DMF. The solvent was evaporated from the organic layer, and the product was purified by flash column chromatography on silica gel eluting with a mixture of hexane and ethyl acetate.

General procedure III: Hydroboration and Alkylation of 3

To a dry 4 mL vial equipped with a magnetic stirring bar in the glove box, an alkene **3** (0.5 mmol), followed by a solution of 9-BBN (0.5 M solution in THF, 1.2 ml), were added. The mixture was allowed to stir at room temperature (20 °C) for 10 h. To the above solution, $K_3PO_4 \cdot H_2O$ (230.3 mg, 1.0 mmol) was added and stirred for 5 min. In another dry 4 ml vial equipped with a magnetic stirring bar in the glove box, Pd(OAc)₂ (9.0 mg, 0.040 mmol), PCy₃ (22.4 mg, 0.080 mmol) and 0.5 ml of THF were added. After 15 min of stirring, this solution was added to the above B-alkyl-9-BBN solution, followed by *n*-bromo-1-alkene (0.3 mmol). The resulting heterogeneous reaction mixture was sealed and stirred vigorously at room temperature for 24 h. The crude mixture was diluted with Et₂O, filtered through silica gel, concentrated, and then purified by flash column chromatography on silica gel eluting with a mixture of hexane and ethyl acetate.

Procedures and spectral data for isolated products

N-(dec-1-en-3-yl)aniline (3a)

Ph_\NH

Prepared according to the general procedure (I) using (*R*, *R*, *R*)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 99:1) to give **3a** as an oil in 58% yield (40.2 mg). The enantiomeric excess was

determined by HPLC analysis (254 nm, 25 °C) t_R 20.18 min (major); t_R 23.78 min (minor) [(Chiralpak OD-H) hexane/*i*-PrOH, 99.9:0.1, 0.5 mL/min] to be 89%. ¹H NMR (600 MHz, CDCl₃) δ 7.16–7.13 (m, 2H), 6.69 – 6.60 (m, 1H), 6.59 (d, J = 7.7 Hz, 2H), 5.73 (ddd, J = 16.8, 10.3, 6.6 Hz, 1H), 5.20 (d, J = 16.8 Hz, 1H), 5.11 (d, J = 10.3 Hz, 1H), 3.79 (m, 1H), 3.63 (b, 1H), 1.72–1.48 (m, 2H), 1.47–1.17 (m, 10H), 0.88 (t, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.0, 140.6, 129.4(2C), 117.4, 115.3, 113.6(2C), 56.3, 36.2, 32.2, 29.9, 29.6, 26.3, 23.0, 14.4. HRMS (ESI) Calcd. for C₁₆H₂₅N ([M+H]⁺): 232.2060. Found: 232.2058.

N-(4-methylpent-1-en-3-yl)aniline (3b)

Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 99:1) to give **3b** as an oil in 52% yield (27.3 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 19.24 min (major); t_R 20.79 min (minor) [(Chiralpak OD-H) hexane/*i*-PrOH,

99.9:0.1, 0.5 mL/min] to be 90%. ¹H NMR (600 MHz, CDCl₃) δ 7.28–7.2 (m, 2H), 6.65 (t, 1H, *J* = 7.3 Hz), 6.6 (d, 2H, *J* = 8.0 Hz), 5.72 (ddd, 1H, *J* = 17.2, 10.3, 6.3 Hz), 5.19 (d, 1H, *J* = 17.1 Hz), 5.16 (d, 1H, *J* = 10.2 Hz), 3.71 (br, 1H), 3.65 (t, 1H, *J* = 5.9 Hz), 1.87 (qqd, 1H, *J* = 6.8, 6.8, 5.7 Hz). 0.99 (d, 3H, *J* = 6.8 Hz), 0.96 (d, 3H, *J* = 6.8 Hz); ¹³C NMR (151 MHz, CDCl₃) 147.9, 137.9, 129.1, 117.1, 116.0, 113.4, 61.5, 32.5, 18.8, 18.5. The data match those reported previously.⁸

N-(1-cyclohexylallyl)aniline (3c)

Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 99:1) to give **3c** as an oil in 68% yield (40.2 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 7.14 min (minor); t_R 8.79 min (major) [(Chiralpak AD-H) hexane/*i*-

PrOH, 99.9:0.1, 1.0 mL/min] to be 92%. ¹H NMR (600 MHz, CDCl₃) δ 7.16–7.11 (m, 2H), 6.68–6.60 (m, 1H), 6.59 (d, *J* = 7.9 Hz, 2H), 5.72 (ddd, *J* = 16.9, 10.2, 6.4 Hz, 1H), 5.28–5.05 (m, 2H), 3.69 (br, 1H), 3.68–3.6 (m, *J* = 5.7 Hz, 1H), 1.92–1.63 (m, 5H), 1.55–1.45 (m, 1H), 1.31–1.02 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 148.3, 138.7, 129.4(2C), 117.3, 116.1, 113.6(2C), 61.3, 43.1, 29.8, 29.7, 26.9, 26.7, 26.6. The data match those reported previously.⁸

N-(1-phenylbut-3-en-2-yl)aniline (3d)

N-(1-(2-methyl-1,3-dioxolan-2-yl)but-3-en-2-yl)aniline (3e)

Prepared according to the general procedure (I) using (*R*, *R*, *R*)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **3e** as an oil in 70% yield (49.0 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 37.61 min (minor); t_R 40.48 min (major) [(Chiralpak OJ-H) hexane/*i*-PrOH, 99.9:0.1, 0.5 mL/min] to be 95%. ¹H NMR (600 MHz, CDCl₃) δ 7.20–7.07 (m, 2H), 6.67 (t, *J* = 7.3 Hz, 1H), 6.66–6.57 (m, 2H), 5.81 (ddd, *J* = 17.1, 10.3, 5.4 Hz, 1H), 5.28 (d, *J* = 17.1 Hz, 1H), 5.10 (d, *J* = 10.3 Hz, 1H), 4.69 (br, 1H), 4.09–3.76 (m, 5H), 2.01–1.88 (m, 2H), 1.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.5, 141.0, 129.3(2C), 117.4, 114.8, 113.7(2C), 109.9, 65.4, 64.7, 53.6, 44.2, 24.8. HRMS (ESI) Calcd. for C₁₄H₁₉NO₂ ([M+H]⁺): 234.1489. Found: 234.1486.

N-(6-chlorohex-1-en-3-yl)aniline (3f)

Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 99:1) to give **3f** as an oil in 65% yield (40.9 mg). The enantiomeric excess was determined by HPLC

analysis (254 nm, 25 °C) t_R 9.47 min (major); t_R 9.95 min (minor) [(Chiralpak AD-H) hexane/*i*-PrOH, 99.9:0.1, 0.5 mL/min] to be 88%. ¹H NMR (600 MHz, CDCl₃) δ 7.21 (dd, *J* = 8.5, 7.4 Hz, 2H), 6.66 (t, *J* = 7.3 Hz, 1H), 6.60 (d, *J* = 8.5 Hz, 2H), 5.82 (ddd, *J* = 17.0, 10.2, 5.2 Hz, 1H), 5.27–4.90 (m, 2H), 4.27–4.13 (m, 1H), 3.58–3.41 (m, 1H), 3.28–3.22(m, 1H), 2.17–1.90 (m, 3H), 1.86–1.78 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 147.8, 139.6, 129.3(2C), 115.9, 114.8, 112.4(2C), 61.2, 48.9, 32.9, 23.5. HRMS (ESI) Calcd. for C₁₂H₁₆ClN ([M+H]⁺): 167.1067. Found: 167.1072.

N-(1-((*tert*-butyldimethylsilyl)oxy)but-3-en-2-yl)aniline(3g)

Ph_NH TBSO Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 99:1) to give 3g as an oil in 69% yield (57.4 mg). The enantiomeric excess was determined by HPLC

analysis (254 nm, 25 °C) t_R 12.92 min (major); t_R 15.72 min (minor) [(Chiralpak OD-H)

hexane/*i*-PrOH, 99.9:0.1, 0.5 mL/min] to be 97%. ¹H NMR (600 MHz, CDCl₃) δ 7.16 (dd, J = 8.5, 7.4 Hz, 2H), 6.70 (t, J = 7.3 Hz, 1H), 6.66–6.63 (m, 2H), 5.92–5.72 (m, 1H), 5.32 (dd, J = 17.3, 1.4 Hz, 1H), 5.20 (dd, J = 12.5, 1.4 Hz, 1H), 4.21 (br, 1H), 3.89 (br, 1H), 3.76 (dd, J = 9.9, 4.5 Hz, 1H), 3.65 (dd, J = 9.9, 6.0 Hz, 1H), 0.91 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.2, 138.0, 129.4, 117.9(2C), 116.9, 114.2(2C), 66.0, 58.1, 26.2(3C), 18.6, -4.9, -5.0. HRMS (ESI) Calcd. for C₁₆H₂₇NOSi ([M+H]⁺): 278.1935. Found: 278.1934.

