Supporting Information

Localized Reduction of Graphene Oxide by Electrogenerated Naphthalene Radical Anions and Subsequent Diazonium Electrografting

Joel Azevedo⁺, Laure Fillaud⁺, Céline Bourdillon⁺, Jean-Marc Noël⁺, Fréderic Kanoufi⁺, Bruno Jousselme⁺, Vincent Derycke⁺, Stéphane Campidelli⁺, Renaud Cornut⁺*

 CEA Saclay, IRAMIS, NIMBE, LICSEN, Gif-sur-Yvette Cedex F-91191, France.
Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques, UMR CNRS 7195- ESPCI ParisTech, 10 rue Vauquelin, F-75231 Paris Cedex 05, France.

EXPERIMENTAL AND TECHNICAL SECTION

S.1. Materials. Electrochemical measurements were performed in *N*,*N* dimethylformamide (Sigma Aldrich) and tetrabutylammonium hexafluorophosphate (Sigma Aldrich) as supporting electrolyte. Microelectrode fabrication required micrometric (10-250 μ m) diameter Pt-wire (Goodfellow, purity 99.9%), glass Pasteur pipettes, silver conducting paint (Electrolube) and standard copper connection wires (diameter < 0.3 mm). Standard procedures using a puller machine (PC10 Narishige) and abrasive disks (P4000 and P1000) were adopted. The resulting electrodes had a surrounding glass thickness ranging from 20 to 200 μ m, as observed with optical microscope. Nanoelectrodes were produced following a procedure described in the literature.¹

S.2. Substrate preparation. All standard chemicals and solvents of research grade were purchased from Sigma Aldrich and used as received. Si wafers covered with 150 nm-SiO₂ or pure quartz substrates were degreased in acetone and ethanol by ultrasonication and cleaned in a mixture of concentrated hydrochloric and nitric acid (3:1 ratio) at 90 °C for 1 hour. The GO preparation from graphite was performed using the standard Hummers method.² The graphene oxide film formation through the bubble deposition method used here has already been described in a previous report.³ In the present study, the substrates were exposed twice to a surfactant film containing GO flakes.

S.3. Electrochemical setup. SECM experiments were performed on the Princeton Applied Research 370 SECM Workstation. A conventional three-electrodes setup was used for the voltammetry and SECM experiments. It involved a platinum (Pt) microdisk working electrode, a zinc electrode as pseudo-reference (E = -1 V vs SCE, as verified by the ferrocene oxidation potential), and a 0.5 mm diameter gold wire auxiliary electrode. Zinc was used as reference electrode in order to be able to apply -2.6 V vs SCE (the apparatus limitation is -2 V / +2 V between the probe and the reference potentials). In order to remove the oxygen content, the whole set up was put in a plastic glovebox and degased during about 1 hour before experiment. The evaluation of the tip substrate distance for a given tip position was performed using the negative feedback response obtained when approaching to an unreduced zone. This is a standard procedure.⁴ For the 250 μ m electrode, the contact point was considered as the zero probe substrate distance. The precision achieved with such a strategy is adequate thanks to the small relative glass thickness (Rg \approx 2) of the probe. After reduction, we carefully washed the sample with ethanol and fresh DMF.

S.4 Electrografting and Gold nanoparticle capture

The electrochemical grafting was conducted in a single-compartment three-electrode cell with a potentiostat (Model VSP Bio-Logic SAS) in a glovebox. Ag/AgNO₃ (10 mM) electrode and a platinum wire served as reference and counter electrode, respectively. The GO/r-GO substrate with the patterned gold working electrodes was completely immersed in a solution of protonated 4-aminoethylbenzenediazonium tetrafluoroborate (10⁻³M). This compound was prepared using a procedure available in the literature,⁵ dissolved in tetrabutylammonium hexafluorophosphate (10⁻¹ M)/Acetonitrile electrolyte. The gold electrodes were connected with a passivated tungsten tip. Cyclic voltammetry technique (Scan rate: 100 mV/s; reduction between 0 V and -1 V vs Ag/AgNO3 (10 mM); 10 cycles) was used to create the active platform for surface immobilization of gold nanoparticles (NPs). Immobilization of Gold NPs onto the amonium-terminated Substrates was performed using a commercial Gold NP suspension (Sigma Aldrich, colloidal Gold nanoparticles 5 nm diameter, CAS: 7440-57-5). The substrate was immersed in the colloidal solution for 1 h and then thoroughly rinsed with water and ethanol.

S.5 XPS measurements

The efficiency of the electrogenerated naphthalene radical anion reduction was studied by X-ray Photoelectron Spectroscopy (XPS, KRATOS Axis Ultra DLD) with a monochromated Al K α line operating at 1486.6 eV. The vacuum in the sample chamber was maintained at 5x10⁻⁹ Torr during the measurements. The spectrometer was calibrated by assuming the binding energy of the Au 4f_{7/2} line at 84 eV with respect to the Fermi level. For the determination of O/C ratio, the C1s, O1s and Si2p area were normalized using the Scofield correction factors (respectively 0.817, 2.93 and 1 for Si2p, O1s and C1s). In all spectra, the Si2p peak associated to SiO₂ underlying

substrates was observed at the usual value of 99.5 eV. In order to extract the ratio O/C from the measurements, the contribution of the oxygen coming from the underlying SiO₂ layer was removed. For this, the Si2p peak was integrated and corrected using Scofield correction factors. Then the oxygen coming from SiO₂ was determined as the double of the corrected Si2p contribution. The remaining oxygen part (total corrected area of O1s minus oxygen from SiO₂) is attributed to the oxygen present in GO or r-GO and divided by the C1s peak area. See details in Table S1.

Calculus intermediates Substrate area		area	OIs peak	Si2p peak area (CPS.eV)	Corrected Si2p peak area (CPS.eV)	Remaining oxygen part (O1s - SiO ₂) (CPS.eV)	O/C x100
GO	8263.3	10398	3548.8	285.0	348.8	2851.1	34.5
Naphthalene radical anion r-GO	9997	4098	1398.6	223.0	272.9	852.7	8.5

Table S1: Intermediate results for the evaluation of the O/C ratio from XPS measurements.

(1) (a) Ballesteros Katemann, B.; Schulte, A.; Schuhmann, W. *Electroanalysis* **2004**, *16*, 60. (b) Velmurugan, J.; Sun, P.; Mirkin, M. V. J. Phys. Chem. C **2008**, *113*, 459.

(2) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.

(3) Azevedo, J. l.; Costa-Coquelard, C.; Jegou, P.; Yu, T.; Benattar, J.-J. J. Phys. Chem. C 2011, 115, 14678.

(4) Lhenry, S.; Leroux, Y. R.; Hapiot, P. Anal. Chem. 2013, 85, 1840.

(5) Griveau, S.; Mercier, D.; Vautrin-Ul, C.; Chaussé, A. Electrochem. Commun. 2007, 9, 2768.