Supporting Information

For

Low Dose Detection of Gamma Radiation via Solvent Assisted Fluorescence Quenching

Ji-Min Han,[†] Miao Xu,[†] Brian Wang,[‡] Na Wu,[†] Xiaomei Yang,[†] Haori Yang,[§] Bill J. Salter^I and Ling Zang[†].*

[†] Department of Materials Science and Engineering, University of Utah, 36 S, Wasatch Dr., Salt Lake City, UT 84112

[§]Department of Nuclear Engineering& Radiation Health Physics, 3451 SW Jefferson Way, Radiation Center E108, Oregon State University Corvallis, OR 97331

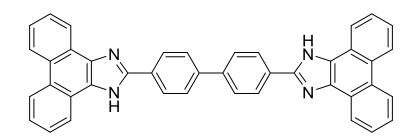
[‡] Department of Radiation Oncology, University of Louisville, 529 S. Jackson Street, Louisville, KY 40202

^IHuntsman Cancer Institute, Department of Radiation Oncology, University of Utah, 1950 Circle of Hope, Salt Lake City, UT 84112

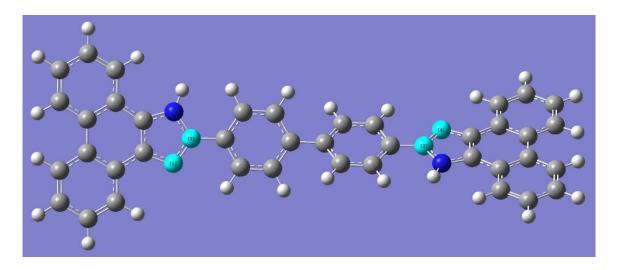
1. Materials and general methods

All the starting materials and organic solvents were purchased from Sigma-Aldrich and used as received. The silica gel and TLC plates (Silicycle Ultrapure Silica Gels SIL-5554-7) were purchased from EMD Chemicals Inc. UV-vis absorption spectra were measured on a PerkinElmer Lambda 25 spectrophotometer or Agilent Cary 100. Fluorescence spectra were measured on a PerkinElmer LS 55 spectrophotometer or Agilent Eclipse spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Varian Unity 300 MHz Spectrometer at room temperature in appropriate deuterated solvents. All chemical shifts are reported in parts per million (ppm). ESI MS spectra were recorded on a Micromass Quattro II Triple Quadrupole Mass Spectrometer, and the solvent used was methanol. The in situ temperature-controlled dynamic light scattering (DLS) measurements were performed on a Malvern Zetasizer Nano ZS (Malvern, Herrenberg, Germany) under the scattering angle of 173° at the wavelength of 378 nm for DPI-BP, and 356 nm for PI-Ph, respectively. Results at the temperature of 298K were reported as the average of five measurements with standard deviations. All the radiation experiments were irradiated by a 6 MV photon beam on a Varian/BrainLab Novalis Classic (Varian Medical Systems, Palo Alto, CA; BrainLAB AG, Feldkirchen, Germany) Linear Accelerator (LINAC)

at room temperature. The radiation output was calibrated by an ionization chamber to generate 0.01 Gy/MU (Monitor Unit) at maximum dose depth of 1.4 cm in water with a Source to Surface Distance (SSD) of 100 cm. The ionization chamber used has a calibration that is traceable to an Accredited Dosimetry Calibration Laboratory.