2-(phenylamino)but-3-en-1-yl benzoate (3h)

Prepared according to the general procedure (I) using (*R*, *R*, *R*)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **3h** as an oil in 56% yield (44.9 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 13.8 min (major); t_R 14.6 min (minor) [(Chiralpak OD-H) hexane/*i*-PrOH, 90:10, 0.6 mL/min] to be 90%. ¹H NMR (600 MHz, CDCl₃) δ 8.02 (dd, *J* = 8.1, 1.0 Hz, 2H), 7.64 – 7.52 (m, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.18 (dd, *J* = 8.5, 7.4 Hz, 2H), 6.80–6.61 (m, 3H), 5.91 (ddd, *J* = 17.2, 10.4, 5.5 Hz, 1H), 5.44 (dd, *J* = 9.9, 8.6 Hz, 1H), 5.30 (dd, *J* = 10.4, 1.2 Hz, 1H), 4.50 (dd, *J* = 11.2, 6.6 Hz, 1H), 4.42 (dd, *J* = 11.2, 4.8 Hz, 1H), 4.33 (br, 1H), 4.04 (br, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 167.0, 147.3, 136.2, 133.5, 130.1, 130.0(2C), 129.6(2C), 128.8(2C), 118.2, 117.9, 113.9(2C), 66.9, 55.5. HRMS (ESI) Calcd. for C₁₇H₁₇NO₂ ([M+H]⁺): 268.1332. Found: 268.1332.

2-(2-(phenylamino)but-3-en-1-yl)isoindoline-1,3-dione (3i)

Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **3i** as an oil in 59% yield (51.7 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 23.20 min (minor); t_R 26.91

min (major) [(Chiralpak AD-H) hexane/*i*-PrOH, 90:10, 0.5 mL/min] to be 90%. ¹H NMR (600 MHz, CDCl₃) δ 7.83 (dd, J = 5.4, 3.1 Hz, 2H), 7.71 (dd, J = 5.4, 3.1 Hz, 2H), 7.09 (dd, J = 8.4, 7.4 Hz, 2H), 6.65–6.55 (m, 2H), 5.90–5.77 (m, 1H), 5.36 (d, J = 17.1 Hz, 1H), 5.23 (d, J = 10.3 Hz, 1H), 4.26 (br, 2H), 3.92 – 3.81 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 169.1, 147.2, 136.5, 134.4, 132.2, 129.4, 123.7, 117.9, 117.8, 113.6, 55.9, 42.3. HRMS (ESI) Calcd. for C₁₈H₁₆N₂O₂ ([M+H]⁺): 293.1285. Found: 293.1284.

N-(7-tosylhept-1-en-3-yl)aniline (3j)

Prepared according to the general procedure (I) using (*R*, *R*, *R*)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 90:10) to give **3j** as an oil in 57% yield (58.7 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 26.14 min (minor); t_R 29.86 min (major) [(Chiralpak AD-H) hexane/*i*-PrOH, 90:10, 1.0 mL/min] to be 89%. ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, *J* = 8.2 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.18 (t, *J* = 7.9 Hz, 2H),

6.72 (t, J = 7.3 Hz, 1H), 6.60 (d, J = 7.9 Hz, 2H), 5.72 (ddd, J = 16.8, 10.3, 6.2 Hz, 1H),

5.21 (d, J = 17.2 Hz, 1H), 5.15 (d, J = 10.3 Hz, 1H), 3.80 (q, J = 6.0 Hz, 1H), 3.62 (br, 1H), 3.18–2.99 (m, 2H), 2.49 (s, 3H), 1.90–1.65 (m, 2H), 1.69–1.44 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 147.6, 145.0, 139.9, 136.5, 130.2(2C), 129.5(2C), 128.4(2C), 117.7, 115.8, 113.7(2C), 56.5, 55.8, 35.4, 24.9, 23.0, 22.0. HRMS (ESI) Calcd. for C₂₀H₂₅NO₂S ([M+H]⁺): 344.1679. Found: 344.1679.

Methyl 4-(phenylamino)hex-5-enoate (3k)

Ph_NH MeO₂C Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **3k** as an oil in 59% yield (38.8 mg). The enantiomeric excess was determined by HPLC

analysis (254 nm, 25 °C) t_R 13.57 min (major); t_R 21.36 min (minor) [(Chiralpak OD-H) hexane/*i*-PrOH, 90:10, 1.0 mL/min] to be 88%. ¹H NMR (600 MHz, CDCl₃) δ 7.18–7.12 (m, 2H), 6.71–6.66 (m, 1H), 6.60 (d, J = 7.9 Hz, 2H), 5.73 (ddd, J = 16.7, 10.3, 6.1 Hz, 1H), 5.23 (d, J = 17.2 Hz, 1H), 5.15 (d, J = 10.3 Hz, 1H), 3.91–3.84 (m, 1H), 3.72 (br, 1H), 3.67 (s, 3H), 2.47 (dd, J = 7.3, 6.3 Hz, 2H), 1.94 (q, J = 7.1 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 174.3, 147.6, 139.5, 129.5(2C), 117.8, 116.2, 113.7(2C), 55.8, 52.0, 31.0, 30.7. HRMS (ESI) Calcd. for C₁₃H₁₇NO₂ ([M+H]⁺): 220.1332. Found: 220.1331.

N,*N*-diethyl-9-(phenylamino)undec-10-enamide (3l)

Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **31** as an oil in 52% yield (51.5 mg). The enantiomeric excess was

determined by HPLC analysis (254 nm, 25 °C) t_R 25.87 min (major); t_R 39.04 min (minor) [(Chiralpak OD-H) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 87%. ¹H NMR (600 MHz, CDCl₃) δ 7.14 (t, J = 7.8 Hz, 2H), 6.66 (t, J = 7.3 Hz, 1H), 6.59 (d, J = 7.9 Hz, 2H), 5.76–5.66 (m, 1H), 5.19 (d, J = 17.2 Hz, 1H), 5.10 (d, J = 10.3 Hz, 1H), 3.78 (br, 1H), 3.65 (br, 1H), 3.37 (q, J = 7.1 Hz, 2H), 3.29 (q, J = 7.1 Hz, 2H), 2.27 (t, J = 7.6 Hz, 2H), 1.69–1.52 (m, 4H), 1.45–1.26 (m, 8H), 1.16 (t, J = 7.1 Hz, 3H), 1.10 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.6, 148.0, 140.5, 129.4, 117.4, 115.3, 113.6, 56.3, 42.3, 40.4, 36.2, 33.5, 29.8, 29.7, 26.2, 25.8, 14.8, 13.5. HRMS (ESI) Calcd. for C₂₁H₃₄N₂O ([M+H]⁺): 331.2744. Found: 331.2744.

N-(1-phenylallyl)aniline (3m)

Prepared according to the general procedure (I) using (*R*, *R*, *R*)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **3m** as an oil in 76% yield (47.7 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 22.3 min (minor); t_R 25.9 min (major) [(Chiralpak

OD-H) hexane/*i*-PrOH, 99.75:0.25, 0.6 mL/min] to be 93%. The data match those reported previously.⁸

N-(1-(4-methoxyphenyl)allyl)aniline (3n)

Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **3n** as an oil in 81% yield (58.1 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 14.84 min (major); t_R 16.50 min

(minor) [(Chiralpak OD-H) hexane/*i*-PrOH, 90:10, 0.5 mL/min] to be 90%. The data match those reported previously.⁸

N-(1-(4-fluorophenyl)allyl)aniline(30)

Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **30** as an oil in 77% yield (52.5 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 14.45 min (major); t_R 15.17 min (minor)

[(Chiralpak OD-H) hexane/*i*-PrOH, 90:10, 0.5 mL/min] to be 95%. ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.36 (m, 2H), 7.24–7.14 (m, 2H), 7.12–7.04 (m, 2H), 6.76 (t, *J* = 7.3 Hz, 1H), 6.67–6.55 (m, 2H), 6.07 (ddd, *J* = 17.0, 10.2, 5.9 Hz, 1H), 5.37–5.22 (m, 2H), 4.97 (d, *J* = 5.8 Hz, 1H), 4.06 (br, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.3, 139.3, 137.9, 129.5, 129.1, 129.0, 118.1, 116.7, 116.0, 115.8, 113.9, 60.5. HRMS (ESI) Calcd. for C₁₅H₁₄FN ([M+H]⁺): 228.1183 Found: 228.1182.

