Enantioselective Functionalization of Allylic C-H Bonds Following a Strategy of Functionalization and Diversification

Ankit Sharma and John F. Hartwig
Department of Chemistry, University of California, Berkeley, California, 94720, United States
E-mail: jhartwig@berkeley.edu

Supporting Information

Table of Contents
General Experimental Details 2
Equipment and methods 2
Solvents and reagents 2
General procedure (I): Sequential C-H functionalization reactions 3
General procedure II: Hydroboration and Vinylation of 3 3
General procedure III: Hydroboration and Alkylation of 3 3
Procedures and spectral data for isolated products 4
Reference 19
Spectral Data of Isolated Compounds 20
HPLC Data 63

General Experimental Details

Equipment and methods

All air-sensitive manipulations were conducted in a nitrogen-filled glovebox or by standard Schlenk technique under nitrogen. All glassware was heated in an oven and cooled under an inert atmosphere prior to use.

NMR spectra were acquired on $400 \mathrm{MHz}, 500 \mathrm{MHz}$, or 600 MHz Bruker instruments at the University of California. NMR spectra were processed with MestReNova 5.0 (Mestrelab Research SL). Chemical shifts are reported in ppm and referenced to residual solvent peaks (CHCl_{3} in CDCl_{3} : 7.26 ppm for ${ }^{1} \mathrm{H}$ and 77.36 ppm for ${ }^{13} \mathrm{C}$). Coupling constants are reported in hertz. HPLC analyses were conducted on a Waters chromatography system (1525 binary pump, 717+ autosampler, 2487 dual wavelength detector) with using chiral stationary columns ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$) from Daicel. Optical rotations were measured on a Perkin Elmer 241 Automatic Polarimeter. High-resolution mass spectra were obtained via the Micro-Mass/Analytical Facility operated by the College of Chemistry, University of California, Berkeley. GC analyses were obtained on an Agilent 6890 GC equipped with an HP- 5 column (25 mx 0.20 mm ID x 0.33 m film) and an FID detector.

Solvents and reagents

Substrate alkenes, dodacane and tert-butyl perbenzoate were purchased from SigmaAldrich and used without further purification unless mentioned otherwise. 2-(But-3-en-1-yl)-2-methyl-1,3-dioxolane, ${ }^{1}$ (but-3-en-1-yloxy)(tert-butyl)dimethylsilane, ${ }^{2}$ but-3-en-1-yl benzoate, $\quad 2$-(but-3-en-1-yl)isoindoline-1,3-dione, ${ }^{3} \quad 1$-(hept-6-en-1-ylsulfonyl)-4methylbenzene ${ }^{4}$ and N, N-diethylundec-10-enamide ${ }^{4}$ were prepared according to reported procedures. Enantioenriched alkenes were derived from commercially available glycidol (ee 98%) following reported procedures. ${ }^{5} \mathrm{Pd}(\mathrm{OAc})_{2}$ and $\left.\mathrm{Ir}(\mathrm{COD}) \mathrm{Cl}\right]_{2}$ were obtained from Johnson-Matthey and used without further purification. Phosphoramidite ligands (L9 and L10) $)^{6}$ and iridium complexes ($[\operatorname{Ir}(\mathrm{COD})(\kappa 2-\mathrm{L9})($ ethylene $)]$ (1) and $[\operatorname{Ir}(\mathrm{COD})(\kappa 2-$ L10)(ethylene)] (11) ${ }^{7}$ were prepared according to literature procedures. DCM, toluene and THF were degassed by purging with argon for 15 minutes and dried with a solvent purification system containing a one-meter column of activated alumina.

General procedure (I): Sequential C-H functionalization reactions

To a dry 4 ml vial containing a magnetic stirbar, $\mathrm{Pd}(\mathrm{OAc})_{2}(3.3 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and $\mathbf{L 5}$ (3.0 mg , $5.5 \mathrm{~mol} \%$) were added, followed by $25.0 \mu \mathrm{~L}$ of DCM . The reaction mixture was stirred for 15 min at room temperature. The solvent was removed under vacuum, and dodecane $(25.0 \mu \mathrm{~L})$ and alkene (0.6 or 0.3 mmol) were added, followed by tert-butyl perbenzoate ($58.27 \mathrm{mg}, 0.3 \mathrm{mmol}$). The vial was sealed with a cap containing a PTFE septum and then heated at 65 or $80^{\circ} \mathrm{C}$ (as mentioned in Chart 1,2 and 3) for $6-8 \mathrm{~h}$ (monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ for consumption of oxidant). The vial was kept at high vacuum for 3-4 h to remove volatile materials and brought into a glove box. The reaction mixture was dissolved in 0.5 ml of dry toluene. To the resulting solution $\mathrm{K}_{3} \mathrm{PO}_{4}(95.5 \mathrm{mg}, 0.45$ $\mathrm{mmol})$ and the aniline (2.0 mmol) were added, followed by solution of iridium catalyst $\mathbf{1}$ $(13.0 \mathrm{mg}, 5 \mathrm{~mol} \%)$ in 0.5 ml of dry toluene. The resulting reaction mixture was stirred at $25^{\circ} \mathrm{C}$ until the linear benzoyl ester was fully consumed, as determined by GC or TLC. The crude reaction mixture was then treated with 5 ml of EtOAc and extracted with brine. The solvent was evaporated from the organic layer, and the product was purified by flash column chromatography on silica gel eluting with a mixture of hexane and ethyl acetate.

General procedure II: Hydroboration and Vinylation of 3

To a dry 4-mL vial equipped with a magnetic stirring bar in the glove box, alkene 3 (0.5 $\mathrm{mmol})$, followed by a solution of $9-\mathrm{BBN}(0.5 \mathrm{M}$ solution in THF, 1.2 ml$)$ were added. The mixture was stirred at room temperature $\left(20^{\circ} \mathrm{C}\right)$ for 10 h to give a solution of B-alkyl-9-BBN. To above solution, $\mathrm{K}_{3} \mathrm{PO}_{4} \bullet \mathrm{H}_{2} \mathrm{O}(230.3 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added, and the heterogeneous mixture was stirred for 5 min . Vinyl bromide (1.0 M solution in THF, 1.5 $\mathrm{ml})$, followed by $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(5 \mathrm{~mol} \%, 0.025 \mathrm{mmol})$ in DMF (2.5 ml), were added. The reaction was sealed with a cap containing a PTFE septum and then heated at $50^{\circ} \mathrm{C}$ for 6 8 h . The crude reaction mixture was then treated with 5 mL of EtOAc and extracted with water, followed by a saturated CuSO_{4} solution (in water) to remove the remaining DMF. The solvent was evaporated from the organic layer, and the product was purified by flash column chromatography on silica gel eluting with a mixture of hexane and ethyl acetate.

General procedure III: Hydroboration and Alkylation of 3

To a dry 4 mL vial equipped with a magnetic stirring bar in the glove box, an alkene 3 $(0.5 \mathrm{mmol})$, followed by a solution of $9-\mathrm{BBN}(0.5 \mathrm{M}$ solution in THF, 1.2 ml$)$, were added. The mixture was allowed to stir at room temperature $\left(20{ }^{\circ} \mathrm{C}\right)$ for 10 h . To the above solution, $\mathrm{K}_{3} \mathrm{PO}_{4} \bullet \mathrm{H}_{2} \mathrm{O}(230.3 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added and stirred for 5 min . In another dry 4 ml vial equipped with a magnetic stirring bar in the glove box, $\operatorname{Pd}(\mathrm{OAc})_{2}$ $(9.0 \mathrm{mg}, 0.040 \mathrm{mmol}), \mathrm{PCy}_{3}(22.4 \mathrm{mg}, 0.080 \mathrm{mmol})$ and 0.5 ml of THF were added. After 15 min of stirring, this solution was added to the above B-alkyl-9-BBN solution, followed by n-bromo- 1 -alkene (0.3 mmol). The resulting heterogeneous reaction mixture was sealed and stirred vigorously at room temperature for 24 h . The crude mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through silica gel, concentrated, and then purified by flash column chromatography on silica gel eluting with a mixture of hexane and ethyl acetate.