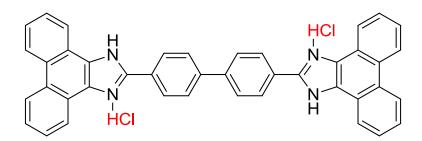

2. Fluorescence quantum yield measurement

Fluorescence quantum yield (Φ_s) of DPI-BP in chloroform solution was measured by using 9,10diphenylanthracene ($\Phi_{std} = 0.91$ in ethanol) as the standard. Value of Φ_s can be calculated according to Eq. (1), where I_s and I_{std} are the integrated emission intensities of the DPI-BP sample and the standard, respectively, A_s and A_{std} are the absorbance of the DPI-BP sample and the standard at the excitation wavelength, respectively, and η_s and η_{std} are the refractive indexes of the corresponding solutions (solvents).


$$\boldsymbol{\Phi}_{\rm s} = \boldsymbol{\Phi}_{\rm std} \left(I_{\rm s} / A_{\rm s} \right) \left(A_{\rm std} / I_{\rm std} \right) \left(\eta_{\rm s} / \eta_{\rm std} \right)^2 \tag{1}$$

3. Theoretical calculation

Geometry optimization and energy calculation of molecules were performed with density functional theory (B3LYP/6-311g**//B3LYP/6-31g*) using Gaussian 09 package.



DPI-BP

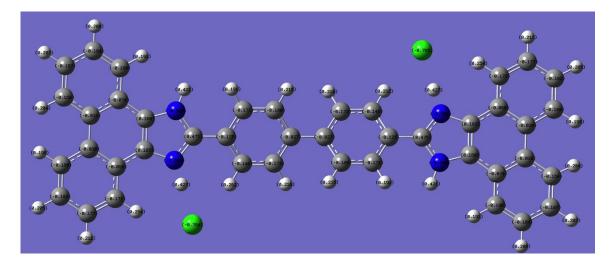


Figure S1. Energy minimized structure of DPI-BP, showing the strongly twisted, steric configuration. LUMO: -1.98 eV, HOMO: -5.38 eV, Gap: 3.4 eV.

Groups	Dihedral Angles
BPI-BPI	133.4
BP-BP	143.9
BPI-BP	174.8

DPI-BP/HCI Adduct

Figure S2. Energy minimized structure of DPI-BP/HCl adduct, showing almost co-planar configuration, favorable for π - π stacking. LUMO: -2.90 eV, HOMO: -6.0 eV, Gap: 3.1 eV.