N-((3*R*,5*R*)-6-((4-methoxybenzyl)oxy)-5-(methoxymethoxy)hex-1-en-3-yl)aniline (3p)

O O HN PMBO Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 80:20) to give **5c** as an oil in 57% yield (63.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, J = 8.2 Hz, 2H), 7.13 (t, J = 7.8 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H),

6.66 (t, J = 7.2 Hz, 1H), 6.54 (d, J = 7.9 Hz, 2H), 5.84 – 5.65 (m, 1H), 5.23 (d, J = 17.2 Hz, 1H), 5.13 (d, J = 10.4 Hz, 1H), 4.76 (d, J = 6.8 Hz, 1H), 4.68 (d, J = 6.9 Hz, 1H), 4.51 (d, J = 11.7 Hz, 1H), 4.44 (d, J = 11.7 Hz, 1H), 4.03 – 3.91 (m, 2H), 3.87 (dq, J = 9.6, 4.8 Hz, 1H), 3.81 (s, 3H), 3.50 (ddd, J = 20.5, 10.0, 4.9 Hz, 2H), 3.39 (s, 3H), 1.94 – 1.86 (m, 1H), 1.87 – 1.80 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 159.6, 147.8, 140.1, 130.5, 129.7(2C), 129.4(2C), 117.5, 115.8, 114.2(2C), 113.7(2C), 96.8, 75.1, 73.3, 72.3, 56.1, 55.6, 53.8, 38.5. HRMS (ESI) Calcd. For C₂₂H₂₉NO₄ ([M+H]⁺): 372.2169 Found: 372.2172.

N-benzyl-1-phenylprop-2-en-1-amine (3q)

Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **3p** as an oil in 60% yield (40.2 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 31.1 min (major); t_R 35.9 min (minor) [(Chiralpak OJ-

H) hexane/*i*-PrOH, 95:5, 0.5 mL/min] to be 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.32 (m, 4H), 7.30-7.24 (m, 1H), 7.17-7.11 (m, 2H), 6.70 (t, 1H, J = 7.3 Hz), 6.60 (d, 2H,

J = 7.9 Hz), 6.04 (ddd, 1H, J = 17.1, 10.2, 5.9 Hz), 5.28 (d, 1H, J = 17.1 Hz), 5.22 (d, 1H, J = 10.2 Hz), 4.93 (d, 1H, J = 5.8 Hz), 4.1 (br, 1H) ¹³C NMR (101 MHz, CDCl₃) δ 147.2, 141.9, 139.1, 129.1, 128.7, 127.4, 127.1, 117.6, 116.0, 113.5, 60.8. The data match those reported previously.⁹

N-benzyl-1-((*tert*-butyldimethylsilyl)oxy)but-3-en-2-amine (3r)

Bn Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 98:2) to give **3q** as an oil in 51% yield (43.7 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 28.5 min (major); t_R 29.0 min (minor) [(Chiralpak OJ-H) hexane/*i*-PrOH, 95:5, 0.5 mL/min] to be 89%. ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.33 (m, 3H), 7.30–7.25 (m, 2H), 5.69 (ddd, J = 17.8, 10.2, 7.9 Hz, 1H), 5.37–5.15 (m, 2H), 3.91 (d, J = 13.5 Hz, 1H), 3.65 (dd, J = 9.8, 4.2 Hz, 1H), 3.59–3.52 (m, 1H), 3.25 (td, J = 8.1, 4.3 Hz, 1H), 0.92 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 138.2, 128.7(2C), 128.4(2C), 127.1, 118.1, 66.5, 62.8, 51.4, 26.2(3C), 18.6, -5.0, -5.1. HRMS (ESI) Calcd. for C₁₇H₂₉NOSi ([M+H]⁺): 292.2091. Found: 292.2090.

1-((*tert*-butyldimethylsilyl)oxy)-*N*-(thiophen-2-ylmethyl)but-3-en-2-amine (3s)

S HN TBSO Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 98:2) to give **3r** as an oil in 55% yield (47.3 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 25.3 min (major); t_R 26.2 min (minor) [(Chiralpak OD-H) hexane/*i*-PrOH, 95:5, 0.5 mL/min] to be 90%. ¹H

NMR (400 MHz, CDCl₃) δ 7.19 (dd, J = 5.0, 1.0 Hz, 1H), 6.94 (dd, J = 5.0, 3.5 Hz, 1H), 6.91 (d, J = 2.6 Hz, 1H), 5.64 (ddd, J = 18.0, 10.2, 8.0 Hz, 1H), 5.30–5.23 (m, 1H), 5.20 (dd, J = 10.3, 1.2 Hz, 1H), 4.03 (d, J = 14.3 Hz, 1H), 3.88 (d, J = 14.3 Hz, 1H), 3.61 (dd, J = 9.8, 4.2 Hz, 1H), 3.51 (dd, J = 9.8, 8.3 Hz, 1H), 3.26 (td, J = 8.0, 4.2 Hz, 1H), 0.88 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 137.9, 126.9, 125.0, 124.4, 118.3, 66.5, 62.5, 45.9, 26.2(3C), 18.6, -5.0, -5.1. HRMS (ESI) Calcd. for C₁₅H₂₇NOSSi ([M+H]⁺): 298.1655. Found: 298.1653.

1-(1-((*tert*-butyldimethylsilyl)oxy)but-3-en-2-yl)-1*H*-benzo[*d*]imidazole (3t)

Prepared according to the modified general procedure (I) using benzimidazole as nucleophile and (R, R, R)-1 as catalyst. The reaction mixture obtained after oxidation step was brought inside the glove box and dissolved in 0.5 ml of THF followed by filtered through a 30 x 6 mm plug of silica gel (in a 9 mm pipette) and collected in another 4 ml

vial. The silica gel was washed with 1.0 mL THF. The resulting THF solution was used for the next step. The crude mixture obtained after completion of second step, was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **3s** as an oil in 55% yield (47.2 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 8.3 min (major); t_R 9.2 min (minor) [(Chiralpak AD-H) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 88%. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.85–7.74 (m, 1H), 7.43–7.35 (m, 1H), 7.31–7.22 (m, 2H), 6.32–6.03 (m, 1H), 5.37 (d, J = 10.6 Hz, 1H), 5.28–5.17 (m, 1H), 4.98 (dd, J = 10.7, 5.6 Hz, 1H), 4.18–4.04 (m, 2H), 0.80 (s, 9H), -0.07 (s, 3H), -0.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 142.8, 133.9, 133.5, 122.9, 122.4, 120.8, 119.3, 110.7, 64.7, 60.2, 26.0(3C), 18.4, -5.3, -5.4. HRMS (ESI) Calcd. for C₁₇H₂₆N₂OSi ([M+H]⁺): 303.1887. Found: 303.1885.