Procedures and spectral data for isolated products

N-(dec-1-en-3-yl)aniline (3a)

Prepared according to the general procedure (I) using (R, R, $R)-1$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 99:1) to give 3a as an oil in 58% yield (40.2 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 20.18 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 23.78 \mathrm{~min}$ (minor) [(Chiralpak OD-H) hexane/i-PrOH, 99.9:0.1, $0.5 \mathrm{~mL} / \mathrm{min}]$ to be $89 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 5.73 (ddd, $J=16.8,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~b}, 1 \mathrm{H}), 1.72-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.17(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 148.0, 140.6, 129.4(2C), 117.4, 115.3, 113.6(2C), 56.3, 36.2, 32.2, 29.9, 29.6, 26.3, 23.0, 14.4. HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 232.2060$. Found: 232.2058.

N-(4-methylpent-1-en-3-yl)aniline (3b)

Prepared according to the general procedure (I) using $(R, R, R) \mathbf{- 1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 99:1) to give 3b as an oil in 52% yield (27.3 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) t_{R} 19.24 min (major); $\mathrm{t}_{\mathrm{R}} 20.79 \mathrm{~min}$ (minor) [(Chiralpak OD-H) hexane $/ i-\mathrm{PrOH}$, 99.9:0.1, $0.5 \mathrm{~mL} / \mathrm{min}]$ to be $90 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.2(\mathrm{~m}, 2 \mathrm{H}), 6.65$ $(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 6.6(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.72(\mathrm{ddd}, 1 \mathrm{H}, J=17.2,10.3,6.3 \mathrm{~Hz}), 5.19$ $(\mathrm{d}, 1 \mathrm{H}, J=17.1 \mathrm{~Hz}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 3.71(\mathrm{br}, 1 \mathrm{H}), 3.65(\mathrm{t}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz})$, $1.87(\mathrm{qqd}, 1 \mathrm{H}, J=6.8,6.8,5.7 \mathrm{~Hz}) .0 .99(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 147.9, 137.9, 129.1, 117.1, 116.0, 113.4, $61.5,32.5,18.8,18.5$. The data match those reported previously. ${ }^{8}$

N-(1-cyclohexylallyl)aniline (3c)

Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 99:1) to give 3c as an oil in 68% yield (40.2 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 7.14 \mathrm{~min}$ (minor); $\mathrm{t}_{\mathrm{R}} 8.79 \mathrm{~min}$ (major) [(Chiralpak AD-H) hexane/iPrOH, 99.9:0.1, $1.0 \mathrm{~mL} / \mathrm{min}]$ to be $92 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16-7.11$ (m , $2 \mathrm{H}), 6.68-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{ddd}, J=16.9,10.2,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.28-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{br}, 1 \mathrm{H}), 3.68-3.6(\mathrm{~m}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.55-$ $1.45(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.02(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.3$, 138.7, $129.4(2 \mathrm{C}), 117.3,116.1,113.6(2 \mathrm{C}), 61.3,43.1,29.8,29.7,26.9,26.7,26.6$. The data match those reported previously. ${ }^{8}$

N-(1-phenylbut-3-en-2-yl)aniline (3d)

Prepared according to the general procedure (I) using $(R, R, R) \mathbf{- 1}$ as
 catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 98:2) to give 3d as an oil in 71% yield (47.5 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) t_{R} 21.94 min (major); $\mathrm{t}_{\mathrm{R}} 22.95 \mathrm{~min}$ (minor) [(Chiralpak AD-H) hexane/i-PrOH, 99.9:0.1, 0.5 $\mathrm{mL} / \mathrm{min}]$ to be 96%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}$, $3 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.82$ (ddd, $J=16.3$, $10.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.12(\mathrm{~m}$, $1 \mathrm{H}), 3.72(\mathrm{br}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.6,139.6$, 138.0 , 129.8(2C), 129.5(2C), 128.8(2C), 126.9, 117.8, 115.8, 113.9(2C), 56.9, 42.2. HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 224.1434$ Found: 224.1432.

N-(1-(2-methyl-1,3-dioxolan-2-yl)but-3-en-2-yl)aniline (3e)

Prepared according to the general procedure (I) using $(R, R, R) \mathbf{- 1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give $\mathbf{3 e}$ as an oil in 70% yield (49.0 mg). The enantiomeric excess was determined by HPLC analysis $\left(254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right) \mathrm{t}_{\mathrm{R}} 37.61 \mathrm{~min}$ (minor); $\mathrm{t}_{\mathrm{R}} 40.48 \mathrm{~min}$ (major) [(Chiralpak OJ-H) hexane $/ i-$ $\mathrm{PrOH}, 99.9: 0.1,0.5 \mathrm{~mL} / \mathrm{min}]$ to be 95%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.07(\mathrm{~m}$, $2 \mathrm{H}), 6.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.57(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{ddd}, J=17.1,10.3,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.28(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{br}, 1 \mathrm{H}), 4.09-3.76(\mathrm{~m}, 5 \mathrm{H})$, $2.01-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.5,141.0,129.3(2 \mathrm{C})$, $117.4,114.8,113.7(2 \mathrm{C}), 109.9,65.4,64.7,53.6,44.2,24.8$. HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$234.1489. Found: 234.1486.

N-(6-chlorohex-1-en-3-yl)aniline (3f)

Prepared according to the general procedure (I) using $(R, R, R)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 99:1) to give 3f as an oil in 65% yield (40.9 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 9.47 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 9.95 \mathrm{~min}$ (minor) [(Chiralpak AD-H) hexane $/ i-\mathrm{PrOH}, 99.9: 0.1,0.5 \mathrm{~mL} / \mathrm{min}]$ to be 88%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21$ (dd, $J=8.5,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.82$ (ddd, $J=$ $17.0,10.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.28-$ $3.22(\mathrm{~m}, 1 \mathrm{H}), 2.17-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $147.8,139.6,129.3(2 \mathrm{C}), 115.9,114.8,112.4(2 \mathrm{C}), 61.2,48.9,32.9,23.5$. HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClN}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$167.1067. Found: 167.1072.

N-(1-((tert-butyldimethylsilyl)oxy)but-3-en-2-yl)aniline(3g)

Prepared according to the general procedure (I) using $(R, R, R)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 99:1) to give $\mathbf{3 g}$ as an oil in 69% yield (57.4 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 12.92 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 15.72 \mathrm{~min}$ (minor) [(Chiralpak OD-H)
hexane $/ i-\mathrm{PrOH}, 99.9: 0.1,0.5 \mathrm{~mL} / \mathrm{min}]$ to be 97%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16$ (dd, $J=8.5,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.63(\mathrm{~m}, 2 \mathrm{H}), 5.92-5.72(\mathrm{~m}, 1 \mathrm{H})$, $5.32(\mathrm{dd}, J=17.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=12.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{br}, 1 \mathrm{H}), 3.89(\mathrm{br}$, $1 \mathrm{H}), 3.76(\mathrm{dd}, J=9.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}$, $3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.2,138.0,129.4,117.9(2 \mathrm{C}), 116.9$, $114.2(2 \mathrm{C}), 66.0,58.1,26.2(3 \mathrm{C}), 18.6,-4.9,-5.0$. HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NOSi}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right):$278.1935. Found: 278.1934.

2-(phenylamino)but-3-en-1-yl benzoate (3h)

Prepared according to the general procedure (I) using $(R, R, R)-\mathbf{1}$ as
 catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give 3h as an oil in 56\% yield (44.9 mg). The enantiomeric excess was determined by HPLC analysis $\left(254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right) \mathrm{t}_{\mathrm{R}} 13.8 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 14.6 \mathrm{~min}$ (minor) [(Chiralpak OD-H) hexane/i$\mathrm{PrOH}, 90: 10,0.6 \mathrm{~mL} / \mathrm{min}]$ to be $90 \% .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{dd}, J=8.1$, $1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J=8.5,7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 6.80-6.61 (m, 3H), 5.91 (ddd, $J=17.2,10.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=9.9,8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.30(\mathrm{dd}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=11.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=11.2,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33(\mathrm{br}, 1 \mathrm{H}), 4.04(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,147.3,136.2$, 133.5 , 130.1, $130.0(2 \mathrm{C}), 129.6(2 \mathrm{C}), 128.8(2 \mathrm{C}), 118.2$, 117.9, 113.9(2C), 66.9, 55.5. HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$268.1332. Found: 268.1332.