Groups	Dihedral Angles
BPI-BPI	168.6
BP-BP	144.8
BPI-BP	-167.7
BPI-BP	-168.2

 Table S2 Dihedral Angles of DPI-BP/HCl Adduct

4. Absorption and fluorescence spectral change of DPI-BP upon HCl titration

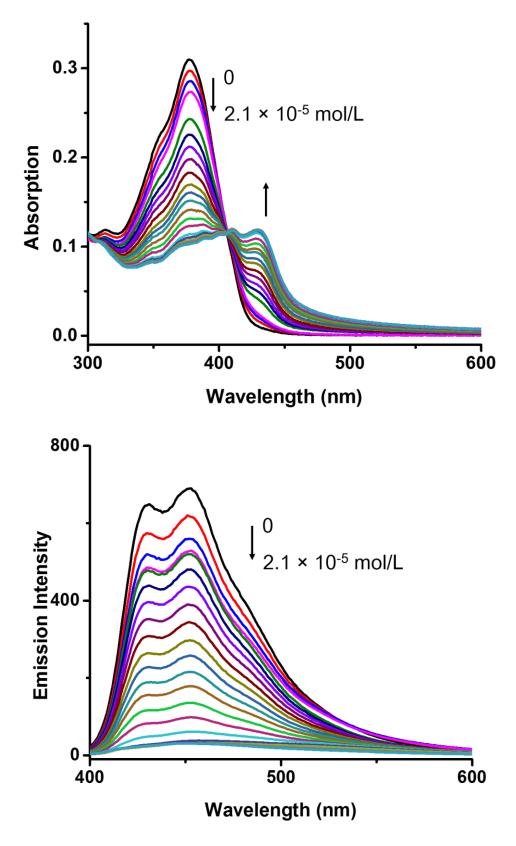
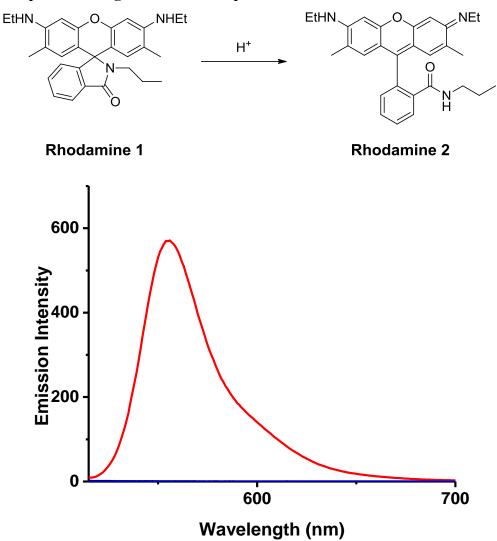
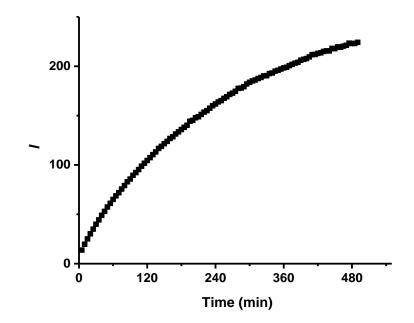
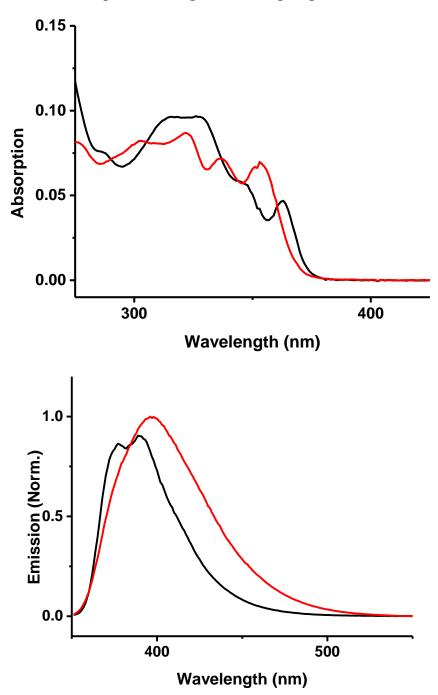



Figure S3. Absorption and fluorescent spectra of DPI-BP (5×10^{-6} mol/L CHCl₃ solution, 3.0 mL) upon


addition in the series of concentrations of HCl.

5. Fluorescence spectral change of Rhodamine pH sensor in different solvents


Figure S4. Fluorescence spectra of Rhodamine pH sensor ($5 \times 10^{-6} \text{ mol/L}$, 3.0 mL) in CHCl₃ (blue line) and 1:1 volume water:ethanol (red line) solution upon addition of 10^{-5} mol/L HCl (i.e., adding 15 µL of 2 mmol/L 1,4-dioxane solution of HCl). The spectra were recorded 1 min after addition of HCl.

