Supporting Information for:

Photosensitive Polyamines for High-Performance Photocontrol of DNA Higher-Order Structure

Anna Venancio-Marques^{1,2,3}, Anna Bergen^{1,2,3}, Caroline Rossi-Gendron^{1,2,3}, Sergii Rudiuk^{1,2,3},

Damien Baigl^{1,2,3,*}

CONTENTS :

- **1-** Supplementary Texts
- Text S1. Polyamine charge as a function of pH
- Text S2. Role of the valence in counter-ion condensation

2- Supplementary Tables

- **Table S1**. Estimation of the *trans-cis* percentage of a solution containing a photosensitive polyamine (PPA) before and after illumination with UV light.
- **Table S2.** Time constants for *trans*-to-*cis* isomerization (τ₁) and *cis* to *trans* isomerization (τ₂)

3- Supplementary Figures

- **Figure S1.** p*K*^{*a*} values
- Figure S2. ¹H-NMR spectra of AzoTren under dark and UV conditions.
- **Figures S3–S5.** *trans*-to-*cis* isomerization kinetics (absorption spectra) under UV illumination of **AzoEn**, **AzoDeta** and **AzoTren**.
- Figures S6–S8. *cis*-to-*trans* isomerization kinetics (absorption spectra) in the dark (26 °C) of AzoEn, AzoDeta and AzoTren.
- Figure S9. Compaction curves for spermine (dark and UV).
- Figure S10. Compaction curves for AzoTren and various buffer concentrations.
- **Figures S11A–H.** Large-scale AFM images for the **AzoTren**-induced compaction followed by UV-induced unfolding of a 4.5 kbp linear DNA.
- Figures S12. Large-scale AFM image of a 4.5 kbp linear DNA in the presence of AzoTren (5.0 μ M), after successive application of UV (365 nm for 3 min) and blue light (440 nm for 3 min) illuminations.
- Figure S13. Molecular formula of AzoTAB.
- Figure S14. Compaction curves with experimental data points for AzoTAB (dark and UV).
- Figure S15. Scheme of the organic synthesis of PPAs

4- Supplementary References

1- <u>Supplementary Texts</u>

Text S1. Polyamine charge as a function of pH

Let *n* be the charge of the polyamine:

A) AzoEn :
$$pK_{a1} = 3.3$$
; $pK_{a2} = 6.8$; $pK_{a3} = 9.6$

$$n = \frac{\frac{K_{a1}K_{a2}}{10^{-2pH}} + 2\frac{K_{a1}}{10^{-pH}} + 3}{1 + \frac{K_{a1}}{10^{-PH}} + \frac{K_{a1}K_{a2}}{10^{-2pH}} + \frac{K_{a1}K_{a2}K_{a3}}{10^{-3pH}}}$$

B) AzoDeta:
$$pK_{a1} = 3.3$$
; $pK_{a2} = 4.4$; $pK_{a3} = 8.6$; $pK_{a4} = 9.6$

$$n = \frac{\frac{K_{a1}K_{a2}K_{a3}}{10^{-3pH}} + 2\frac{K_{a1}K_{a2}}{10^{-2pH}} + 3\frac{K_{a1}}{10^{-pH}} + 4}{1 + \frac{K_{a1}}{10^{-pH}} + \frac{K_{a1}K_{a2}}{10^{-2pH}} + \frac{K_{a1}K_{a2}K_{a3}}{10^{-3pH}} + \frac{K_{a1}K_{a2}K_{a3}K_{a4}}{10^{-4pH}}}$$

C) AzoTren :
$$pK_{a1} = 1.1$$
; $pK_{a2} = 3.3$; $pK_{a3} = 8.8$; $pK_{a4} = 9.3$; $pK_{a5} = 9.8$

$\frac{K_{a1}K_{a2}K_{a3}K_{a4}}{10^{-4\text{pH}}} + 2\frac{K_{a1}K_{a2}K_{a3}}{10^{-3\text{pH}}} + 3\frac{K_{a1}K_{a2}}{10^{-2\text{pH}}} + 4\frac{K_{a1}}{10^{-\text{pH}}} + 5$						
$n = \frac{1}{1 + \frac{K_a}{10^{-\mu}}}$	$\frac{1}{10^{-2}} + \frac{K_{a1}K_{a2}}{10^{-2}} +$	$\frac{K_{a1}K_{a2}K_{a3}}{10^{-3\text{pH}}}$	$+\frac{K_{a1}K_{a2}K_{a3}K_{a4}}{10^{-4\rm pH}}$	$+\frac{K_{a1}K_{a2}K_{a3}K_{a4}K_{a5}}{10^{-5\mathrm{pH}}}$		