2-(1-((*tert*-butyldimethylsilyl)oxy)but-3-en-2-yl)isoindoline-1,3-dione (3u)

Prepared according to the general procedure (I) using potassium phthalimide as nucleophile and (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **3t** as an oil in 57% yield (47.2 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 27.3 min (major); t_R 28.9 min (minor) [(Chiralpak OJ-H)

hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 88%. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.4, 3.0 Hz, 2H), 6.17 (ddd, *J* = 17.5, 10.4, 7.4 Hz, 1H), 5.30 (d, *J* = 17.3 Hz, 1H), 5.25 (d, *J* = 10.4 Hz, 1H), 4.95–4.86 (m, 1H), 0.74 (s, 9H), -0.00 (s, 3H), -0.07 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.6(2C), 134.2(2C), 132.7, 132.3, 123.5(2C), 119.3, 62.5, 56.2, 25.9(3C), 18.3, -5.1, -5.3. HRMS (ESI) Calcd. for C₁₈H₂₅NO₃Si ([M-Me]⁺): 316.1369 Found: 316.1369.

tert-butyldimethyl((2-phenoxybut-3-en-1-yl)oxy)silane (3w)

Pho TBSO TBSO TBSO TBSO TBSO Prepared according to the general procedure (I) using sodium phenoxide as nucleophile and (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 99:1) to give **3w** as an oil in 50% yield (45.9 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 9.6 min (major); t_R 10.7 min (minor) [(Chiralpak OD-H) hexane/*i*-PrOH, 99.9:0.1, 0.5 mL/min] to be 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.23 (m, 2H), 6.94–6.90 (m, 3H), 5.89 (ddd, J = 17.2, 10.7, 5.7 Hz, 1H), 5.35 (d, J = 17.4 Hz, 1H), 5.27 (d, J = 10.7 Hz, 1H), 4.73–4.68 (m, 1H), 3.85 (dd, J = 10.7, 6.7 Hz, 1H), 3.76 (dd, J = 10.7, 4.9 Hz, 1H), 0.89 (s, 9H), 0.10 (s, 3H), 0.07 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 135.4, 129.6(2C), 121.1, 118.0, 116.4(2C), 80.1, 66.4, 26.2(3C), 18.7, -4.8, -4.9.

tert-butyldimethyl((2-tosylbut-3-en-1-yl)oxy)silane (3x)

Prepared according to the modified general procedure (I) using sodium *p*-toluenesulfinate as nucleophile and (R, R, R)-1 as catalyst. The reaction mixture obtained after oxidation step was brought into a glove box. The reaction mixture was dissolved in 0.5 ml of dry THF and filtered through a 30 x 6 mm plug of silica gel (in a 9 mm pipette)

and collected in another 4 ml vial. The silica gel was washed with 1.0 mL THF. To the combined resulting solution of THF, K_3PO_4 (95.5 mg, 0.45 mmol) and the sodium *p*-toluenesulfinate (1.5 equiv) were added, followed by solution of iridium catalyst 1 (13.0 mg, 5 mol%) in 0.5 ml of dry THF and the reaction mixture was stirred at 50 °C until the linear benzoyl ester was fully consumed, as determined by GC or TLC. The crude mixture obtained after completion of second step, was purified by flash column

chromatography (hexanes: EtOAc, 97:3) to give **3x** as an oil in 55% yield (56.2 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 9.96 min (minor); t_R 10.72 min (major) [(Chiralpak OD-H) hexane/*i*-PrOH, 99:1, 1 mL/min] to be 90%. ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 5.75 (ddd, J = 17.1, 10.1, 9.3 Hz, 1H), 5.35 (d, J = 9.9 Hz, 1H), 5.19 (d, J = 17.1 Hz, 1H), 4.14 (dd, J = 10.5, 4.3 Hz, 1H), 4.00 (dd, J = 10.5, 7.1 Hz, 1H), 3.72–3.65 (m, 1H), 2.43 (s, 2H), 0.81 (s, 5H), 0.00 (s, 1H), -0.01 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 144.9, 135.7, 129.8(2C), 129.5(2C), 129.0, 124.3, 71.9, 61.0, 26.0(3C), 21.9, 18.5, -5.1, -5.2. HRMS (ESI) Calcd. for C₁₇H₂₈O₃SSi ([M+Na]⁺): 363.1421. Found: 363.1421.

tert-butyl((1-((4-methoxybenzyl)oxy)but-3-en-2-yl)oxy)dimethylsilane (3aa)

Prepared according to the modified general procedure (I) using (R, R)R)-1 as catalyst. The reaction mixture obtained after oxidation step was // brought into a glove box. The reaction mixture was dissolved in 0.5 ml of dry toluene, followed by filtered through a 30 x 6 mm plug of silica

gel (in a 9 mm pipette) and collected in another 4 ml vial. To the resulting solution, K₃PO₄ (95.5 mg, 2 equiv.) and the *tert*-butyldimethylsilanol (2.0 equiv.) were added, followed by solution of iridium catalyst 1 (13.0 mg, 5.0 mol%) and 1-phenyl-propyne (10.0 mol%) in 1.5 ml of dry toluene. The reaction mixture was stirred at 25 °C until the linear benzoyl ester was fully consumed, as determined by GC or TLC. The crude mixture obtained after completion of second step, was purified by flash column chromatography (hexanes:Et₂O, 99:1) to give an oil in 70% yield (67.6 mg). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.26 \text{ (d, } J = 6.6 \text{ Hz}, 2\text{H}), 6.87 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H}), 5.92 - 5.82 \text{ (m,})$ 1H), 5.30 (d, J = 17.2 Hz, 1H), 5.13 (d, J = 10.5 Hz, 1H), 4.49 (s, 2H), 4.31 (d, J = 5.3Hz, 1H), 3.81 (s, 3H), 3.39 (t, J = 4.8 Hz, 2H), 0.90 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.0, 138.5, 135.5, 129.1, 127.5, 114.9, 113.6, 74.6, 72.9, 72.7, 55.2, 25.8, 18.3, -4.7, -4.8. The enantiomeric excess was determined by deprotecting TBS group with TBAF,¹⁰ and protecting the corresponding alcohol with benzoyl chloride to give compound 11 in 98% yield. Data matches with the reported compound.¹¹ HPLC analysis (254 nm, 25 °C) t_R 22.2 min (minor); t_R 28.1 min (major) [(Chiralpak OJ-H) hexane/i-PrOH, 90:10, 1 mL/min] to be 87%.

2-(1-((4-methoxybenzyl)oxy)but-3-en-2-yl)isoindoline-1,3-dione (3bb)

OTBS

PMBO 、

Prepared according to the general procedure (I) using (S, S, S)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 90:10) to give an oil in 62% yield (62.7 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 13.7 min (minor); t_R 18.5 min (major) [(Chiralpak OD-H) hexane/i-PrOH, 90:10, 1.0 mL/min] to be 85%.

¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 5.4, 3.1 Hz, 2H), 7.70 (dd, J = 5.4, 3.0 Hz, 2H), 7.15 (d, J = 8.5 Hz, 2H), 6.78 (d, J = 8.6 Hz, 2H), 6.14 (ddd, J = 17.4, 10.4, 7.2 Hz, 1H), 5.29 (d, J = 17.3 Hz, 1H), 5.24 (d, J = 10.4 Hz, 1H), 5.09 – 5.02 (m, 1H), 4.84 (s, 1H), 4.49 (d, J = 11.7 Hz, 1H), 4.41 (d, J = 11.7 Hz, 1H), 4.08 (t, J = 9.9 Hz, 1H), 3.76 (s, 3H), 3.72 (dd, J = 10.1, 5.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.4, 159.5, 134.2, 132.6, 132.3, 130.3, 129.6, 123.5, 119.3, 114.0, 72.8, 68.9, 55.5, 53.5. HRMS (ESI) Calcd. for C₂₀H₁₉NO₄Si ([M+Na]⁺): 360.1204 Found: 360.1206.

Dimethyl 2-(1-((4-methoxybenzyl)oxy)but-3-en-2-yl)malonate (3cc)

MeO₂C CO₂Me PMBO Prepared according to the general procedure (I) using sodium dimethyl malonate as nucleophile and (R, R, R)-11 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 90:10) to give **3cc** as an oil in 50% yield (48.3 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 28.4 min (minor); t_R 31.6 min (major) [(Chiralpak OJ-H) hexane/*i*-PrOH, 95:5, 1.0 mL/min] to be 88%. ¹H NMR (600 MHz, CDCl₃) δ 7.22 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 5.87 – 5.79 (m, 1H), 5.16 (d, J = 17.2 Hz, 1H), 5.11 (d, J = 10.4 Hz, 1H), 4.40 (s, 2H), 3.80 (s, 3H), 3.75 (s, 1H), 3.68 (d, J = 8.3 Hz, 1H), 3.67 (s, 3H), 3.65 (s, 3H), 3.51 (ddd, J = 16.3, 9.5, 6.0 Hz, 2H), 3.16 – 3.10 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 169.1, 169.0, 159.5, 135.8, 130.5, 129.6, 118.4, 114.0, 73.1, 71.1, 55.6, 53.6, 52.7, 52.6, 44.3, 41.5. HRMS (ESI) Calcd. for C₁₇H₂₂O₆ ([M+Na]⁺): 345.1309 Found: 345.1309.

