
PTPDroid: Detecting Violated User Privacy
Disclosures to Third-Parties of Android Apps

Zeya Tan
School of Computer Science and Engineering
Nanjing University of Science and Technology

Nanjing, China

tanzeya@qq.com

Wei Song∗
School of Computer Science and Engineering
Nanjing University of Science and Technology

Nanjing, China

wsong@njust.edu.cn

Abstract—Android apps frequently access personal informa-
tion to provide customized services. Since such information is
sensitive in general, regulators require Android app vendors
to publish privacy policies that describe what information is
collected and why it is collected. Existing work mainly focuses
on the types of the collected data but seldom considers the
entities that collect user privacy, which could falsely classify
problematic declarations about user privacy collected by third-
parties into clear disclosures. To address this problem, we propose
PTPDroid, a flow-to-policy consistency checking approach and
an automated tool, to comprehensively uncover from the privacy
policy the violated disclosures to third-parties. Our experiments
on real-world apps demonstrate the effectiveness and superiority
of PTPDroid, and our empirical study on 1,000 popular real-
world apps reveals that violated user privacy disclosures to third-
parties are prevalent in practice.

Index Terms—Android app, privacy policy, third-party entities,
violation detection, taint analysis, empirical study

I. INTRODUCTION

Mobile applications (apps) are becoming increasingly per-

vasive. By March 2022, the apps in Google Play Store have

surpassed 2.9 million [1], and the Android platform has

held 83% of the smartphone OS market share [2]. With the

increasing market share and user acceptance, the risk of user

privacy leak and misuse becomes a tricky problem, because

apps increasingly use private information such as users’ lo-

cations, network information, and unique device information

to better provide customized services. Although Android op-

erating system applies a user-based permission system [3],

[4] to limit the sensitive information an app can obtain, data

leakage and misuse are still possible [5], [6], which could

be due to the low granularity of the permissions [7] and

the ambiguity of the phrases presented to users when they

install an app [8]. Hence, to protect user privacy, regulators,

such as the U.S. Federal Trade Commission (FTC), ask the

developers to provide the privacy policy in natural languages

to enumerate how applications collect, use, and share personal

information [9]. App developers are subject to a host of privacy

requirements that they have to comply with when disclosing

their app privacy policies.

Despite these efforts on advocating privacy policies, like

any software documentation, there are possibilities for the

∗ Corresponding author.

privacy policies to become inconsistent with the app code.

Privacy policies can be written by the persons who are not the

developers (e.g., lawyers), or the app code can change while

the privacy policy does not update accordingly. Such incon-

sistencies regarding an end user’s personal data, intentional or

not, can have legal repercussions [10], [11]. It is therefore a

good practice for Android apps to accurately and completely

state in their privacy policies what and how users’ private data

is used and for what purposes. However, this is not an easy task

for the developers or app vendors to achieve this, especially

those from small start-ups.

A recent thread of research begins to study the consistency

between privacy policies and Android apps [12], [13], [14],

[15]. The goal of these studies is to help developers be

aware of the violated disclosures in their privacy policies,

and help end users choose privacy-friendly apps. Conceptually,

these studies use a combination of static analysis and natural

language processing to check the flow-to-policy consistency,

that is, to determine whether an app’s behavior is consistent

with what is declared in the privacy policy.

While such prior studies have led to promising results,

they do not differentiate the entities (first-party entities and

third-party entities) that collect the data. However, third-party

entities are inevitably involved with the increasing interactions

between apps and the emerging app-in-app paradigm [16].

Therefore, the requirement that developers disclose the third-

party entities with which they are sharing information is

grounded in regulations, such as GDPR [17] and CCPA [9].

PoliCheck [18], the sole work considering entities, confirms

that entity-insensitive models may falsely classify 38.4% of

apps as having privacy-sensitive data flows consistent with

their privacy policies when one employs the policy dec-

larations discussing first-party collections to determine the

reasonableness of data flows to third-parties in the app code.

For accuracy, PoliCheck builds upon AppCensus [19], a

dynamic analysis tool to detect data flows that send user

private information to remote servers. However, AppCensus
only considers a part of data types (media, app list, calendar

are not considered). More importantly, the data flows obtained

by AppCensus is limited to the observed executions, and thus

some disclosures to third-parties may be missed.