2-(2-(phenylamino)but-3-en-1-yl)isoindoline-1,3-dione (3i)

Prepared according to the general procedure (I) using $(R, R, R)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give 3i as an oil in 59\% yield (51.7 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 23.20 \mathrm{~min}$ (minor); $\mathrm{t}_{\mathrm{R}} 26.91$ min (major) [(Chiralpak AD-H) hexane $/ i-\mathrm{PrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}]$ to be $90 \% .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ (dd, $J=8.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.65-6.55(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{br}, 2 \mathrm{H}), 3.92-3.81(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , CDCl_{3}) $\delta 169.1,147.2,136.5,134.4,132.2,129.4,123.7,117.9,117.8,113.6,55.9,42.3$. HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$293.1285. Found: 293.1284.

N-(7-tosylhept-1-en-3-yl)aniline (3j)

Prepared according to the general procedure (I) using $(R, R, R)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 90:10) to give $\mathbf{3 j}$ as an oil in 57% yield (58.7 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 26.14 \mathrm{~min}$ (minor); t_{R} 29.86 min (major) [(Chiralpak AD-H) hexane/i-PrOH, 90:10, 1.0 $\mathrm{mL} / \mathrm{min}$] to be $89 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (d, $J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{ddd}, J=16.8,10.3,6.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.21(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{br}$, $1 \mathrm{H}), 3.18-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.44(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.6,145.0,139.9,136.5,130.2(2 \mathrm{C}), 129.5(2 \mathrm{C}), 128.4(2 \mathrm{C}), 117.7$, $115.8,113.7(2 \mathrm{C}), 56.5,55.8,35.4,24.9,23.0,22.0$. HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 344.1679$. Found: 344.1679.

Methyl 4-(phenylamino)hex-5-enoate (3k)

Prepared according to the general procedure (I) using $(R, R, R)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give 3k as an oil in 59% yield (38.8 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 13.57 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 21.36 \mathrm{~min}$ (minor) [(Chiralpak OD-H) hexane $/ i-\mathrm{PrOH}, 90: 10,1.0 \mathrm{~mL} / \mathrm{min}]$ to be 88%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.12$ $(\mathrm{m}, 2 \mathrm{H}), 6.71-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{ddd}, J=16.7,10.3,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.23(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{br}$, $1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{dd}, J=7.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.3,147.6,139.5,129.5(2 \mathrm{C}), 117.8,116.2,113.7(2 \mathrm{C}), 55.8,52.0,31.0$, 30.7. HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$220.1332. Found: 220.1331.
N, N-diethyl-9-(phenylamino)undec-10-enamide (31)

Prepared according to the general procedure (I) using $(R, R, R)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give 31 as an oil in 52% yield $(51.5 \mathrm{mg})$. The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 25.87 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 39.04 \mathrm{~min}$ (minor) [(Chiralpak OD-H) hexane $/ i-\mathrm{PrOH}, 95: 5,1.0 \mathrm{~mL} / \mathrm{min}$] to be 87%. ${ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 5.76-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{br}$, $1 \mathrm{H}), 3.65(\mathrm{br}, 1 \mathrm{H}), 3.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 2H), 1.69-1.52 (m, 4H), 1.45-1.26 (m, 8H), $1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,148.0,140.5,129.4,117.4,115.3,113.6,56.3$, $42.3,40.4,36.2,33.5,29.8,29.7,26.2,25.8,14.8,13.5$. HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 331.2744$. Found: 331.2744.

N-(1-phenylallyl)aniline (3m)

Prepared according to the general procedure (I) using (R, R, R)- $\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give $\mathbf{3 m}$ as an oil in 76% yield $(47.7 \mathrm{mg})$. The enantiomeric excess was determined by HPLC analysis $\left(254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right) \mathrm{t}_{\mathrm{R}} 22.3 \mathrm{~min}$ (minor); $\mathrm{t}_{\mathrm{R}} 25.9 \mathrm{~min}$ (major) [(Chiralpak OD-H) hexane $/ i-\mathrm{PrOH}, 99.75: 0.25,0.6 \mathrm{~mL} / \mathrm{min}$] to be 93%. The data match those reported previously. ${ }^{8}$

N-(1-(4-methoxyphenyl)allyl)aniline (3n)

Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give $\mathbf{3 n}$ as an oil in 81% yield (58.1 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 14.84 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 16.50 \mathrm{~min}$ (minor) [(Chiralpak OD-H) hexane $/ i-\mathrm{PrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}]$ to be 90%. The data match those reported previously. ${ }^{8}$

N -(1-(4-fluorophenyl)allyl)aniline(30)

Prepared according to the general procedure (I) using $(R, R, R) \mathbf{- 1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give $\mathbf{3 o}$ as an oil in 77% yield (52.5 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 14.45 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 15.17 \mathrm{~min}$ (minor) [(Chiralpak OD-H) hexane $/ i-\mathrm{PrOH}, 90: 10,0.5 \mathrm{~mL} / \mathrm{min}]$ to be 95%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67-6.55(\mathrm{~m}, 2 \mathrm{H}), 6.07$ (ddd, $J=17.0,10.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.97$ $(\mathrm{d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.3,139.3,137.9$, 129.5, 129.1, 129.0, 118.1, 116.7, 116.0, 115.8, 113.9, 60.5. HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FN}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 228.1183$ Found: 228.1182.
N-((3R,5R)-6-((4-methoxybenzyl)oxy)-5-(methoxymethoxy)hex-1-en-3-yl)aniline (3p)

Prepared according to the general procedure (I) using $(R, R, R)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 80:20) to give 5c as an oil in 57% yield (63.5 mg). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.84-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.51(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{dq}, J=$ $9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{ddd}, J=20.5,10.0,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 1.94-$ $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,147.8,140.1$, $130.5,129.7(2 \mathrm{C}), 129.4(2 \mathrm{C}), 117.5,115.8,114.2(2 \mathrm{C}), 113.7(2 \mathrm{C}), 96.8,75.1,73.3,72.3$, 56.1, 55.6, 53.8, 38.5. HRMS (ESI) Calcd. For $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 372.2169$ Found: 372.2172 .

N-benzyl-1-phenylprop-2-en-1-amine (3q)

Prepared according to the general procedure (I) using (R, R, R)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give 3p as an oil in 60% yield (40.2 mg). The enantiomeric excess was determined by HPLC analysis $\left(254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right.$) $\mathrm{t}_{\mathrm{R}} 31.1 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 35.9 \mathrm{~min}$ (minor) [(Chiralpak OJH) hexane $/ i$ - $\mathrm{PrOH}, 95: 5,0.5 \mathrm{~mL} / \mathrm{min}]$ to be 90%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-$ $7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 6.60(\mathrm{~d}, 2 \mathrm{H}$,
$J=7.9 \mathrm{~Hz}), 6.04(\mathrm{ddd}, 1 \mathrm{H}, J=17.1,10.2,5.9 \mathrm{~Hz}), 5.28(\mathrm{~d}, 1 \mathrm{H}, J=17.1 \mathrm{~Hz}), 5.22(\mathrm{~d}, 1 \mathrm{H}$, $J=10.2 \mathrm{~Hz}), 4.93(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}), 4.1(\mathrm{br}, 1 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.2$, $141.9,139.1,129.1,128.7,127.4,127.1,117.6,116.0,113.5,60.8$. The data match those reported previously. ${ }^{9}$

N-benzyl-1-((tert-butyldimethylsilyl)oxy)but-3-en-2-amine (3r)

$\mathrm{HN}^{-} \mathrm{Bn} \quad$ Prepared according to the general procedure (I) using $(R, R, R)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 98:2) to give $\mathbf{3 q}$ as an oil in 51% yield (43.7 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25$ $\left.{ }^{\circ} \mathrm{C}\right) \mathrm{t}_{\mathrm{R}} 28.5 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 29.0 \mathrm{~min}$ (minor) [(Chiralpak OJ-H) hexane $/ i-\mathrm{PrOH}, 95: 5,0.5$ $\mathrm{mL} / \mathrm{min}$] to be 89%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.33$ ($\mathrm{m}, 3 \mathrm{H}$), $7.30-7.25$ (m , $2 \mathrm{H}), 5.69$ (ddd, $J=17.8,10.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.15(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{td}, J=$ 8.1, $\left.4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $141.0,138.2,128.7(2 \mathrm{C}), 128.4(2 \mathrm{C}), 127.1,118.1,66.5,62.8,51.4,26.2(3 \mathrm{C}), 18.6,-5.0$, 5.1. HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NOSi}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$292.2091. Found: 292.2090.