1-methoxy-4-(((2-tosylbut-3-en-1-yl)oxy)methyl)benzene (3dd)

0:0

PMBO 、

Prepared according to the modified general procedure (I) using (S, S, S)-1 as catalyst. The reaction mixture obtained after oxidation step was brought into a glove box. The reaction mixture was dissolved in 0.5 ml of dry THF and filtered through a 30 x 6

mm plug of silica gel (in a 9 mm pipette) and collected in another 4 ml vial. The silica gel was washed with 1.0 mL THF. To the combined resulting solution of THF, K₃PO₄ (95.5 mg, 0.45 mmol) and the sodium *p*-toluenesulfinate (1.5 equiv) were added, followed by solution of iridium catalyst 1 (13.0 mg, 5 mol%) in 0.5 ml of dry THF and the reaction mixture was stirred at 50 °C until the linear benzoyl ester was fully consumed, as determined by GC or TLC. The crude mixture obtained after completion of second step, was purified by flash column chromatography (hexanes:EtOAc, 90:10) to give an oil in 53% yield (55.1 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 37.1 min (minor); t_R 38.2 min (major) [(Chiralpak OD-H) hexane/*i*-PrOH, 90:10, 0.5 mL/min] to be 90%. ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.15 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 5.84 – 5.70 (m, 1H), 5.37 (d, *J* = 10.2 Hz, 1H), 5.19 (d, *J* = 17.1 Hz, 1H), 4.40 (s, 2H), 3.95 (dd, *J* = 9.0, 3.6 Hz, 1H), 3.87 – 3.75 (m, 5H), 2.43 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.6, 145.0, 135.4, 129.7, 129.7, 129.5, 128.7, 124.4, 114.1, 73.3, 69.7, 67.1, 55.6, 22.0. HRMS (ESI) Calcd. for C₁₉H₂₂O₄S ([M+Na]⁺): 369.1131. Found: 369.1131.

(R)-methyl 4-(1,3-dioxoisoindolin-2-yl)hex-5-enoate

Prepared according to the general procedure (I) using (*R*, *R*, *R*)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 90:10) to give an oil in 55% yield (45.1 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 14.1 min (major); t_R 14.9 min (minor) [(Chiralpak OD-H) hexane/*i*-PrOH, 90:10, 0.4 mL/min] to be 90%. ¹H NMR (600 MHz, CDCl₃) δ 7.81 (dd, *J* = 5.4, 3.1 Hz,

2H), 7.70 (dd, J = 5.4, 3.0 Hz, 2H), 6.20 (ddd, J = 17.6, 10.2, 7.7 Hz, 1H), 5.25 (d, J = 17.2 Hz, 1H), 5.19 (d, J = 10.2 Hz, 1H), 4.77 – 4.71 (m, 1H), 3.61 (s, 3H), 2.45 – 2.21 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 173.2, 168.2(2C), 135.2(2C), 134.3(2C), 132.1, 123.6(3C), 118.5, 53.7, 52.0, 31.3, 27.5. HRMS (ESI) Calcd. for C₁₅H₁₅NO₄ ([M+H⁺): 273.1007 Found: 273.1001.

(*R*)-2-iodo-*N*-(oct-1-en-3-yl)aniline

Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 96:4) to give **3y** as an oil in 57% yield (56.3 mg). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 9.1 min (minor); t_R 12.6 min (major)

[(Chiralpak OD-H) hexane/*i*-PrOH, 99:1, 0.5 mL/min] to be 88%. ¹H NMR (600 MHz, CDCl₃) δ 7.66 (dd, J = 7.8, 1.2 Hz, 1H), 7.20 – 7.11 (m, 1H), 6.57 – 6.51 (m, 1H), 6.45 – 6.35 (m, 1H), 5.82 – 5.68 (m, 1H), 5.20 (d, J = 17.2 Hz, 1H), 5.14 (d, J = 10.3 Hz, 1H), 4.22 (s, 1H), 3.91 – 3.76 (m, 1H), 1.71 – 1.63 (m, 2H), 1.53 – 1.39 (m, 2H), 1.39 – 1.29 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 147.0, 139.9, 139.2, 129.5, 118.7, 115.5, 112.0, 86.0, 56.8, 36.1, 32.0, 25.9, 22.9, 14.4.

tert-butyl((1-((4-methoxybenzyl)oxy)hex-5-en-2-yl)oxy)dimethylsilane (6a)

PMBO Prepared according to the general procedure II. The crude mixture was purified by flash column chromatography (hexanes:Et₂O, 98:2) in 85% yield (149 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, *J*= 8.8 Hz, 2H), 6.83 (d, *J*= 8.8 Hz, 2H), 5.81 (ddt, *J*= 16.8, 12.8, 6.4 Hz, 1H), 5.05 (dq, *J*= 17.2, 1.6 Hz, 1H), 4.90-4-86 (m, 1H), 4.45 (s, 2H), 3.81 (s, 4H), 3.38 (dd, *J*= 9.6, 5.6 Hz, 1H), 3.33 (dd, *J*= 9.6, 5.6 Hz, 1H), 2.1 (m, 2H), 1.62-1.58 (m, 1H), 1.56-1.52 (m, 1H), 0.87 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H). Data matches with reported molecule.^{5a}

2-(1-((4-methoxybenzyl)oxy)hex-5-en-2-yl)isoindoline-1,3-dione (6b)

Prepared according to the general procedure II. The crude mixture was purified by flash column chromatography (hexanes:Et₂O, 95:5) in 81% yield (148 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.78 (dd, *J*= 5.0, 3.1 Hz, 2H), 7.65 (dd, *J*= 5.0, 3.1 Hz), 7.14 (d, *J*= 9.0 Hz, 2H), 6.76 (d, *J*= 9.0 Hz, 2H), 5.75 (ddd, *J*= 15.8, 10.0, 7.0 Hz, 1H), 4.96 (dd, *J*= 15.8, 1.5 Hz, 1H), 4.91 (dd, *J*= 10.0, 1.5 Hz, 1H), 4.52 (m, 1H), 4.46 (d, *J*= 12.0 Hz, 1H), 4.35 (d, *J*= 11.5 Hz, 1H),

3.97 (m, 1H), 3.75 (s, 3H), 3.66 (dd, *J*= 10.0, 5.0 Hz, 1H), 2.18 (m, 1H), 2.05 (q, *J*= 6.5 Hz, 2H), 1.77 (m, 1H). Data matches with reported molecule.^{5a}

1-methoxy-4-(((2-tosylhex-5-en-1-yl)oxy)methyl)benzene (6d)

PMBO PMBO

tert-butyl((1-((4-methoxybenzyl)oxy)oct-7-en-2-yl)oxy)dimethylsilane (6e)

PMBO Prepared according to the general procedure III. The crude mixture was purified by flash column chromatography (hexanes:Et₂O, 98:2) in 68% yield (128.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, J = 7.7 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 5.81 (ddq, J = 13.4, 10.2, 6.6 Hz, 1H), 4.99 (ddd, J = 17.1, 3.4, 1.5 Hz, 1H), 4.93 (dd, J = 5.5, 4.6 Hz, 1H), 3.81 (s, 3H), 3.82 – 3.76 (m, 2H), 3.39 – 3.30 (m, 2H), 2.09 – 1.98 (m, 2H), 1.57 – 1.23 (m, 6H), 0.88 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.4, 139.4, 131.0, 129.5, 114.6, 114.1, 74.9, 73.3, 71.8, 55.6, 34.9, 34.1, 29.4, 26.3, 25.1, 18.5, -4.0, -4.4. HRMS (ESI) Calcd. for C₂₂H₃₈O₃Si ([M+Na]⁺): 401. 2486. Found: 401.2484.

tert-butyl((1-((4-methoxybenzyl)oxy)dec-9-en-2-yl)oxy)dimethylsilane (6f)

PMBO Prepared according to the general procedure III. The crude mixture was purified by flash column chromatography (hexanes:Et₂O, 98:2) in 63% yield (128.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, J = 7.4 Hz, 2H), 6.87 (d, J = 8.0 Hz, 2H), 5.86 – 5.76 (m, 1H), 4.99 (d, J = 17.1 Hz, 1H), 4.93 (d, J = 10.2 Hz, 1H), 4.45 (s, 2H), 3.81 (s, 3H), 3.82 – 3.75 (m, 1H), 3.38 – 3.29 (m, 2H), 2.04 (q, J = 6.8 Hz, 2H), 1.56 – 1.17 (m, 10H), 0.88 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.4, 139.5, 131.0, 129.5, 114.5, 114.0, 74.9, 73.3, 71.9, 55.6, 35.1, 34.1, 30.0, 29.4, 29.2, 26.3, 25.5, 18.5, -4.0, -4.4. HRMS (ESI) Calcd. for C₂₄H₄₂O₃Si ([M+Na]⁺): 429.2795. Found: 429.2795.