6. Time dependent fluorescence intensity of Rhodamine pH sensor after addition of HCl

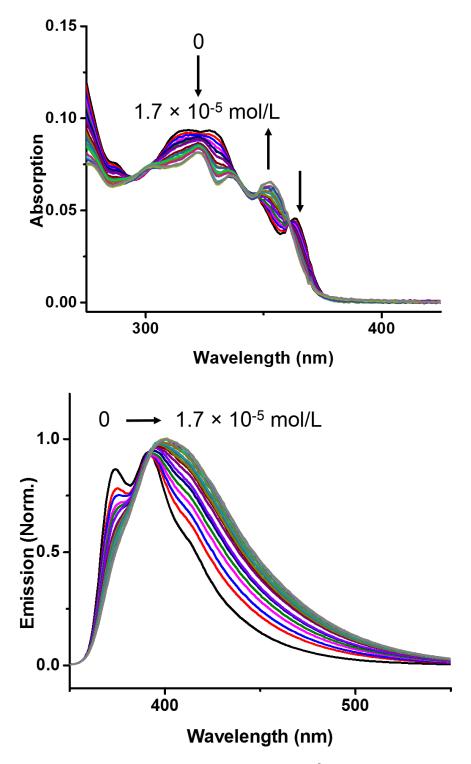


Figure S5. Time course of fluorescence intensity increase of Rhodamine pH sensor (5×10^{-6} mol/L in CHCl₃, 3.0 mL) after addition of 10^{-4} mol/L HCl (i.e., adding 15 µL of 20 mmol/L ethanol solution of HCl).

7. Absorption and fluorescence spectral change of PI-Ph upon gamma radiation

Figure S6. Absorption and fluorescence spectra of a CHCl₃ solution of PI-Ph ($5 \times 10^{-6} \text{ mol/L}$) recorded before (black) and after (red) exposure to 5.0 Gy of gamma radiation.

Figure S7. Absorption and fluorescence spectra of PI-Ph (5×10^{-6} mol/L CHCl₃ solution) upon addition in the series of concentrations of HCl.

9. Determination of binding constant of PI-Ph/HCl adduct through the HCl titration

$$\begin{array}{cccc} \mathsf{M} & + & \mathsf{L} & \leftrightarrows & \mathsf{ML} \\ \text{Initial concentrations:} & [\mathsf{M}]_0 & & 0 & & 0 \\ \text{After adding [L] :} & [\mathsf{M}]_0\text{-[\mathsf{ML}]} & [\mathsf{L}]\text{-[\mathsf{ML}]} & [\mathsf{ML}] \\ \text{Final concentrations:} & & 0 & & [\mathsf{L}]\text{-[\mathsf{M}]}_0 & [\mathsf{M}]_0 \end{array}$$

So we have the binding constant *K*:

$$K = \frac{[ML]}{([M]_0 - [ML])([L] - [ML])}$$
(2)

At initial state, we have the initial absorbance A₀:

$$A_0 = \varepsilon_M \cdot [M]_0 \tag{3}$$

Assuming $\mathcal{E}_L = 0$, after adding [L], the absorbance A will be

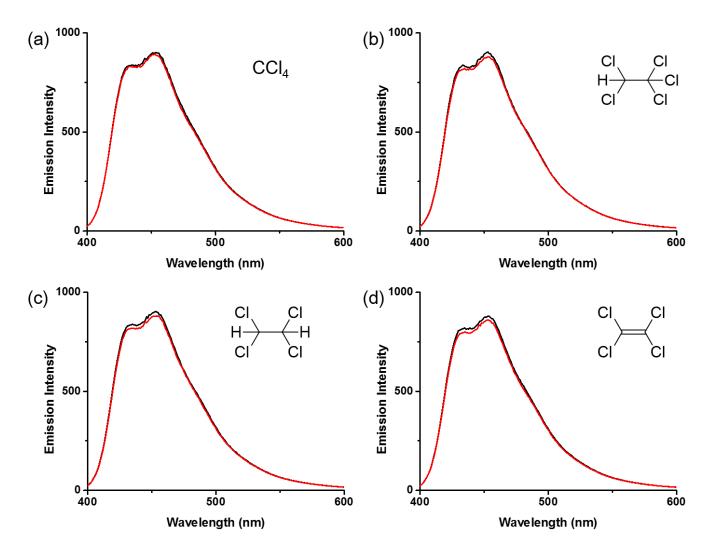
$$A = \varepsilon_M \cdot ([M]_0 - [ML]) + \varepsilon_{ML} \cdot [ML],$$