To remedy the shortcomings of existing work, we pro-

Pre-print

pose an entity-sensitive flow-to-policy consistency checking

approach PTPDroid. A salient merit of PTPDroid is that

it can statically obtain more comprehensive data flows that

user privacy are collected by third-parties. PTPDroid tracks

sensitive data by starting at a pre-defined source (e.g., an API

method returning location information) and then following the

data until it reaches a given sink (e.g., a method sending

the information to the network). For the obtained data flows,

PTPDroid further determines the data types and third-party

entities, and finally classifies the data flows into four types

of disclosures, including clear disclosures, vague disclosures,

omitted disclosures , and incorrect (denied) disclosures (see

Section III). We use PTPDroid to study the flow-to-policy

consistency of 1,000 real-world Android apps and find that

violated user privacy disclosures to third-parties are prevalent

in practice. In those apps, only 3.8% (38/1,000) of them clearly

state the third-party entities and the shared data types in their

privacy policies, and 19% (190/1,000) of them omit or deny

the actual collection of user privacy data by third-parties in

their privacy policies.

In this study, we make the following contributions:

• We propose a flow-to-policy consistency checking ap-

proach PTPDroid, which is dedicated to comprehen-

sively detect the violated user privacy disclosures to third-

parties in the privacy policy.

• Based on PolicyLint [20] and FlowDroid [21], we im-

plement PTPDroid as an open-source tool.

• We evaluate the effectiveness and efficiency of PTPDroid
and show its superiority over the state-of-the-art with real-

world apps. Our empirical study on 1,000 popular real-

world Android apps reveals the severity of the violated

user privacy disclosures to third-parties in practice.

The rest of this paper proceeds as follows. Section II reviews

the background knowledge. Section III presents our approach.

Section IV evaluates our approach. Section V reviews the

related work and Section VI concludes the paper.

II. BACKGROUND

In this section, we introduce the background knowledge.

A. Privacy Policy

Privacy policy serves as the primary means to communicate

with users regarding which and how user private information

is accessed, collected, stored, shared, used/processed, and the

purposes of the information collection and sharing. From

privacy policies, users can learn about the behaviors in apps

that are not transparent to them. For example, Figure 1 exhibits

the content of the privacy policy of an app (SHEIN)1, which

covers all aspects that a privacy policy needs to state. There are

two most crucial parts. The first part describes which private

information will be collected by the app itself (first-party) and

the reason why the information is used for. The second part

demonstrates which private information will be shared with

which third-party entities. In this paper, we focus on the second

1https://us.shein.com/

part, that is, we only analyze whether the description of private

information collected by third-parties in the privacy policy is

consistent with the relevant behavior in the app code.

It is worth mentioning that the third-party entities we refer

to in this paper only include advertisers, analytics providers,

and service providers, which have specific names. Since policy

declarations cannot be used for automated reasoning, we need

natural language processing to extract from the policy the

formal representations of the data sharing declarations [20].

In this paper, we represent data sharing declarations as a

three-tuple (entity, action, data type) where the entity performs

action (collects, not collect) on the data type. For instance, the

declaration “We may share cookies with AppsFlyer to facilitate

our provision of the service.” can be represented by the tuple

(AppsFlyer, collects, cookie).

Fig. 1. The content of the privacy policy of SHEIN.

B. Ontology

Privacy policies may disclose data collection using a coarse-

grained description rather than the concrete data flows. For

example, a privacy policy may specify (advertiser, collects,

information) to disclose the data flow (AdMob, collects, phone

number). To match the policy declaration to the data flow, it

is important to be able to build the synonym and subsumptive
relationships between phrases. Such relationships are often

encoded into an ontology, which is a rooted directed acyclic

graph where nodes are ontology phrases and edges are marked

with the relationship between those phrases.

An ontology is a formal description of entities and their

properties, relationships, and behaviors [22], [23]. PTPDroid
uses two ontologies to represent the hierarchical classification

of data types and third-party entities, respectively. The hierar-

chical nature of an ontology allows for transitive relationships

that can be used for mapping strings to phrases indirectly.