1-((tert-butyldimethylsilyl)oxy)- N -(thiophen-2-ylmethyl)but-3-en-2-amine (3s)

Prepared according to the general procedure (I) using $(R, R, R)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 98:2) to give $\mathbf{3 r}$ as an oil in 55\% yield (47.3 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 25.3 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 26.2 \mathrm{~min}$ (minor) [(Chiralpak OD-H) hexane $/ i-\mathrm{PrOH}, 95: 5,0.5 \mathrm{~mL} / \mathrm{min}]$ to be $90 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19$ (dd, $\left.J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.94(\mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.91 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.64 (ddd, $J=18.0,10.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.23$ (m, 1H), 5.20 (dd, $J=10.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}$, $J=9.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=9.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{td}, J=8.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}$, $9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.7$, 137.9, 126.9, $125.0,124.4,118.3,66.5,62.5,45.9,26.2(3 \mathrm{C}), 18.6,-5.0,-5.1$. HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NOSSi}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$298.1655. Found: 298.1653.

1-(1-((tert-butyldimethylsilyl)oxy)but-3-en-2-yl)-1H-benzo[d]imidazole (3t)

Prepared according to the modified general procedure (I) using benzimidazole as nucleophile and $(R, R, R)-\mathbf{1}$ as catalyst. The reaction mixture obtained after oxidation step was brought inside the glove box and dissolved in 0.5 ml of THF followed by filtered through a 30×6 mm plug of silica gel (in a 9 mm pipette) and collected in another 4 ml vial. The silica gel was washed with 1.0 mL THF. The resulting THF solution was used for the next step. The crude mixture obtained after completion of second step, was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give 3s as an oil in 55% yield (47.2 mg). The enantiomeric excess was determined by HPLC analysis (254 $\mathrm{nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 8.3 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 9.2 \mathrm{~min}$ (minor) [(Chiralpak AD-H) hexane $/ i-\mathrm{PrOH}$, $95: 5,1.0 \mathrm{~mL} / \mathrm{min}]$ to be $88 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.74(\mathrm{~m}$,
$1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.32-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.28-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=10.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.04(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H})$, $-0.07(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.2,142.8,133.9,133.5$, 122.9, 122.4, 120.8, 119.3, 110.7, 64.7, 60.2, 26.0(3C), 18.4, -5.3, -5.4. HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OSi}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 303.1887. Found: 303.1885.

2-(1-((tert-butyldimethylsilyl)oxy)but-3-en-2-yl)isoindoline-1,3-dione (3u)

Prepared according to the general procedure (I) using potassium phthalimide as nucleophile and $(R, R, R)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give 3t as an oil in 57% yield (47.2 mg). The enantiomeric excess was determined by HPLC analysis (254 nm , $25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 27.3 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 28.9 \mathrm{~min}$ (minor) [(Chiralpak OJ-H) hexane $/ i-\mathrm{PrOH}, 95: 5,1.0 \mathrm{~mL} / \mathrm{min}]$ to be 88%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83$ (dd, J $=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{ddd}, J=17.5,10.4,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.30(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.86(\mathrm{~m}, 1 \mathrm{H}), 0.74(\mathrm{~s}, 9 \mathrm{H})$, $0.00(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.6(2 \mathrm{C}), 134.2(2 \mathrm{C}), 132.7$, 132.3, 123.5(2C), 119.3, 62.5, 56.2, 25.9(3C), 18.3, -5.1, -5.3. HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Si}\left([\mathrm{M}-\mathrm{Me}]^{+}\right): 316.1369$ Found: 316.1369.

tert-butyldimethyl((2-phenoxybut-3-en-1-yl)oxy)silane (3w)

Prepared according to the general procedure (I) using sodium phenoxide as nucleophile and $(R, R, R)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 99:1) to give $\mathbf{3 w}$ as an oil in 50% yield (45.9 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 9.6 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 10.7 \mathrm{~min}$ (minor) [(Chiralpak ODH) hexane $/ \mathrm{i}-\mathrm{PrOH}, 99.9: 0.1,0.5 \mathrm{~mL} / \mathrm{min}$] to be 90%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 3 \mathrm{H}), 5.89(\mathrm{ddd}, J=17.2,10.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=$ $17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.68(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=10.7,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7,135.4,129.6(2 \mathrm{C}), 121.1,118.0,116.4(2 \mathrm{C}), 80.1,66.4$, 26.2(3C), 18.7, -4.8, -4.9.

tert-butyldimethyl((2-tosylbut-3-en-1-yl)oxy)silane (3x)

Prepared according to the modified general procedure (I) using sodium p-toluenesulfinate as nucleophile and $(R, R, R)-\mathbf{1}$ as catalyst. The reaction mixture obtained after oxidation step was brought into a glove box. The reaction mixture was dissolved in 0.5 ml of dry THF and filtered through a $30 \times 6 \mathrm{~mm}$ plug of silica gel (in a 9 mm pipette) and collected in another 4 ml vial. The silica gel was washed with 1.0 mL THF. To the combined resulting solution of THF, $\mathrm{K}_{3} \mathrm{PO}_{4}(95.5 \mathrm{mg}, 0.45 \mathrm{mmol})$ and the sodium p toluenesulfinate (1.5 equiv) were added, followed by solution of iridium catalyst $\mathbf{1}$ (13.0 $\mathrm{mg}, 5 \mathrm{~mol} \%$) in 0.5 ml of dry THF and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ until the linear benzoyl ester was fully consumed, as determined by GC or TLC. The crude mixture obtained after completion of second step, was purified by flash column
chromatography (hexanes:EtOAc, 97:3) to give 3x as an oil in 55% yield (56.2 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 9.96 \mathrm{~min}$ (minor); $\mathrm{t}_{\mathrm{R}} 10.72 \mathrm{~min}$ (major) [(Chiralpak OD-H) hexane $/ i-\mathrm{PrOH}, 99: 1,1 \mathrm{~mL} / \mathrm{min}$] to be $90 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 5.75 (ddd, $J=17.1,10.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{dd}, J=10.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=10.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.43$ $(\mathrm{s}, 2 \mathrm{H}), 0.81(\mathrm{~s}, 5 \mathrm{H}), 0.00(\mathrm{~s}, 1 \mathrm{H}),-0.01(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.9$, 135.7, 129.8(2C), 129.5(2C), 129.0, 124.3, 71.9, 61.0, 26.0(3C), 21.9, 18.5, -5.1, -5.2. HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SSi}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): ~ 363.1421$. Found: 363.1421 .

tert-butyl((1-((4-methoxybenzyl)oxy)but-3-en-2-yl)oxy)dimethylsilane (3aa)

Prepared according to the modified general procedure (I) using (R, R, $R)$ - $\mathbf{1}$ as catalyst. The reaction mixture obtained after oxidation step was brought into a glove box. The reaction mixture was dissolved in 0.5 ml of dry toluene, followed by filtered through a $30 \times 6 \mathrm{~mm}$ plug of silica gel (in a 9 mm pipette) and collected in another 4 ml vial. To the resulting solution, $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($95.5 \mathrm{mg}, 2$ equiv.) and the tert-butyldimethylsilanol (2.0 equiv.) were added, followed by solution of iridium catalyst $1(13.0 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$ and 1-phenyl-propyne $(10.0 \mathrm{~mol} \%)$ in 1.5 ml of dry toluene. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ until the linear benzoyl ester was fully consumed, as determined by GC or TLC. The crude mixture obtained after completion of second step, was purified by flash column chromatography (hexanes: $\mathrm{Et}_{2} \mathrm{O}, 99: 1$) to give an oil in 70% yield (67.6 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.92-5.82(\mathrm{~m}$, $1 \mathrm{H}), 5.30(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,138.5,135.5,129.1,127.5,114.9,113.6,74.6,72.9$, $72.7,55.2,25.8,18.3,-4.7,-4.8$. The enantiomeric excess was determined by deprotecting TBS group with TBAF, ${ }^{10}$ and protecting the corresponding alcohol with benzoyl chloride to give compound $\mathbf{1 1}$ in 98% yield. Data matches with the reported compound. ${ }^{11}$ HPLC analysis ($254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 22.2 \mathrm{~min}$ (minor); $\mathrm{t}_{\mathrm{R}} 28.1 \mathrm{~min}$ (major) [(Chiralpak OJ-H) hexane $/ i-\mathrm{PrOH}, 90: 10,1 \mathrm{~mL} / \mathrm{min}]$ to be 87%.