Rearrange this we have

$$[ML] = \frac{A - A_0}{\varepsilon_{ML} - \varepsilon_M} \tag{4}$$

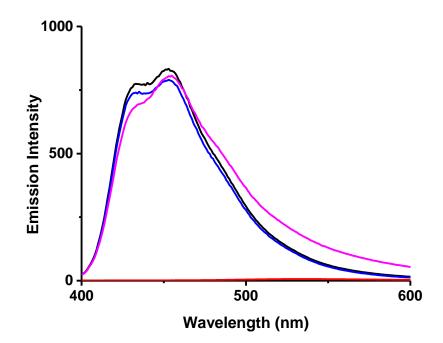
At final state, we have

$$A_{final} = \varepsilon_{ML} \cdot [M]_0 \tag{5}$$


Define $\Delta \varepsilon = \varepsilon_{ML} - \varepsilon_M$, substitute (2) with (3), (4), (5), we will have

$$K = \frac{\Delta \varepsilon \cdot (A - A_0)}{(\Delta \varepsilon \cdot [M]_0 - A + A_0)(\Delta \varepsilon \cdot [L] - A + A_0)}, \text{ solve } A, \text{ then we have}$$

$$A = \frac{1}{2\Delta\varepsilon} \cdot \left(\frac{1}{K} + [M]_0 + [L] + 2\Delta\varepsilon A_0 \pm \sqrt{\frac{1}{K^2} + \frac{2[M]_0}{K} + \frac{2[L]}{K}} + [M]_0^2 - 2[M]_0[L] + [L]^2\right)$$
(6)


Finally, fitting the data of Figure 4a with Eq. 6 gives $K = 1.92 \times 10^5$ L/mol.

10. Fluorescence spectral changes of DPI-BP upon addition of other radiation decomposed products from CHCl₃

Figure S8. Fluorescence spectra of DPI-BP (5×10^{-6} mol/L CHCl₃ solution) before (black) and after (red) upon addition of 5×10^{-4} mol/L (a) tetrachloromethane, (b) pentachloroethane, (c) 1,1,2,2-tetrachloroethane, and (d) tetrachloroethene.

11. Fluorescence spectral reversibility test of DPI-BP

Figure S9. Fluorescence spectra of DPI-BP (5×10^{-6} mol/L CHCl₃ solution) before (black) and after (red, baseline) 5.0 Gy gamma radiation. The fluorescence was recovered by addition of 5×10^{-5} mol/L triethylamine (blue), or 30 µL 5×10^{-3} mol/L NaOH EtOH:H₂O = 10:1 solution, corresponding to 5×10^{-5} mol/L NaOH (purple).

12. Determination of detection limit

(a) Based on absorption measurement shown in Figure 2c

The linear domain in low dose range can be fitted as

y = 29.495 x - 0.619

where y is the relative decrease in absorption $(100 \times (A_0-A)/A_0)$ measured at 378 nm), and x is the gamma radiation dose.

The standard deviation (σ) is defined as 100 × (A_{SE}/A₀), where A_{SE} is the standard error of the absorption measurement, as determined by the baseline measurement of blank samples (measured at 378 nm), A₀ is the absorption of DPI-BP (also measured at 378 nm). If defining three times of the standard deviation as the detectable signal, the detection limit can be projected as 3σ /slope = 3 × 100 ×

(0.00027/0.275)/29.495 = 0.01 Gy.

(b) Based on the fluorescence measurement shown in Figure 2d

The linear domain in low dose range can be fitted as

y = 40.998 x - 2.344

where y is the quenching ratio percentage, x is gamma radiation dose.

The standard deviation (σ) is defined as 100 × (I_{SE}/I₀), where I_{SE} is the standard error of the fluorescence intensity measurement, as determined by the baseline measurement of blank samples (monitored at 451 nm, at fixed instrumentation parameters, e.g., Ex. slit 5 nm, Em. slit 5 nm, PMT voltage 475 V), I₀ is the fluorescence intensity of DPI-BP (monitored at 451 nm, at the same instrumentation parameters). If defining three times of the standard deviation as the detectable signal, the detection limit can be projected as 3σ /slope = $3 \times 100 \times (0.80/898.5)/40.998 = 0.007$ Gy.