III. PTPDROID

As shown in Figure 2, PTPDroid takes the privacy policy

and APK file of an app as input, and yields three kinds of

violated disclosures (about user privacy sharing with third-

parties) in the privacy policy as output, including: 1) vague
disclosures, referring to the situations that the declarations

Fig. 2. Workflow of PTPDroid.

about third-parties in the privacy policy use more general

phrases to describe the concrete data types or third-party

entities in the app code; 2) omitted disclosures, referring to

the situations that the specific behaviors that disclose the user

privacy to third-parties in the app code are not mentioned in the

privacy policy; 3) incorrect (denied) disclosures, referring to

the situations that the privacy policy denies the privacy sharing

behaviors to third-parties that actually take place in the app

code. The output could be an empty set if there are no such

violated disclosures. The workflow of PTPDroid consists of

the following four steps:

1) Ontology and mapping establishment. In this step, we

construct ontologies of private information and third-

party entities, respectively. Additionally, the mapping

from strings (e.g., method names or variable values)

of the relevant private information and third-parties to

phrases in the ontologies are established. Through the

mapping, all the concerned information obtained from

the app code and privacy policy will be converted into

phrases in the ontologies.

2) Privacy policy analysis. In this step, we analyze the pri-

vacy policy to extract all declarations related to the user

privacy collected by third-parties. These declarations are

converted into three-tuples, in the form of (entity, action,
data type), to facilitate consistency checking.

3) Static analysis. This step inspects the APK file through

static taint analysis to detect the data flows that the

app shares user private information to third-parties. The

relevant strings in the sink methods and source methods
are transformed into phrases in the ontologies via the

constructed mapping. A series of three-tuples, in the

form of (entity, collects, data type), are obtained.

4) Consistency checking. This step takes in two sets of

tuples obtained from privacy policy analysis and static

analysis respectively to detect inconsistency between

them. The details of each inconsistency are enumerated,

including the type of inconsistency, the relevant privacy

policy declaration, and the relevant data flow in the code.

TABLE I
DATA TYPES TRACKED VIA STATIC ANALYSIS

Data types
Ad ID, Android ID, serial number, IMEI, cookie, IP Address, media,
app list, contact, calendar, email, account, location, phone number

A. Ontology and Mapping Establishment

A common phenomenon in natural languages is generaliza-
tion, in which a more general phrase can be utilized to imply

several sub-concepts of the phrase. Since generalization can be

applied to both private information and third-party entities, we

build the ontologies for user privacy and third-party entities,

respectively. While ontologies can represent several different

types of relationships, we only need to consider subsumptive

(⊃) and synonym (≡) relationships which are sufficient for our

work. Based on the forms of strings of the relevant private in-

formation and third-party entities represented in the app code,

we build several phrase mappings: 1) API methods mapping

to phrases; 2) URI strings mapping to phrases; 3) package

names mapping to third-party entities; 4) destination domains

mapping to third-party entities; 5) IP addresses mapping to

third-party entities.

Ontology construction. Our analysis method is based on

PolicyLint [20], which is the state-of-the-art for privacy policy

analysis. We extend its privacy ontology and construct the

third-party ontology based on its generated third-party entities.

Table I lists all the data types we considered, which also

indicates that our privacy ontology only contains these phrases

and their hypernyms. Our privacy ontology extends that of

PolicyLint to add the data types PolicyLint misses, e.g., media,

app list, calendar, etc. We manually add the missing data

types and the edges between them and their hypernyms to

the privacy ontology.

We choose third-party entities and determine their relation-

ships through Appbrain2, a web site that lists the most

popular analytics and advertising organizations. For example,

2https://appbrain.com/

TABLE II
WAYS TO SHARE INFORMATION WITH THIRD-PARTIES

Sharing ways
external storage, intent, network, clipboard, content provider, broadcast

Unity is marked as an advertiser on this site. Therefore, we add

in the third-party ontology an edge between node advertiser
and node Unity to represent the subsumptive relationship

between them. Since the number of apps is explosive and some

apps do not collect user private information, it is not advisable

to take all of them in our third-party ontology. For this reason,

we use the most common advertisers and analytics providers

to build the initial third-party ontology, and add the other third-

party entities to the ontology manually when they are required

in the subsequent experiments. Altogether, 67 and 89 third-

party entities are initialized and finally involved, respectively.

Mapping establishment. With the ontologies constructed

via the above steps, the strings (e.g., APIs and variables) of

the private information and third-parties in the app code could

then be mapped to phrases in the ontologies.