tert-butyl((1-((4-methoxybenzyl)oxy)undec-10-en-2-yl)oxy)dimethylsilane (6g)

OTBS PMBO Prepared according to the general procedure III. The crude mixture was purified by flash column chromatography (hexanes:Et₂O, 98:2) in 65% yield

(132.5 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 7.8 Hz, 2H), 6.88 (d, J = 8.3 Hz, 2H), 5.81 (td, *J* = 16.7, 6.9 Hz, 1H), 4.99 (d, *J* = 17.1 Hz, 1H), 4.93 (d, *J* = 10.1 Hz, 1H), 4.45 (s, 2H), 3.81 (s, 3H), 3.40 - 3.28 (m, 2H), 2.02 (dt, J = 23.3, 10.1 Hz, 2H), 1.61 -1.25 (m, 12H), 0.88 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.4, 139.6, 131.0, 129.5, 114.4, 114.0, 74.9, 73.3, 71.9, 55.6, 35.1, 34.1, 30.0, 29.8, 29.4, 29.3, 26.3, 25.5, 18.5, -4.0, -4.4. HRMS (ESI) Calcd. for C₂₅H₄₄O₃Si ([M+Na]⁺): 443.2949. Found: 443.2952

N-((3R,5R)-5-((tert-butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)hex-1-en-3-

yl)aniline (7a)

PMBO

V Prepared according to the general procedure I using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 93:7) to give an oil in 68% yield (90.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, J = 9.6 Hz, 2H), 7.13 (t, J = 7.9 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 6.66 (t, J = 7.3 Hz, 1H), 6.55 (d, J = 7.7 Hz, 2H), 5.76 (ddd, J = 16.8, 10.4, 6.1 Hz, 1H), 5.22 (d, J = 17.2 Hz, 1H), 5.12 (d, J = 10.3 Hz, 1H), 4.45 (d, J = 4.0 Hz, 2H), 4.05 - 3.94 (m, 2H), 3.90 (b, 1H), 3.81 (s, 1H), 3.81 (s, 2H), 4.05 - 3.94 (m, 2H), 3.90 (b, 1H), 3.81 (s, 2H), 3.90 (b, 2H), 3.90 (b,3H), 3.42 (dd, J = 9.5, 5.2 Hz, 1H), 3.35 (dd, J = 9.5, 6.3 Hz, 1H), 1.82 (t, J = 6.2 Hz, 2H), 0.90 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.6, 147.7, 140.1, 130.6, 129.6(2C), 129.4(2C), 117.4, 115.6, 114.1(2C), 113.7(2C), 74.4, 73.3, 69.5, 55.6, 52.9, 41.0, 26.3(3C), 18.5, -3.8, -4.3. HRMS (ESI) Calcd. for C₂₆H₃₉NO₃Si ([M+H]⁺): 442.2772 Found: 442.2774.

N-((3S,5R)-5-((tert-butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)hex-1-en-3vl)aniline (7b)

Prepared according to the general procedure using (S, S, S)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 93:7) to give an oil in 65% vield (86.2 mg). III NMTP ((00.2 MIL) = 0.2 MIL) yield (86.2 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, J = 7.6Hz, 2H), 7.12 (t, J = 7.9 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 6.64

(t, J = 7.3 Hz, 1H), 6.53 (d, J = 7.8 Hz, 2H), 5.86 - 5.69 (m, 1H), 5.19 (d, J = 17.2 Hz, 10.00 Hz)1H), 5.08 (d, J = 10.3 Hz, 1H), 4.53 – 4.39 (m, 2H), 4.22 (b, 1H), 4.08 – 4.00 (m, 1H), 3.95 (dt, J = 10.3, 5.2 Hz, 1H), 3.81 (s, 3H), 3.48 (q, J = 7.0 Hz, 2H), 3.44 (dd, J = 9.4)6.7 Hz, 1H), 3.35 (dd, J = 9.4, 6.7 Hz, 1H), 1.84 – 1.77 (m, 2H), 0.89 (s, 9H), 0.02 (s, 3H), -0.01 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.6, 148.1, 140.8, 130.6, 129.7(2C), 129.3(2C), 117.2, 115.0, 114.1(2C), 113.6(2C), 74.2, 73.4, 69.2, 66.2, 55.6, 53.1, 41.2, 26.3(3C), 18.4, -4.0, -4.5. HRMS (ESI) Calcd. for C₂₆H₃₉NO₃Si ([M+H]⁺): 442.2772 Found: 442.2773.

2-((2S,4R)-1-((4-methoxybenzyl)oxy)-4-(phenylamino)hex-5-en-2-yl)isoindoline-1,3dione (7e)

Prepared according to the general procedure using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 70:30) to give an oil in 67% yield (91.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.78 (dd, J = 5.4, 3.1 Hz, 2H), 7.69 (dd, J = 5.4, 3.1 Hz, 2H), 7.12 (d, J = 8.5 Hz,

2H), 7.05 (t, J = 7.9 Hz, 2H), 6.77 (d, J = 8.6 Hz, 2H), 6.61 (t, J = 7.3 Hz, 1H), 6.48 (d, J = 7.8 Hz, 2H), 5.71 (ddd, J = 16.4, 10.4, 5.7 Hz, 1H), 5.16 (d, J = 17.2 Hz, 1H), 5.03 (d, J = 10.4 Hz, 1H), 4.69 (tt, J = 9.9, 5.1 Hz, 1H), 4.44 (d, J = 11.7 Hz, 1H), 4.36 (d, J = 11.7 Hz, 1H), 3.94 (dd, J = 18.6, 9.4 Hz, 2H), 3.76 (s, 3H), 3.66 (dd, J = 9.9, 5.8 Hz, 1H), 2.49 – 2.29 (m, 1H), 2.10 – 1.92 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 169.1(2C), 159.5, 147.2, 139.1, 134.2(2C), 132.2, 130.24, 129.6(2C), 129.4(2C), 123.9(2C), 123.5, 117.8, 116.1, 114.0(2C), 113.8(2C), 72.7, 69.4, 55.6, 53.6, 48.3, 34.5. HRMS (ESI) Calcd. for C₂₈H₂₈N₂O₄ ([M+H]⁺): 457.2122 Found: 457.2123.

2-((3*R*,5*R*)-5-((*tert*-butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)hex-1-en-3-yl)isoindoline-1,3-dione (7c)

Prepared according to the general procedure using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 90:10) to give an oil in 54% yield (80.3 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.81 (dd, J = 5.4, 3.1 Hz, 2H), 7.69 (dd, J = 5.5, 3.0 Hz, 2H), 7.22 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 6.16 (ddd, J = 17.7, 10.2, 7.7 Hz,

1H), 5.25 (d, J = 17.2 Hz, 1H), 5.18 (d, J = 10.3 Hz, 1H), 5.01 (dd, J = 14.4, 7.9 Hz, 1H), 4.49 – 4.35 (m, 2H), 3.88 – 3.81 (m, 1H), 3.80 (s, 3H), 3.46 – 3.29 (m, 2H), 2.49 – 2.34 (m, 1H), 2.02 (ddd, J = 13.8, 8.0, 5.7 Hz, 1H), 0.91 (s, 9H), 0.06 (s, 3H), 0.02 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.25, 159.42, 135.83, 134.19, 132.36, 130.66, 129.57, 123.47, 118.36, 114.03, 74.51, 73.30, 69.31, 55.60, 50.48, 37.72, 26.26(3C), 18.49, -3.72, -4.44. HRMS (ESI) Calcd. for C₂₈H₃₇NO₅Si ([M+Na]⁺): 518.2333 Found: 518.2343.

