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I. DETAILED PROOF OF THE ABSENCE OF THERMAL RECTIFICATION IN

BULK SINGLE MATERIAL

For the insulated (adiabatic) surfaces Sins’s shown in Fig. 2, we have ∂T
∂~ν
|Sins

= 0, where

~ν is the surface normal vector. Heat conduction is governed by the heat diffusion equation,

~∇ ·
{

κ [T (~x)] · ~∇T (~x)
}

= 0, (S1)

where κ is the thermal conductivity tensor which only depends on temperature in the bulk

regime, but it is not necessarily isotropic. If we set the axes of the coordinate system along

the principal directions, i.e., κ is diagonal, we can linearize Eq. S1 through the Kirchhoff

transformation by defining a new quantity, Ki(T ) =
∫ T

ǫ
κi,i(T )dT + κi,i(ǫ), where κii is

the ith component of the diagonal of the thermal conductivity tensor. It is evident that

κi,i(T ) =
∂Ki(T )

∂T
. Physically, ǫ can be of any non-negative value as long as it is lower than

any phase-change temperature. Therefore,

κi,i[T (~x)] ·
∂T (~x)

∂xi

=
∂Ki[T (~x)]

∂xi

, (S2)

and Eq. S1 becomes
∑

i

∂2Ki

∂x2
i

= 0. (S3)

For the forward and backward cases, the only difference regarding Eq. S3 is the boundary

conditions at the two surfaces S1 and S2. We now have a complete set of partial differential

equations together with boundary conditions for the two cases, which are
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∑

i=1

∂2Ki,f

∂x2
i

= 0,

∂Kf

∂~ν
|Sins

= 0,

Ki,f |S1
= Ki(Thot),

Ki,f |S2
= Ki(Tcold),

(S4)

for the forward case, and










































N
∑

i=1

∂2Ki,b

∂x2
i

= 0,

∂Kb

∂~ν
|Sins

= 0,

Ki,b|S1
= Ki(Tcold),

Ki,b|S2
= Ki(Thot),

(S5)
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for the backward case, respectively. Summing up Eqs. S4 and S5 generates










































N
∑

i=1

∂2Ki,t

∂x2
i

= 0

∂Kt

∂~ν
|Sins

= 0,

Ki,t|S1
= Ki(Thot) +Ki(Tcold),

Ki,t|S2
= Ki(Tcold) +Ki(Thot).

(S6)

where we have defined Ki,t[T (~x)] = Ki,f [T (~x)]+Ki,b[T (~x)]. The subscripts f , b, and t stand

for ”forward”, ”backward”, and ”total”, respectively.

The solution to Eq. S6 is unique and must be a constant

Ki,t = Ki(Thot) +Ki(Tcold) = const. (S7)

Therefore,
∂Ki,t

∂xi

=
∂Ki,f

∂xi

+
∂Ki,b

∂xi

= 0. (S8)

Plugging in Eq. S2 leads to Eq. 2 in the main text.

II. NUMERICAL VERIFICATION OF THE ABSENCE OF THERMAL RECTI-

FICATION IN BULK SINGLE MATERIAL

To verify the analytical proof of the absence of thermal rectification in asymmetric bulk

single material, we use the finite element method with Ansys to solve a 2D heat transfer

problem. The structure is a right trapzoid, as shown in the inset of Fig. S1. For the forward

case, the temperature is maintained at 600 K on the left end, and 10 K on the right end,

and vice versa for backward. We consider both isotropic κ and anisotropic κ cases, and the

results are plotted in Fig. S1 and Fig. S2, respectively, with the κ-T curves in Fig. S3.

We select an arbitrary path across the structure, and measure the the heat flux vector

~J
′′ as a function of position on this path. In both Fig. S1 and Fig. S2, the heat flux vectors

at any position are same in magnitude but opposite in direction for forward and backward

cases. The results verifies our analytical proof of the absence of thermal rectification in

asymmetric bulk-size single material.

∗ Electronic address: ruan@purdue.edu
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FIG. S2: Numerical verification for anisotropic κ, i.e., κxx 6= κyy.
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FIG. S1: Numerical verification for isotropic κ. The inset is the structure used for the numerical

calculations. The heat flux, which has x and the y components, is measured along an arbitrary

path (from the filled circle to the filled square) as a function of the distance to the starting point.

f and b represent forward and backward cases, respectively.
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FIG. S3: κ’s used for the isotropic case in Fig. S1 and the anisotropic case in Fig. S2.
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