An app can collect personal information through

three manners. (1) Call sensitive API methods, e.g.,

getLastKnownLocation() is called to obtain the

location information. (2) Through content providers [24],

e.g., invoking android.content.ContentResolver.
query() with content://com.android.calendar as an

argument to access the calendar information. For the

two examples above, we can obtain the mapping

pairs (getLastKnownLocation(), location) and

(content://com.android.calendar, calendar), respectively. To

look for the sensitive API methods and URI strings that

access different types of private information, we resort to

the data sets in SUSI [25] and Pscout [24]. (3) Request

to the app server, e.g., use org.apache.http.HttpResponse:
getEntity(advertising identifier) to get the server data. For

this, we obtain the sensitive data from the arguments of the

API invocation based on keyword similarity, for example, the

argument advertising identifier is mapped to Ad ID.

User privacy can be sent to third-parties through several

ways, and the common ways (provided by the developers from

ByteDance) are listed in Table II. We only consider the first

three ways as for the others we cannot identify a specific third-

party entity. For the first two ways, we first locate the API

invocations relevant to external storage or intent, and then we

can obtain the third-parties from the names of the packages

that these API invocations belong to. Next, we build synonym

lists for these third-party entities. Typically, the package name

contains terms that are unique to that third-party entity. For

example, the package name com.appsflyer contains the

third-party name Appsflyer as keywords. In this case, strings

can be mapped directly to third-party entities via keyword

matching. In other cases, for example, since the package

name com.firefox belongs to Mozilla, we manually extend

Mozilla’s synonym list to {Firefox, Mozilla}.

If an app sends some information to third-parties through the

network-related APIs, the arguments of these API invocations

are URLs in the form of destination domains or IP addresses.

If the URL is in the form of a domain, we can use either

of the two ways to determine the third-party entities. For the

domains like http://app.adjust.com, we use keyword extraction

to directly obtain the entity Adjust. While for the domains like

http://www.firefox.com, we manually construct a mapping pair

(http://www.firefox.com, Mozilla). Note that for the URL that

involves only IP address without domain name, we follow

PoliCheck [18] to perform a reverse-DNS search to resolve

the IP Address as a domain name. If it works, we construct

a mapping between the IP Address and the domain name.

Otherwise, we discard this IP Address.

B. Privacy Policy Analysis

To analyze privacy policies, we leverage PolicyLint [20],

which enhances prior approaches by extracting entities and

negative sentiment declarations. PolicyLint represents a policy

declaration as a four-tuple (actor, action, data type, entity).

For example, the declaration “We may share your location

information with advertisers” is represented as (we, share,

location, advertiser) by PolicyLint. As our analysis only

focuses on the behavior of third-parties, the field actor is

useless to our analysis. Therefore, we reduce the four-tuple

to a three-tuple (entity, action, data type). Meanwhile, we

abstract all positive actions into “collects” and all negative

actions into “not collect”. For the example above, the three-

tuple obtained by our privacy policy analysis is (advertiser,

collects, location).

It is worth mentioning that PolicyLint can find inconsis-

tencies in a privacy policy, which are referred to ambiguous
disclosures [20]. If the privacy policy contains logical contra-
dictions, i.e., two diametrically opposed descriptions, we do

not conduct the subsequent analysis for these contradictory

declarations because they inevitably affect the consistency

checking.

C. Static Analysis

Given the APK file of an app, we first perform the static taint

analysis to obtain the data flows that user private information

is collected by third-party entities. For the data flows, we then

determine the data types and third-parties related to the source

methods and sink methods based on the call graph. Finally,

we transform the obtained information (strings) into ontology

phrases according to our established mapping.

Before going into the details, we use an example of

sharing the device identifier to Facebook for illustrating our

static analysis (cf. Figure 3a). First, getDeviceId() is

specified as the source method because it gets user data,

and sendDataByPost() is specified as the sink method,

because it sends something outside. Based on the taint

analysis, we obtain a data flow from getDeviceId() to

sendDataByPost(). Then, we determine which data type

and which entities are involved in this data flow. Based on

the pre-established mapping discussed in Section III-A, we

know that the data type related to the source method is the

(a)

test.Main.main() test.DataService.sendDataByPost()

(b)

Fig. 3. Illustration of the static analysis: (a) Code snippet; (b) Call graph.

device identifier. To get the entities, we search backward for

the variables (whose value reflects third-party entities) in all

methods that point to the sink method in the call graph (cf.