2-((2S,4S)-1-((4-methoxybenzyl)oxy)-4-tosylhex-5-en-2-yl)isoindoline-1,3-dione (7f)

Prepared according to the modified general procedure (I) using (S, S, S)-1 as catalyst. The reaction mixture obtained after oxidation step was brought inside the glove box and dissolved in 0.5 ml of THF followed by filtered through a 30 x 6 mm plug of silica gel (in a 9 mm pipette) and collected in another 4 ml vial. The silica gel was washed with 1.0 mL

THF. The resulting THF solution was used for the next step. The crude mixture obtained after completion of second step, was purified by flash column chromatography (hexanes:EtOAc, 50:50) to give an oil in 53% yield (82.6 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.79 (dd, J = 5.4, 3.1 Hz, 2H), 7.73 (dd, J = 5.4, 3.0 Hz, 2H), 7.63 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 8.8 Hz, 2H), 7.10 (d, J = 8.5 Hz, 2H), 6.76 (d, J = 8.6 Hz, 2H), 5.66 (dt, J = 17.1, 9.8 Hz, 1H), 5.40 (d, J = 10.2 Hz, 1H), 5.12 (d, J = 17.1 Hz, 1H), 4.50 – 4.38 (m, 2H), 4.34 (d, J = 11.7 Hz, 1H), 3.86 (t, J = 9.3 Hz, 1H), 3.76 (s, 3H), 3.63 (dd, J = 9.9, 6.0 Hz, 1H), 3.44 – 3.33 (m, 1H), 2.90 (ddd, J = 14.0, 11.4, 2.6 Hz, 1H), 2.41 (s, 3H), 1.95 (ddd, J = 14.4, 11.6, 3.1 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 168.5(2C), 159.5, 145.0, 134.4, 132.0, 130.1, 129.8 (2C), 129.6(2C), 129.5(2C), 129.4(2C), 123.7, 114.1, 72.9, 69.3, 67.4, 55.6, 48.7, 27.4, 22.00. HRMS (ESI) Calcd. for C₂₉H₁₉NO₆S ([M+Na]⁺): 542.1608 Found: 542.1618.

4-methoxy-N-((35,55)-6-((4-methoxybenzyl)oxy)-5-tosylhex-1-en-3-yl)aniline (7g)

Prepared according to the general procedure I using (*S*, *S*)-**1** as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 70:30) to give an oil in 60% yield (89.2 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.5 Hz, 2H), 6.83 (d, *J* = 8.6 Hz,

2H), 6.69 (d, J = 8.8 Hz, 2H), 6.37 (d, J = 8.8 Hz, 2H), 5.65 (ddd, J = 16.8, 10.4, 6.1 Hz, 1H), 5.13 (d, J = 17.1 Hz, 1H), 5.08 (d, J = 10.3 Hz, 1H), 4.36 (d, J = 11.5 Hz, 1H), 4.29 (d, J = 11.5 Hz, 1H), 3.88 – 3.82 (m, 1H), 3.81 (s, 3H), 3.72 (s, 3H), 3.57 – 3.48 (m, 1H), 2.44 (s, 3H), 2.23 – 2.11 (m, 1H), 2.02 – 1.93 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 159.8, 152.5, 144.9, 141.5, 139.4, 135.8, 130.0, 130.0, 129.9, 129.8, 129.6 129.3, 116.2, 115.2, 114.1, 73.2, 67.1, 62.1, 56.1, 55.6, 31.9, 30.0, 22.0. HRMS (ESI) Calcd. for C₂₈H₃₄NO₅S ([M+H]⁺): 496.2155 Found: 496.2152.

Dimethyl 2-((2*R*,4*R*)-1-((4-methoxybenzyl)oxy)-4-((4-methoxyphenyl)amino)hex-5-en-2-yl)malonate (7d)

Prepared according to the general procedure using (*R*, *R*, *R*)-**1** as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 80:20) to give an oil in 57% yield (80.6 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.22 (d, *J* = 8.1 Hz, 2H), 6.86 (d, *J* =

8.2 Hz, 2H), 6.73 (d, J = 8.5 Hz, 2H), 6.49 (d, J = 8.5 Hz, 2H), 5.68 (ddd, J = 16.4, 10.2, 5.9 Hz, 1H), 5.17 (d, J = 17.1 Hz, 1H), 5.05 (d, J = 10.2 Hz, 1H), 4.41 (d, J = 11.5 Hz, 1H), 4.34 (d, J = 11.5 Hz, 1H), 3.81 (s, 3H), 3.73 (s, 3H), 3.71 (s, 3H), 3.69 (s, 1H), 3.66 (s, 3H), 3.45 (d, J = 6.0 Hz, 2H), 2.68 (s, 1H), 1.70 – 1.62 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 169.7, 169.7, 159.6, 152.1, 140.8, 130.5, 129.8, 128.7, 128.2, 115.1, 114.6, 114.1, 73.1, 70.0, 56.2, 55.6, 55.2, 53.4, 52.8, 52.7, 36.1, 35.6, 30.0. HRMS (ESI) Calcd. for C₂₆H₃₄NO₇ ([M+H]⁺): 472.2331 Found: 472.2330

N-((*3S*,7*R*)-7-((*tert*-butyldimethylsilyl)oxy)-8-((4-methoxybenzyl)oxy)oct-1-en-3-yl)-4-methoxyaniline (7h)

Prepared according to the general procedure using (S, S, S)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **7h** as an oil in 65% yield (97.4 mg). ¹H NMR (400 MHz, CDCl₃) δ

7.30 – 7.18 (m, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.75 (d, J = 8.9 Hz, 2H), 6.61 – 6.52 (m, 2H), 5.69 (ddd, J = 16.9, 10.3, 6.4 Hz, 1H), 5.17 (d, J = 17.2 Hz, 1H), 5.10 (d, J = 10.3 Hz, 1H), 4.44 (d, J = 1.3 Hz, 2H), 3.89 – 3.64 (m, 8H), 3.34 (qd, J = 9.6, 5.6 Hz, 2H), 1.58 – 1.30 (m, 6H), 0.87 (s, 9H), 0.03 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 152.2, 142.1, 140.8, 130.9, 129.6, 115.5, 115.1, 114.0, 74.7, 73.3, 71.6, 57.3, 56.1, 55.6, 36.3, 34.9, 26.2, 21.9, 18.5, -4.0, -4.4. HRMS (ESI) Calcd. for C₂₉H₄₆NO₄Si ([M+H]⁺): 500.3191 Found: 500.3195

N-((*3S*,*9R*)-9-((*tert*-butyldimethylsilyl)oxy)-10-((4-methoxybenzyl)oxy)dec-1-en-3-yl)-4-methoxyaniline (7i)

Prepared according to the general procedure using (*S*, *S*)-**1** as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **7i** as an oil in 63% yield (99.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.28 (d, *J* = 10.0 Hz, 2H), 6.87

(d, J = 8.3 Hz, 2H), 6.75 (d, J = 8.1 Hz, 2H), 6.57 (d, J = 8.0 Hz, 2H), 5.84 – 5.61 (m, 1H), 5.17 (d, J = 17.1 Hz, 1H), 5.17 (d, J = 10.3 Hz, 1H), 4.45 (s, 2H), 3.90 – 3.69 (m, 8H), 3.4 – 3.2 (m, 2H), 1.5 – 1.2 (m, 8H), 0.84 (s, 9H), 0.04 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 159.4, 139.5, 131.0, 129.5, 114.5, 114.0, 74.9, 73.3, 71.9, 55.6, 35.1, 34.1, 30.0, 29.4, 29.2, 26.3, 25.5, 18.5, -4.0, -4.4. HRMS (ESI) Calcd. for C₃₁H₄₉NO₄Si ([M+Na]⁺): 528.3504 Found: 528.3501.

N-((3S,10*R*)-10-((*tert*-butyldimethylsilyl)oxy)-11-((4-methoxybenzyl)oxy)undec-1-en-3-yl)-4-methoxyaniline (7j)

Prepared according to the general procedure using (*S*, *S*, *S*)-**1** as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **7j** as an oil in 65% yield (105.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 10.2 Hz, 2H), 6.87 (d, *J* = 8.1 Hz, 2H),

6.75 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 8.0 Hz, 2H), 5.84 – 5.61 (m, 1H), 5.17 (d, J = 17.1 Hz, 1H), 5.10 (d, J = 10.3 Hz, 1H), 4.45 (s, 2H), 3.90 – 3.66 (m, 8H), 3.43 – 3.26 (m, 2H), 1.55 – 1.23 (m, 10H), 0.88 (s, 9H), 0.04 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 141.0, 131.0, 129.5, 115.3, 115.2, 114.1, 74.9, 73.3, 71.9, 57.4, 56.2, 55.6, 36.2, 35.1, 30.0, 29.9, 26.3, 26.2, 25.5, 18.5, -4.0, -4.4. HRMS (ESI) Calcd. for C₃₂H₅₂NO₄Si ([M+H]⁺): 542.3660 Found: 542.3663

(((2*R,4S*)-4-(benzyloxy)-1-((4-methoxybenzyl)oxy)hex-5-en-2-yl)oxy)(tert-butyl) dimethylsilane (9)

Prepared according to the modified general procedure (I) using (S, S, S)-1 as catalyst.