2-(1-((4-methoxybenzyl)oxy)but-3-en-2-yl)isoindoline-1,3-dione (3bb)

Prepared according to the general procedure (I) using (S, S, S)-1 as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 90:10) to give an oil in 62% yield (62.7 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 13.7 \mathrm{~min}$ (minor); $\mathrm{t}_{\mathrm{R}} 18.5 \mathrm{~min}$ (major) [(Chiralpak OD-H) hexane $/ i-\mathrm{PrOH}, 90: 10,1.0 \mathrm{~mL} / \mathrm{min}]$ to be 85%. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{ddd}, J=17.4,10.4,7.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.29(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~s}$, $1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.72(\mathrm{dd}, J=10.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,159.5,134.2$, $132.6,132.3,130.3,129.6,123.5,119.3,114.0,72.8,68.9,55.5,53.5$. HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Si}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 360.1204 Found: 360.1206.

Dimethyl 2-(1-((4-methoxybenzyl)oxy)but-3-en-2-yl)malonate (3cc)

Prepared according to the general procedure (I) using sodium dimethyl malonate as nucleophile and $(R, R, R)-\mathbf{1 1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 90:10) to give 3cc as an oil in 50% yield (48.3 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 28.4 \mathrm{~min}$ (minor); $\mathrm{t}_{\mathrm{R}} 31.6$ min (major) [(Chiralpak OJ-H) hexane $/ i-\mathrm{PrOH}, 95: 5,1.0 \mathrm{~mL} / \mathrm{min}$] to be 88%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.87-5.79(\mathrm{~m}$, $1 \mathrm{H}), 5.16(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75$ $(\mathrm{s}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{ddd}, J=16.3,9.5,6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.16-3.10(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1,169.0,159.5,135.8$, $130.5,129.6,118.4,114.0,73.1,71.1,55.6,53.6,52.7,52.6,44.3,41.5$. HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 345.1309 Found: 345.1309.

1-methoxy-4-(((2-tosylbut-3-en-1-yl)oxy)methyl)benzene (3dd)

Prepared according to the modified general procedure (I) using $(S, S, S) \mathbf{- 1}$ as catalyst. The reaction mixture obtained after oxidation step was brought into a glove box. The reaction mixture was dissolved in 0.5 ml of dry THF and filtered through a 30×6 mm plug of silica gel (in a 9 mm pipette) and collected in another 4 ml vial. The silica gel was washed with 1.0 mL THF. To the combined resulting solution of THF, $\mathrm{K}_{3} \mathrm{PO}_{4}$ (95.5 $\mathrm{mg}, 0.45 \mathrm{mmol}$) and the sodium p-toluenesulfinate (1.5 equiv) were added, followed by solution of iridium catalyst $\mathbf{1}(13.0 \mathrm{mg}, 5 \mathrm{~mol} \%)$ in 0.5 ml of dry THF and the reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ until the linear benzoyl ester was fully consumed, as determined by GC or TLC. The crude mixture obtained after completion of second step, was purified by flash column chromatography (hexanes:EtOAc, 90:10) to give an oil in 53% yield (55.1 mg). The enantiomeric excess was determined by HPLC analysis (254 $\mathrm{nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 37.1 \mathrm{~min}$ (minor); $\mathrm{t}_{\mathrm{R}} 38.2 \mathrm{~min}$ (major) [(Chiralpak OD-H) hexane $/ i-\mathrm{PrOH}$, $90: 10,0.5 \mathrm{~mL} / \mathrm{min}]$ to be $90 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.84-5.70$ $(\mathrm{m}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{dd}, J=$ $9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.75(\mathrm{~m}, 5 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6$, 145.0, 135.4, 129.7, 129.7, 129.5, 128.7, 124.4, 114.1, 73.3, 69.7, 67.1, 55.6, 22.0. HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 369.1131. Found: 369.1131.

(R)-methyl 4-(1,3-dioxoisoindolin-2-yl)hex-5-enoate

Prepared according to the general procedure (I) using $(R, R, R)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 90:10) to give an oil in 55% yield $(45.1 \mathrm{mg})$. The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 14.1 \mathrm{~min}$ (major); $\mathrm{t}_{\mathrm{R}} 14.9 \mathrm{~min}$ (minor) [(Chiralpak OD-H) hexane $/ i-\mathrm{PrOH}, 90: 10,0.4 \mathrm{~mL} / \mathrm{min}]$ to be 90%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.70(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{ddd}, J=17.6,10.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.71(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.21$ (m, 4H). ${ }^{13}$ C NMR (151 MHz, CDCl_{3}) $\delta 173.2,168.2(2 \mathrm{C}), 135.2(2 \mathrm{C}), 134.3(2 \mathrm{C}), 132.1$, $123.6(3 \mathrm{C}), 118.5,53.7,52.0,31.3,27.5$. HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right)\right.$: 273.1007 Found: 273.1001.

(\boldsymbol{R})-2-iodo- N-(oct-1-en-3-yl)aniline

Prepared according to the general procedure (I) using (R, R, R)- $\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 96:4) to give $\mathbf{3 y}$ as an oil in 57% yield (56.3 mg). The enantiomeric excess was determined by HPLC analysis ($254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}} 9.1 \mathrm{~min}$ (minor); $\mathrm{t}_{\mathrm{R}} 12.6 \mathrm{~min}$ (major) [(Chiralpak OD-H) hexane $/ i-\mathrm{PrOH}, 99: 1,0.5 \mathrm{~mL} / \mathrm{min}]$ to be 88%. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.57-6.51(\mathrm{~m}, 1 \mathrm{H}), 6.45-$ $6.35(\mathrm{~m}, 1 \mathrm{H}), 5.82-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{~s}, 1 \mathrm{H}), 3.91-3.76(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.29$ $(\mathrm{m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.0,139.9,139.2$, $129.5,118.7,115.5,112.0,86.0,56.8,36.1,32.0,25.9,22.9,14.4$.
tert-butyl((1-((4-methoxybenzyl)oxy)hex-5-en-2-yl)oxy)dimethylsilane (6a)

Prepared according to the general procedure II. The crude mixture was purified by flash column chromatography (hexanes: $\mathrm{Et}_{2} \mathrm{O}, 98: 2$) in 85% yield (149 mg). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.81$ (ddt, $J=16.8,12.8,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.05(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4-86(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 4 \mathrm{H})$, 3.38 (dd, $J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.1(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.58$ (m, $1 \mathrm{H}), 1.56-1.52(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$. Data matches with reported molecule. ${ }^{5 a}$

2-(1-((4-methoxybenzyl)oxy)hex-5-en-2-yl)isoindoline-1,3-dione (6b)

Prepared according to the general procedure II. The crude mixture was purified by flash column chromatography (hexanes: $\mathrm{Et}_{2} \mathrm{O}, 95: 5$) in 81% yield (148 mg). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{dd}, J=5.0,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=5.0,3.1 \mathrm{~Hz})$, $7.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.75$ (ddd, $J=$ $15.8,10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (dd, $J=15.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ (dd, $J=10.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.97(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{q}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H})$. Data matches with reported molecule. ${ }^{5 \mathrm{a}}$