Figure 3b). In the function main() which invokes the sink

method (sendDataByPost()), we find that a variable s
is passed to the sink method, and the variable value https:

//www.facebook.com indicates that the entity is Facebook
according to the mapping based on keyword similarity. Finally,

we get a three-tuple (Facebook, collects, device identifier).

Static taint analysis. Based on FlowDroid [21], we develop

the static taint analysis module to track the data flows in the

app bytecode. Altogether, we choose 78 APIs (from Android

SDK) that collect user privacy data as the source methods,

and choose 82 APIs that transfer or store Data as the sink

methods. The output of Flowdroid is a series of tuples in

the form of (source method, sink method). Each tuple implies

the existence of a path from the source method to the sink

method. We extend FlowDroid to also output the signatures

of the source method and the sink method. The signatures are

used to locate the methods in the call graph. Therefore, the

output is converted to a set of four-tuples in the form of (source
method, source signature, sink method, sink signature).

Analysis based on call graph. The results obtained through

the static taint analysis may not be directly used, because for

some source methods (e.g., ContentResolver.query())

and sink methods (e.g., HttpResponse.execute()), we

cannot get the data types and entities directly from the method

names. In this case, we search for the data types and entities in

the methods which (in)directly call the source method based

on the call graph.

For source methods, there are two situations in which we

cannot obtain the data types directly from the API names

based on the pre-established mappings from APIs to ontology

phrases: (1) APIs access content providers and (2) APIs

request to the server. For the former, we first locate the API

node in the call graph. Then, from the node, we adopt a reverse

DFS (depth-first search) strategy to traverse the call graph to

find all the methods which define the URIs of the content

providers and passed the URIs to the source method. Since

the URIs of content providers have already mapped to phrases

in the privacy ontology, we know the data types collected

by the source method. For instance, if a method invokes

Uri.parse(content://com.android.calendar)
to get the URI object, content://com.android.calendar
is recorded to obtain the mapped data type. For

the latter, we first find such source methods (e.g.,

org.apache.http.HttpResponse: getEntity())

in the call graph. Then, we obtain the sensitive strings

similarly based on the call graph. For example, if the string

advertising id is found in a method in the call graph and it

is passed to the source method, we record advertising id to

get the mapped data type.

For sink methods, if they are the network-related APIs (in

this case, we cannot directly obtain the entities from the pack-

age name of the APIs), we also employ a reverse DFS search in

the call graph to determine the URL strings (e.g., http://graph.

facebook.com). If they access a third-party through intent

(e.g., Intent.setClassName() or Intent.setCom-

ponentName()), we record all the strings passed to the

methods and obtain the strings related to third-party entities

based on keyword similarity. In some scenarios, there exist

no useful strings in the method for some reasons, such as

requesting the URL at runtime and getting the URL by

accessing the internal storage. In these cases, we record the

class name of the sink method. If the class name matches a

third-party SDK, we regard that the third-party collects user

private information.

Normalization. Although the strings in the data flows

contain information about third-party entities and data types,

they also need to be mapped to the phrases in ontologies to

facilitate consistency checking. For each of the strings, we

first determine whether it contains an ontology phrase by

keyword matching (e.g., http://graph.facebook.com contains

the ontology phrase Facebook). If it does, we directly convert it

to the ontology phrase. Otherwise, we convert it to an ontology

phrase based on the pre-established mappings. If there is no

mapping pair hit, we discard the data flow.

Filtering first-party entities. It is worth mentioning that

some data flows we detect are relevant to the first-party. Owing

to the scope of this paper, those data flows need to be excluded.

Therefore, when we analyze an app, we first build a set that

represents the first-party. For example, when we analyze the

app Instagram, the first-party set consists of Instagram and

Facebook. If the strings recorded match one of the first-party

entities, we discard such data flows.