The reaction mixture obtained after oxidation step was brought into a glove box. The reaction mixture was dissolved in 0.5 ml of dry toluene and filtered through a 30 x 6 mm plug of silica gel (in

a 9 mm pipette) and collected in another 4 ml vial. The silica gel was washed with 1.0 mL toluene. To the resulting solution, K_3PO_4 (95.5 mg, 2 equiv.) and the benzyl alcohol (2.0 equiv.) were added, followed by solution of iridium catalyst **1** (13.0 mg, 5.0 mol%) and 1-phenyl-propyne (10.0 mol%) in 1.5 ml of dry toluene. The reaction mixture was stirred at 25 °C until the linear benzoyl ester was fully consumed, as determined by GC or TLC. The crude reaction mixture obtained after second step, was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give **9** as an oil in 53% yield (72.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 5H), 7.22 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 5.79 – 5.63 (m, 1H), 5.27 – 5.15 (m, 2H), 4.55 (d, *J* = 11.9 Hz, 1H), 4.41 (s, 2H), 4.31 (d, *J* = 11.9 Hz, 1H), 3.97 – 3.86 (m, 2H), 3.80 (s, 3H), 3.35 (d, *J* = 5.2

Hz, 2H), 1.86 (dt, J = 13.5, 6.7 Hz, 1H), 1.79 – 1.67 (m, 1H), 0.84 (s, 9H), 0.03 (s, 3H), 0.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 139.1, 139.0, 130.9, 129.5, 128.6, 128.1, 127.7, 123.6, 122.9, 117.8, 114.0, 102.1, 73.2, 70.3, 69.2, 55.6, 41.1, 26.3, 18.5, -3.8, -4.4.

(3R,5R)-3-(benzyloxy)-5-((tert-butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy) hexan-1-ol (10)

Si Q QBn PMBO , , , CH₂OH To a dry 4 mL vial equipped with a magnetic stirring bar in the glove box, an alkene **3** (0.1 mmol), followed by a solution of 9-BBN (0.5 M solution in THF, 0.5 ml). The mixture was allowed to stir at room temperature (25 $^{\circ}$ C). After 10 h, 0.2 ml of water was slowly added. Evolution of

gas was observed. After 10 min, Sodium perborate tetrahydrate (0.2 g) was added. The white suspension was stirred for 24 h. Reaction mixture was then filtered and washed with chloroform, solvent was removed and crude mixture was purified by flash column chromatography (hexanes:EtOAc, 85:15) to give **10** as an oil in 95% yield (46.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 7.23 (d, *J* = 8.6 Hz, 2H), 4.57 (d, *J* = 11.5 Hz, 1H), 4.48 – 4.41 (m, 3H), 3.93 – 3.66 (m, 7H), 3.40 – 3.30 (m, 2H), 1.99 – 1.84 (m, 2H), 1.78 – 1.66 (m, 2H), 0.86 (s, 9H), 0.04 (s, 3H), 0.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 138.6, 130.7, 129.6, 128.8, 128.2, 128.1, 114.1, 73.3, 71.0, 69.2, 61.1, 55.6, 38.9, 36.2, 26.2, 18.9, 18.4, 11.5, -3.8, -4.5. HRMS (ESI) Calcd. for C₂₇H₄₂O₅Si ([M+Na]⁺): 497.2694 Found: 497.2691.

Reference

- 1. Lanners, S.; Norouzi-Arasi, H.; Khiri, N.; Hanquet, G. Eur. J. Org. Chem. 2007, 4065.
- 2. Hartmann, O.; Kalesse, M. Org. Lett. 2012, 14, 3064.
- 3. Harding, K. E.; Nam, D. H. Tetrahedron Lett. 1988, 29, 3793.
- 4. Wang, X.; Ye, Y. X.; Zhang, S. N.; Feng, J. J.; Xu, Y.; Zhang, Y.; Wang, J. B. J. *Am. Chem. Soc.* **2011**, *133*, 16410.
- (a) Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130, 3316; (b) Smith, A. B.; Freeze, S. B.; LaMarche, M. J.; Hirose, T.; Brouard, I.; Xian, M.; Sundermann, K. F.; Shaw, S. J.; Burlingame, M. A.; Horwitz, S. B.; Myles, D. C. Org. Lett. 2005, 7, 315.
- 6. Polet, D.; Alexakis, A.; Tissot-Croset, K.; Corminboeuf, C.; Ditrich, K. Chem.-Eur. J. 2006, 12, 3596.
- 7. Stanley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 8971.
- 8. Shu, C. T.; Leitner, A.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43, 4797.
- 9. Yamashita, Y.; Gopalarathnam, A.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 7508.
- 10. DiLauro, A. M.; Seo, W. J.; Phillips, S. T. J. Org. Chem. 2011, 76, 7352.
- 11. Haug, T. T.; Kirsch, S. F. Org. Biomol. Chem. 2010, 8, 991.

Spectral Data of Isolated Compounds

as321t/10 AV-600 ZBO proton starting parameters 11/16/08 RN

as3051/11 12/21/10 CC AV-600 ZBO carbon starting parameters AQ_MOD=DQD

as387bm/10 AVB-400 ZBO Proton starting parameters. 6/11/03 RN

S-36

as-3-131b/10 AV-600 ZBO proton starting parameters 11/16/08 RN

HPLC DATA:

[(Chiralpak OD-H) hexane/i-PrOH, 90:10, 0.5 mL/min]

[(Chiralpak OD-H) hexane/i-PrOH, 90:10, 0.5 mL/min]

6	Name	Retention Time (min)	Peak Type	Area (µV*sec)	% Area	Height (µ∀)	% Height	Amo
1		26.029	Unknown	3674094	94.63	99228	93.98	
2		29,809	Unknown	208525	5.37	6352	6.02	

[(Chiralpak AD-H) hexane/i-PrOH, 90:10, 1.0 mL/min]

8	Name	Time (min)	Peak Type	Area (µ∀*sec)	% Area	Height (µ∀)	% Height	Ar
1		23.196	Unknown	590913	5.13	25603	6.55	
2		26.912	Unknown	10917706	94.87	365298	93.45	

[(Chiralpak AD-H) hexane/i-PrOH, 90:10, 0.5 mL/min]

[(Chiralpak OD-H) hexane/i-PrOH, 90:10, 1.0 mL/min]

	8	Name	Retention Time (min)	Peak Type	Area (µV*sec)	% Area	Height (µV)	% Height	,Α
	1		22.307	Unknown	8217120	98.37	285782	97.55	Γ
E	2		23.502	Unknown	136375	1.63	7175	2.45	

[(Chiralpak AD-H) hexane/i-PrOH, 99:1, 0.5 mL/min]

[(Chiralpak AD-H) hexane/i-PrOH, 99.1:0.1, 0.5 mL/min]

[(Chiralpak OD-H) hexane/i-PrOH, 99.1:0.1, 0.5 mL/min]

8	Name	Retention Time (min)	Peak Type	Area (µ∀*sec)	% Area	Height (µ∀)	% Height	A
1		7.139	Unknown	1493791	3.99	185042	10.12	
2		8.789	Unknown	35983298	96.01	1643554	89.88	

[(Chiralpak AD-H) hexane/i-PrOH, 99.1:0.1, 1.0 mL/min]

8	Name	Time (min)	Туре	(µV*sec)	% Area	(µV)	% Height	A
1		9.546	Unknown	517250	5.09	44942	7.55	
2		10.667	Unknown	9639331	94.91	550198	92.45	

[(Chiralpak OD-H) hexane/i-PrOH, 99.9:0.1, 0.5 mL/min]

[(Chiralpak OD-H) hexane/i-PrOH, 99.1:0.1, 0.5 mL/min]

[(Chiralpak OJ-H) hexane/i-PrOH, 99.1:0.9, 0.5 mL/min]

[(Chiralpak OD-H) hexane/i-PrOH, 90:10, 0.6 mL/min]

[(Chiralpak OD-H) hexane/i-PrOH, 95:5, 1.0 mL/min]

[(Chiralpak OJ-H) hexane/i-PrOH, 90:10, 1.0 mL/min]