1-methoxy-4-(((2-tosylhex-5-en-1-yl)oxy)methyl)benzene (6d)

Prepared according to the modified general procedure II, reaction was conducted at room temperature using only THF as solvent for 24 h . The crude mixture was purified by flash column chromatography (hexanes: $\mathrm{Et}_{2} \mathrm{O}, 95: 5$) in 85% yield (159.2 mg). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.75-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.98(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.25-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.82-$ $1.70(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,144.8,137.3,136.1,129.9,129.8$, 129.6, 129.2, 116.4, 114.0, 73.2, 66.9, 64.6, 55.6, 31.1, 25.2, 21.9. HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 397.1441$. Found: 397.1444.
tert-butyl((1-((4-methoxybenzyl)oxy)oct-7-en-2-yl)oxy)dimethylsilane (6e)

Prepared according to the general procedure III. The crude mixture was purified by flash column chromatography (hexanes: $\mathrm{Et}_{2} \mathrm{O}, 98: 2$) in 68% yield (128.7 mg). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{ddq}, J=$ $13.4,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (ddd, $J=17.1,3.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (dd, $J=5.5,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.57-$ $1.23(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $159.4,139.4,131.0,129.5,114.6,114.1,74.9,73.3,71.8,55.6,34.9,34.1,29.4,26.3$, $25.1,18.5,-4.0,-4.4$. HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 401.2486$. Found: 401.2484 .
tert-butyl((1-((4-methoxybenzyl)oxy)dec-9-en-2-yl)oxy)dimethylsilane (6f)

Prepared according to the general procedure III. The crude mixture was purified by flash column chromatography (hexanes: $\mathrm{Et}_{2} \mathrm{O}, 98: 2$) in 63% yield $(128.1 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.86-5.76(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.56$ $-1.17(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.4,139.5,131.0,129.5,114.5,114.0,74.9,73.3,71.9,55.6,35.1,34.1,30.0,29.4$, 29.2, 26.3, 25.5, 18.5, -4.0, -4.4. HRMS (ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 429.2795. Found: 429.2795.

tert-butyl((1-((4-methoxybenzyl)oxy)undec-10-en-2-yl)oxy)dimethylsilane (6g)

Prepared according to the general procedure III. The
 crude mixture was purified by flash column chromatography (hexanes: $\mathrm{Et}_{2} \mathrm{O}, 98: 2$) in 65% yield
$(132.5 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 5.81(\mathrm{td}, J=16.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{dt}, J=23.3,10.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-$ $1.25(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.4,139.6,131.0,129.5,114.4,114.0,74.9,73.3,71.9,55.6,35.1,34.1,30.0,29.8$, 29.4, 29.3, 26.3, 25.5, 18.5, -4.0, -4.4. HRMS (ESI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Si}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 443.2949. Found: 443.2952
$N-((3 R, 5 R)-5-(($ tert-butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)hex-1-en-3-
 yl)aniline (7a)
Prepared according to the general procedure I using (R, R, R) - $\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 93:7) to give an oil in 68% yield $(90.1 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{ddd}, J=16.8,10.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~b}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.42(\mathrm{dd}, J=9.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=9.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,147.7$, 140.1, 130.6, 129.6(2C), 129.4(2C), 117.4, 115.6, 114.1(2C), 113.7(2C), 74.4, 73.3, 69.5, 55.6, 52.9, 41.0, 26.3(3C), 18.5, -3.8, -4.3. HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{Si}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 442.2772$ Found: 442.2774.
N-((3S,5R)-5-((tert-butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)hex-1-en-3yl)aniline (7b)

Prepared according to the general procedure using $(S, S, S) \mathbf{- 1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 93:7) to give an oil in 65% yield (86.2 mg). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.64$ (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.86-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.39(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{~b}, 1 \mathrm{H}), 4.08-4.00(\mathrm{~m}, 1 \mathrm{H})$, $3.95(\mathrm{dt}, J=10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{dd}, J=9.4$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=9.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}$, $3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,148.1,140.8,130.6,129.7(2 \mathrm{C})$, $129.3(2 \mathrm{C}), 117.2,115.0,114.1(2 \mathrm{C}), 113.6(2 \mathrm{C}), 74.2,73.4,69.2,66.2,55.6,53.1,41.2$, 26.3(3C), 18.4, -4.0, -4.5. HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 442.2772$ Found: 442.2773.

2-((2S,4R)-1-((4-methoxybenzyl)oxy)-4-(phenylamino)hex-5-en-2-yl)isoindoline-1,3dione (7e)

Prepared according to the general procedure using (R, R, R) - $\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 70:30) to give an oil in 67% yield $(91.9 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{dd}, J=5.4$, $3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.05(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{ddd}, J=16.4,10.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J$ $=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{tt}, J=9.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=18.6,9.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=9.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ $-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.92(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1(2 \mathrm{C}), 159.5$, 147.2 , 139.1, 134.2(2C), 132.2, 130.24, 129.6(2C), 129.4(2C), 123.9(2C), 123.5, 117.8, 116.1, 114.0(2C), 113.8(2C), 72.7, 69.4, 55.6, 53.6, 48.3, 34.5. HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 457.2122$ Found: 457.2123.

2-((3R,5R)-5-((tert-butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)hex-1-en-3-yl)isoindoline-1,3-dione (7c)

Prepared according to the general procedure using (R, R, R) - $\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 90:10) to give an oil in 54% yield (80.3 mg). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{dd}, J=5.4$, $3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.16$ (ddd, $J=17.7,10.2,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.25(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=14.4,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.49-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.34$ $(\mathrm{m}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=13.8,8.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.25,159.42,135.83,134.19$, 132.36, 130.66, 129.57, $123.47,118.36,114.03,74.51,73.30,69.31,55.60,50.48,37.72,26.26(3 \mathrm{C}), 18.49,-3.72$, -4.44. HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Si}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 518.2333 Found: 518.2343.

2-((2S,4S)-1-((4-methoxybenzyl)oxy)-4-tosylhex-5-en-2-yl)isoindoline-1,3-dione (7f)

Prepared according to the modified general procedure (I) using (S, S, S)-1 as catalyst. The reaction mixture obtained after oxidation step was brought inside the glove box and dissolved in 0.5 ml of THF followed by filtered through a 30 x 6 mm plug of silica gel (in a 9 mm pipette) and collected in another 4 ml vial. The silica gel was washed with 1.0 mL THF. The resulting THF solution was used for the next step. The crude mixture obtained after completion of second step, was purified by flash column chromatography (hexanes:EtOAc, 50:50) to give an oil in 53% yield (82.6 mg). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.66$ $(\mathrm{dt}, J=17.1,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-$ $4.38(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J$ $=9.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{ddd}, J=14.0,11.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 1.95$ (ddd, $J=14.4,11.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5(2 \mathrm{C})$, $159.5,145.0,134.4,132.0,130.1,129.8$ (2C), 129.6(2C), 129.5(2C), 129.4(2C), 123.7, 114.1, 72.9, 69.3, 67.4, 55.6, 48.7, 27.4, 22.00. HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{~S}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 542.1608$ Found: 542.1618.

4-methoxy- N-((3S,5S)-6-((4-methoxybenzyl)oxy)-5-tosylhex-1-en-3-yl)aniline (7g)

Prepared according to the general procedure I using (S, $S, S)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 70:30) to give an oil in 60% yield $(89.2 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{ddd}, J=16.8,10.4,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.13(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 1 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.8,152.5,144.9,141.5,139.4,135.8,130.0,130.0,129.9,129.8,129.6$ 129.3, 116.2, $115.2,114.1,73.2,67.1,62.1,56.1,55.6,31.9,30.0,22.0$. HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 496.2155$ Found: 496.2152.