Text S2. Role of the valence in counter-ion condensation

The role of the valence of non-photosensitive polyamines on DNA compaction was analyzed with particular care by Bloomfield¹ who emphasized the role of counter-ions in DNA compaction within the framework of the so-called Manning-Oosawa counter-ion condensation theory.^{2,3} Despite being a simplified model, based on a single chain at infinite dilution, this theory gives sound, first-order approximations of the phenomena that have been confirmed by experimental studies. The Manning-Oosawa counter-ion condensation theory looks at a DNA molecule as an isolated polyanion with an average distance b between DNA phosphate charges (0.17 nm) and studies the fraction θ of the DNA phosphate charges neutralized by the localization of DNA counter-ions in the vicinity of the DNA backbone. The neutralization parameter θ is especially relevant in the study of DNA compaction, as it has been experimentally determined that DNA undergoes a coil-globule transition when θ reaches a value around 0.89 to 0.90.4,5 Interestingly, the Manning-Oosawa theory establishes that the valence Z of the counter-ions plays an important part in setting the value of θ , as $\theta = 1 - b/(Z \cdot l_B)$ where $l_{\rm B}$ is the Bjerrum length (0.71 nm in pure water at 25 °C) comparing magnitudes of electrostatic interactions to thermal energy. This shows that θ increases with an increase in the valence of DNA counter-ions, and underlines the fact that higher valence counter-ions have a higher compaction efficiency. This corresponds to our experimental observations, as before addition of photosensitive polyamine, DNA counter-ions are monovalent and upon addition of compacting agent, there is an ion exchange that results in DNA counter-ions having a higher valence.1

2- <u>Supplementary Tables</u>

PPA	Dark ²		UV ³	
	trans [%]	<i>cis</i> [%]	trans [%]	<i>cis</i> [%]
AzoTren	75	25	26	74
AzoDeta	85	15	30	70
AzoEn	90	10	31	69

Table S1. Estimation of the *trans-cis* percentage¹ of a solution containing a photosensitive polyamine (PPA) before and after illumination with UV light.

¹Average value of four different intensity ratios (shown in figure S2); ² equilibration of sample at room temperature until photostationary state was reached; ³irradiation with UV light ($\lambda = 365$ nm) until photostationary state was reached.

Table S2. Time constants for *trans*-to-*cis* isomerization (τ_1) and *cis* to *trans* isomerization (τ_2)

	AzoEn	AzoDeta	AzoTren
τ_1	12 s	10 s	12 s
τ_2	67 min	63 min	294 min

3- <u>Supplementary Figures</u>

Figure S1. p*K*^{*a*} values for NH⁺/N indicated in red (*source: MarvinSketch for* p*K*^{*a*} *calculation*)

Figure S2. ¹H-NMR spectra of **AzoTren** (10 mM in D₂O, 300 MHz) after equilibration in the dark (top) and after irradiation with UV light ($\lambda = 365$ nm).

Figure S3. Conversion of *trans* to *cis* under UV illumination for **AzoEn** in water. Absorption spectra of **AzoEn** (70.0 μ M in water) in the dark (blue) and after various illumination times at 365 nm. The arrow indicates increments of 5 s. The inset shows the optical density at 356 nm (*OD*₃₅₆) as a function of increasing UV time; symbols are data points and the solid line the exponential decay fit.

Figure S4. Conversion of *trans* to *cis* under UV illumination for **AzoDeta** in water. Absorption spectra of **AzoDeta** (60.0 μ M in water) in the dark (blue) and after various illumination times at 365 nm. The arrow indicates increments of 5 s. The inset shows the optical density at 356 nm (*OD*₃₅₆) as a function of increasing UV time; symbols are data points and solid line the exponential decay fit.

Figure S5. Long-time acquisition of the *trans*-to-*cis* isomerization kinetics for all three PPAs. The optical density at 356 nm (OD_{356}) as a function of increasing UV time; symbols are data points and solid line the exponential decay fit.

Figure S6. *cis*-to-*trans* isomerization of **AzoEn** in the dark at 26 °C (70.0 μ M in water, spectra are recorded every 10 min until 180 min, then every 30 min). The inset shows the evolution of the optical density at 356 nm (*OD*₃₅₆) as a function of time.

Figure S7. *cis*-to-*trans* isomerization of **AzoDeta** in the dark at 26 °C (100 μ M in water, spectra are recorded every 10 min until 260 min, then every 30 min). The inset shows the evolution of the optical density at 356 nm (*OD*₃₅₆) as a function of time.

Figure S8. *cis*-to-*trans* isomerization for **AzoTren** in the dark at 26 °C (100 μ M in water, spectra are recorded every 10 min until 240 min, then every 30 min). The inset shows the evolution of the optical density at 356 nm (*OD*₃₅₆) as a function of time.