Dimethyl 2-((2R,4R)-1-((4-methoxybenzyl)oxy)-4-((4-methoxyphenyl)amino)hex-5-en-2-yl)malonate (7d)

Prepared according to the general procedure using (R, $R, R)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 80:20) to give an oil in 57% yield (80.6 mg). ${ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{ddd}, J=16.4,10.2$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 1 \mathrm{H}), 3.66$ $(\mathrm{s}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , CDCl_{3}) $\delta 169.7,169.7,159.6,152.1,140.8,130.5,129.8,128.7,128.2,115.1,114.6$, $114.1,73.1,70.0,56.2,55.6,55.2,53.4,52.8,52.7,36.1,35.6,30.0$. HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 472.2331$ Found: 472.2330
N-((3S,7R)-7-((tert-butyldimethylsilyl)oxy)-8-((4-methoxybenzyl)oxy)oct-1-en-3-yl)-4methoxyaniline (7h)

Prepared according to the general procedure using $(S, S, S) \mathbf{- 1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give $\mathbf{7 h}$ as an oil in 65% yield (97.4 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.30-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.61-6.52(\mathrm{~m}$, $2 \mathrm{H}), 5.69$ (ddd, $J=16.9,10.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.64(\mathrm{~m}, 8 \mathrm{H}), 3.34(\mathrm{qd}, J=9.6,5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.58-1.30(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 159.4, $152.2,142.1,140.8,130.9,129.6,115.5,115.1,114.0,74.7,73.3,71.6,57.3,56.1,55.6$, 36.3, 34.9, 26.2, 21.9, 18.5, -4.0, -4.4. HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{NO}_{4} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 500.3191 Found: 500.3195
N-((3S,9R)-9-((tert-butyldimethylsilyl)oxy)-10-((4-methoxybenzyl)oxy)dec-1-en-3-yl)-4-methoxyaniline (7i)

Prepared according to the general procedure using (S, $S, S)-\mathbf{1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give $7 \mathbf{i}$ as an oil in 63% yield (99.7 mg). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.87 $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.84-5.61(\mathrm{~m}$, $1 \mathrm{H}), 5.17(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.90-3.69(\mathrm{~m}$, $8 \mathrm{H}), 3.4-3.2(\mathrm{~m}, 2 \mathrm{H}), 1.5-1.2(\mathrm{~m}, 8 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.4,139.5,131.0,129.5,114.5,114.0,74.9,73.3,71.9,55.6,35.1,34.1$, 30.0, 29.4, 29.2, 26.3, 25.5, 18.5, -4.0, -4.4. HRMS (ESI) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{NO}_{4} \mathrm{Si}$ ([M+Na] ${ }^{+}$): 528.3504 Found: 528.3501.
N-((3S,10R)-10-((tert-butyldimethylsilyl)oxy)-11-((4-methoxybenzyl)oxy)undec-1-en-3-yl)-4-methoxyaniline (7j)

Prepared according to the general procedure using $(S, S, S) \mathbf{- 1}$ as catalyst. The crude mixture was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give $7 \mathbf{j}$ as an oil in 65% yield (105.6 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.25(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.84-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.90-3.66(\mathrm{~m}, 8 \mathrm{H}), 3.43-3.26(\mathrm{~m}$, $2 \mathrm{H}), 1.55-1.23(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $159.5,141.0,131.0,129.5,115.3,115.2,114.1,74.9,73.3,71.9,57.4,56.2,55.6,36.2$, 35.1, 30.0, 29.9, 26.3, 26.2, 25.5, 18.5, -4.0, -4.4. HRMS (ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{NO}_{4} \mathrm{Si}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 542.3660$ Found: 542.3663
(((2R,4S)-4-(benzyloxy)-1-((4-methoxybenzyl)oxy)hex-5-en-2-yl)oxy)(tert-butyl) dimethylsilane (9)

Prepared according to the modified general procedure (I) using (S, S, S) $\mathbf{- 1}$ as catalyst.

The reaction mixture obtained after oxidation step was brought into a glove box. The reaction mixture was dissolved in 0.5 ml of dry toluene and filtered through a $30 \times 6 \mathrm{~mm}$ plug of silica gel (in a 9 mm pipette) and collected in another 4 ml vial. The silica gel was washed with 1.0 mL toluene. To the resulting solution, $\mathrm{K}_{3} \mathrm{PO}_{4}(95.5 \mathrm{mg}, 2$ equiv.) and the benzyl alcohol (2.0 equiv.) were added, followed by solution of iridium catalyst $1(13.0 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$ and 1-phenyl-propyne ($10.0 \mathrm{~mol} \%$) in 1.5 ml of dry toluene. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ until the linear benzoyl ester was fully consumed, as determined by GC or TLC. The crude reaction mixture obtained after second step, was purified by flash column chromatography (hexanes:EtOAc, 95:5) to give 9 as an oil in 53% yield (72.6 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.79-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=5.2$
$\mathrm{Hz}, 2 \mathrm{H}), 1.86(\mathrm{dt}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$, 0.01 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,139.1,139.0,130.9,129.5,128.6$, $128.1,127.7,123.6,122.9,117.8,114.0,102.1,73.2,70.3,69.2,55.6,41.1,26.3,18.5$, 3.8, -4.4.
(3R,5R)-3-(benzyloxy)-5-((tert-butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy) hexan-1-ol (10)

PMBO

To a dry 4 mL vial equipped with a magnetic stirring bar in the glove box, an alkene 3 (0.1 mmol), followed by a solution of $9-\mathrm{BBN}(0.5 \mathrm{M}$ solution in THF, 0.5 ml$)$. The mixture was allowed to stir at room temperature $\left(25^{\circ} \mathrm{C}\right)$. After $10 \mathrm{~h}, 0.2 \mathrm{ml}$ of water was slowly added. Evolution of gas was observed. After 10 min , Sodium perborate tetrahydrate (0.2 g) was added. The white suspension was stirred for 24 h . Reaction mixture was then filtered and washed with chloroform, solvent was removed and crude mixture was purified by flash column chromatography (hexanes:EtOAc, 85:15) to give 10 as an oil in 95% yield (46.0 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.41(\mathrm{~m}, 3 \mathrm{H}), 3.93-3.66(\mathrm{~m}, 7 \mathrm{H}), 3.40-3.30(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.84$ $(\mathrm{m}, 2 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,138.6,130.7,129.6,128.8,128.2,128.1,114.1,73.3,71.0,69.2$, 61.1, 55.6, 38.9, 36.2, 26.2, 18.9, 18.4, 11.5, -3.8, -4.5. HRMS (ESI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 497.2694 Found: 497.2691.

Reference

1. Lanners, S.; Norouzi-Arasi, H.; Khiri, N.; Hanquet, G. Eur. J. Org. Chem. 2007, 4065.
2. Hartmann, O.; Kalesse, M. Org. Lett. 2012, 14, 3064.
3. Harding, K. E.; Nam, D. H. Tetrahedron Lett. 1988, 29, 3793.
4. Wang, X.; Ye, Y. X.; Zhang, S. N.; Feng, J. J.; Xu, Y.; Zhang, Y.; Wang, J. B. J. Am. Chem. Soc. 2011, 133, 16410.
5. (a) Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130, 3316; (b) Smith, A. B.; Freeze, S. B.; LaMarche, M. J.; Hirose, T.; Brouard, I.; Xian, M.; Sundermann, K. F.; Shaw, S. J.; Burlingame, M. A.; Horwitz, S. B.; Myles, D. C. Org. Lett. 2005, 7, 315.
6. Polet, D.; Alexakis, A.; Tissot-Croset, K.; Corminboeuf, C.; Ditrich, K. Chem.Eur. J. 2006, 12, 3596.
7. Stanley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 8971.
8. Shu, C. T.; Leitner, A.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43, 4797.
9. Yamashita, Y.; Gopalarathnam, A.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 7508.
10. DiLauro, A. M.; Seo, W. J.; Phillips, S. T. J. Org. Chem. 2011, 76, 7352.
11. Haug, T. T.; Kirsch, S. F. Org. Biomol. Chem. 2010, 8, 991.

Spectral Data of Isolated Compounds

${ }^{\mathrm{Ph}} \backslash_{\mathrm{NH}}$

1

$\mathrm{Ph}_{\mathrm{NH}^{-}}$

Cl

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	1	,	,	1	,	1	1	,	1	1	,		1
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

Ph

1	1	1	,	1	,				,	1	1	1	1	1		
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-11

н

T	T	1	1	T	1	1	T	1	1	+	+	1	1	1	1	1	
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

T	1	T	1	1	1	1	1	1	1		1	1	T	1	1	1		1
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

1 胃解期
${ }^{13} \mathrm{C}$ NMR（ $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

8
\%

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	

1	1	1	T	1	1	1	1	1	T	1	T	1	1	1	,	1
150	140	130	120	110	100	90	80	$\begin{gathered} 70 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	60	50	40	30	20	10	0	-10

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

.	,	1	1	,	1	1	1	,	1	1	1	,	,	1	,	
150	140	130	120	110	100	90	80	$\begin{gathered} 70 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	60	50	40	30	20	10	0	-10

1	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
190	180	170	160	150	140	130	120	110	100	${ }_{\text {fl }}^{90}$ (p	80	70	60	50	40	30	20	10	0	-10

170	160	150	140	130	120	110	100	90	80	7			

| | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 7 | | |

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	,	1	1	1	1	1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

$\mathrm{C}_{4} \mathrm{H}_{9}$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	,	,	1	,	,	1	,	1	1	,	,	1	,	,	1	,		1
170	160	150	140	130	120	110	100	90		70	60	50	40	30	20	10	0	-10

	1			1	,		1	,	+	1	1	,	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6
1
1

	1		1	1	1	1	,	1	1	1	1	1	1	1	1	1	1
180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10

$\stackrel{s}{i}$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 3s-3-161p/11
AVQ -400 QVP

${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3)

1	T	1	1	T	1	1	1	1	1	+	1	1	1	1	1	1	1	1	1
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

㕸

䧺
等
${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）
PMBO

มูตฎต3
1 |if ${ }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	$\begin{aligned} & 88 \\ & \frac{88}{11} \\ & 17 \end{aligned}$	暣		$\begin{aligned} & \text { : } \\ & 0 \\ & 0 \end{aligned}$			$\frac{\pi}{1}$	纾
			${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3})					

$$
\begin{array}{llll}
9 & 5 & 8 & 8 \\
0 & 0 & 8 \\
1 & 0 & 11 & 1
\end{array}
$$

${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{llllllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 90 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

HPLC DATA:

**	Name	Retention Time (min)	Peak Type	Area ($\mu^{\prime} \mathbf{V}^{*}$ sec)	\% Area	Height ($\mathrm{H}^{\mathrm{V} \text {) }) ~}$	\% Height
1		14.842	Unknown	19661784	95.77	1062492	95.14
2		16.496	Unknown	869427	4.23	54222	4.86

[(Chiralpak OD-H) hexane/i-PrOH, 90:10, $0.5 \mathrm{~mL} / \mathrm{min}]$

[(Chiralpak OD-H) hexane/i-PrOH, 90:10, $0.5 \mathrm{~mL} / \mathrm{min}$]

5	Name	Retention Tine (min)	Peak Type	Area $(\mu \mathrm{V}$ ec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height	Ano
1		26.029	Unknown	3674094	94.63	99228	93.98	
2	29.809	Urknown	208525	5.37	6352	6.02		

using $(S, S, S)-1$

[(Chiralpak AD-H) hexane/i-PrOH, $90: 10,1.0 \mathrm{~mL} / \mathrm{min}]$

[(Chiralpak AD-H) hexane/i-PrOH, $90: 10,0.5 \mathrm{~mL} / \mathrm{min}$]

Na.	Retention Time (min)	Peak Type	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height	Ar
1	13.566	Unknown	5889876	93.85	194929	94.96	
2	21.364	Unknown	386279	6.15	10342	5.04	

[(Chiralpak OD-H) hexane/i-PrOH, 90:10, $1.0 \mathrm{~mL} / \mathrm{min}$]
Using rac-1

using $(R, R, R)-1$

N. Name	Retention Tine $($ min $)$	Peak Type	Area $(\mu \mathrm{V}$ *sec)	\% Area	Height $(\mu \mathrm{V})$	\% Height	A	
1		22.307	Unknown	8217120	98.37	285782	97.55	
2		23.502	Unknown	136375	1.63	7175	2.45	

[(Chiralpak AD-H) hexane/i-PrOH, 99:1, $0.5 \mathrm{~mL} / \mathrm{min}$]

| Name | Retention
 Time
 $($ min $)$ | Peak
 Type | Area
 $\left(\mu^{*}\right.$ sec $)$ | \% Area | Height
 $(\mu \mathrm{V})$ | \% Height | Ar |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 9.512 | Unknown | 949099 | 5.19 | 115572 | 7.06 | |
| 2 | 9.950 | Unknown | 17346713 | 94.81 | 1520952 | 92.94 | |

[(Chiralpak AD-H) hexane/i-PrOH, 99.1:0.1, $0.5 \mathrm{~mL} / \mathrm{min}$]

Name	Retention Time (min)	Peak Type	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height	
1		19.243	Unknown	44949844	96.36	971006	95.28
2		20.787	Unknown	1697140	3.64	48052	4.72

[(Chiralpak OD-H) hexane/i-PrOH, 99.1:0.1, $0.5 \mathrm{~mL} / \mathrm{min}$]

| Name | Retention
 Time
 $($ min $)$ | Peak
 Type | Area
 $\left(\mu^{*} \mathrm{sec}\right)$ | \% Area | Height
 $(\mu \mathrm{V})$ | \% Height | At |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 7.139 | Unknown | 1493791 | 3.99 | 185042 | 10.12 | |
| 2 | 8.789 | Unknown | 35983298 | 96.01 | 1643554 | 89.88 | |

[(Chiralpak AD-H) hexane/i-PrOH, 99.1:0.1, $1.0 \mathrm{~mL} / \mathrm{min}$]

Name	Retention Time (min)	Peak Type	Area $\left(\mu \mathrm{V}^{\wedge} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height	Am	
1		12.922	Unknown	11649743	98.77	519537	96.61	
2		15.724	Unknown	145535	1.23	7306	1.39	

[(Chiralpak OD-H) hexane/i-PrOH, $99 .: 0.1,0.5 \mathrm{~mL} / \mathrm{min}$]

[(Chiralpak OD-H) hexane/--PrOH, 99.9:0.1, $0.5 \mathrm{~mL} / \mathrm{min}]$

[(Chiralpak OD-H) hexane/i-PrOH, 99.1:0.1, $0.5 \mathrm{~mL} / \mathrm{min}$]

[(Chiralpak OJ-H) hexane/i-PrOH, 99.1:0.9, $0.5 \mathrm{~mL} / \mathrm{min}$]

[(Chiralpak OD-H) hexane/i-PrOH, $90: 10,0.6 \mathrm{~mL} / \mathrm{min}]$

15: Name
Retention Time (min) Peak Type Area $\left(\mu \mathrm{V}^{\wedge} \mathrm{sec}\right)$ \% Area Height $(\mu \mathrm{V})$ \% Height Amount 1 25.867 Unknown 83190747 93.28 1489834 94.16
2

[(Chiralpak OD-H) hexane/i-PrOH, 95:5, $1.0 \mathrm{~mL} / \mathrm{min}$]

Name	Retertion Tine $(m i n)$	Peak Type	Area $\left(\mu V^{\top} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
		14.172	Unknown	4780593	7.63	276887
	19.075	Unknown	57876648	92.37	1859507	87.05

[(Chiralpak OJ-H) hexane/i-PrOH, 90:10, $1.0 \mathrm{~mL} / \mathrm{min}$]

\$	Name	Retertion Tine $($ (nin)	Peak Type	Area $\left(\mu V^{\prime}\right.$ sec)	\% Area	Height $(\mu \mathrm{N})$	\% Height	A/
1		28.375	Unknown	15246557	50.41	228090	56.76	
2		31.545	Unknown	15000017	49.59	173754	43.24	

[(Chiralpak OJ-H) hexane/i-PrOH, 95:5, $1.0 \mathrm{~mL} / \mathrm{min}$]