Figure S9. Percentage of DNA molecules in the compact state as a function of spermine concentration quantified by fluorescence microscopy, without (Dark, filled symbols) and with (UV, open symbols) illumination at 365 nm. Solid and dashed line are guide for the eyes. [T4 DNA] = 0.1 μ M in 10 mM Tris-HCl (pH = 7.4); YOYO-1 = 0.01 μ M; UV: 365 nm for 10 min prior to DNA introduction.

Figure S10. Percentage of DNA molecules in the compact state as a function of concentration of **AzoTren** under dark conditions quantified by fluorescence microscopy imaging for different Tris-HCl buffer concentrations: 10.0 mM (blue), 50.0 mM (red) and 100 mM (green), at pH = 7.4. [T4 DNA] = 0.1μ M; YOYO-1 = 0.01μ M.

Figure S11A–H. Large-scale AFM images of samples shown in Fig. 4 A-H

Image size: $2000 \times 2000 \text{ nm}^2$

Figure S11A. AFM image of a 4.5 kbp linear DNA (2 μ M in 10 mM Tris-HCl). [**AzoTren**] = 0 μ M, t(UV) = 0

Image size: $2000 \times 2000 \text{ nm}^2$

Figure S11B. AFM image of a 4.5 kbp linear DNA (2 μ M in 10 mM Tris-HCl). [**AzoTren**] = 0.5 μ M, *t*(UV) = 0

Image size: $2000 \times 2000 \text{ nm}^2$

Figure S11C. AFM image of a 4.5 kbp linear DNA (2 μ M in 10 mM Tris-HCl). [**AzoTren**] = 2.0 μ M, t(UV) = 0

Image size: $2000 \times 2000 \text{ nm}^2$

Figure S11D. AFM image of a 4.5 kbp linear DNA (2 μ M in 10 mM Tris-HCl). [**AzoTren**] = 4.0 μ M, *t*(UV) = 0

Image size: $2000 \times 2000 \text{ nm}^2$

Figure S11E. AFM image of a 4.5 kbp linear DNA (2 μ M in 10 mM Tris-HCl). [**AzoTren**] = 5.0 μ M, t(UV) = 0

Image size: $2000 \times 2000 \text{ nm}^2$

Figure S11F. AFM image of a 4.5 kbp linear DNA (2 μ M in 10 mM Tris-HCl). [**AzoTren**] = 5.0 μ M, *t*(UV) = 30 s

Image size: $2000 \times 2000 \text{ nm}^2$

Figure S11G. AFM image of a 4.5 kbp linear DNA (2 μ M in 10 mM Tris-HCl). [**AzoTren**] = 5.0 μ M, *t*(UV) = 60 s

Image size: $2000 \times 2000 \text{ nm}^2$

Figure S11H. AFM image of a 4.5 kbp linear DNA (2 μ M in 10 mM Tris-HCl). [**AzoTren**] = 5.0 μ M, t(UV) = 180 s

Image size: $2000 \times 2000 \text{ nm}^2$

Figure S12. Large-scale AFM image of a 4.5 kbp linear DNA (2 μ M in 10 mM Tris-HCl) in the presence of **AzoTren** (5.0 μ M), after successive application of UV (365 nm for 3 min) and blue light (440 nm for 3 min).

trans-AzoTAB

cis-AzoTAB

Figure S13. Molecular formula of AzoTAB.

Figure S14. Percentage of DNA molecules in the compact state as a function of concentration of the three photosensitive polyamines and AzoTAB quantified by fluorescence microscopy imaging, before (filled symbols) and after (open symbols) illumination. [T4 DNA] = 0.1 μ M in 10 mM Tris-HCl (pH = 7.4); YOYO-1 = 0.01 μ M; UV: 365 nm for 10 min prior to DNA introduction.

Figure S15. Scheme for the organic synthesis of the three PPAs.

4- Supplementary References

- (1) Bloomfield, V. A. DNA Condensation. Curr. Opin. Struct. Biol. 1996, 6, 334–341.
- (2) Manning, G. S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties. *J. Chem. Phys.* **1969**, *51*, 924.
- (3) Oosawa, F. In *Polyelectrolytes*; Dekker, M.: New York, 1971.
- (4) Wilson, R. W.; Bloomfield, V. A. Counterion-Induced Condensation of Deoxyribonucleic Acid. A Light-scattering Study. *Biochemistry* **1979**, *18*, 2192–2196.
- (5) Baigl, D.; Yoshikawa, K. Dielectric Control of Counterion-Induced Single-chain Folding Transition of DNA. *Biophys. J.* **2005**, *88*, 3486–3493.