D. Consistency Checking

The privacy policy analysis returns a set of three-tuples

summarizing the user privacy data collected by third-parties

stated in the privacy policy (summarized in PolicyResults),

while the static analysis yields a set of three-tuples showing

Algorithm 1 Consistency Analysis
Input: PolicyResults: three-tuples (entity, action, info) disclosed by privacy policy,

FlowResults: three-tuples (entity, collects, info) obtained from static analysis, Privacy
Ontology, Third-party Ontology

Output: ClearDisclosure, VagueDisclosure, OmittedDisclosure, DeniedDisclosure
1: ClearDisclosure, VagueDisclosure, OmittedDisclosure, DeniedDisclosure = ∅;
2: for each FlowRes ∈ FlowResults do
3: isOmitted = true; isVague = true;
4: for each PoliRes ∈ PolicyResults do
5: if PoliRes.entity � FlowRes.entity ∧ PoliRes.info � FlowRes.info then
6: isOmitted = false;
7: if PoliRes.action == not collect then
8: DeniedDisclosure.append(FlowRes, PoliRes);
9: isVague = false;

10: else
11: if FlowRes.entity≡PoliRes.entity∧FlowRes.info≡PoliRes.info then
12: ClearDisclosure.append(FlowRes);
13: isVague = false;

14: if isOmitted == true then
15: OmittedDisclosure.append(FlowRes);
16: else
17: if isVague == true then
18: VagueDisclosure.append(FlowRes), PoliRes);

the sensitive information shared to third-parties in the app

code (summarized in FlowResults). Algorithm 1 compares

each tuple in FlowResults with all tuples in PolicyResults to

detect the violated disclosures.

In Algorithm 1, for each tuple FlowRes in FlowResults ,

we maintain two variables isOmitted and isVague , which

are initialized to true. As we iterate through the tuples in

PolicyResults , the value of isOmitted is changed to false if

a match is found. After we have gone through all the tuples in

PolicyResults , if the value of isOmitted is true, it implies

that no match to FlowRes is found in the privacy policy,

and thus FlowRes is an omitted disclosure. If the value of

isVague is true, it implies that there exists no clear disclosure

or denied disclosure, and thus FlowRes is a vague disclosure.

Here, “match” (�) means that the third-party and data type of

PoliRes and those of FlowRes are in subsumptive or synonym

relationships, respectively. In this situation, if the declaration

of PoliRes is with a negative sentiment (not collect), it is

a denied disclosure. If the declaration of PoliRes is with

a positive sentiment (collects), we then further determine

whether it is equivalent to FlowRes . If yes, it is a clear

disclosure. Otherwise, it is a vague disclosure.

IV. EVALUATION

In this section, we evaluate PTPDroid with large real-

world Android apps, and aim to answer the following research

questions (RQs).

• RQ1: Efficacy. What is the accuracy of PTPDroid in

analyzing app code and privacy policies, respectively?

And, how efficient is the analysis?

• RQ2: Superiority. Compared to the state-of-the-art, what

is the advantage of PTPDroid?

• RQ3: Empirical study. Are violated user privacy disclo-

sures to third-parties prevalent in practice?

Data availability. We implement PTPDroid in Java and

publish it as an open-source tool. We use PTPDroid to analyze

real-world apps on a computer with an Inter Core i7-4790

3.60GHz CPU and 16 GB of memory, running Windows 8.1,

JDK 1.8, and Android 8.0.

A. Effectiveness and Efficiency

It is challenging to establish the ground truth to evaluate

the effectiveness of both static analysis and privacy policy

analysis. Since the most popular Android apps are well-

tested and long-recognized, we expect that they faithfully and

correctly state which private information is shared to third-

parties. With this expectation, we seek the most popular apps

whose privacy policies clearly state the data flows to third-

parties, and utilize their privacy policies as the ground truth

for both static analysis and privacy policy analysis.

Our experiment to answer RQ1 proceeds as follows. Firstly,

we download the recommended 100 best Android apps3 (July,

2021) and the top-200 Android apps from Google Play (July,

2021). Since these two sets of apps have some overlap, we

obtain 276 apps in total. Secondly, we manually check the

privacy policies of the 276 apps, and unfortunately, only 24

apps whose privacy policies clearly state how the user privacy

discloses to third-parties are preserved. Of the 24 apps, a

few app privacy policies employ tables to state user privacy

disclosures to third-parties. For this case, we transform the

tables into plain texts of natural language. Thirdly, we employ

the 24 apps as the benchmark to conduct the experiment.

Specifically, we ask two group members (not authors of this

paper) to read the privacy policies of the 24 apps, and to

independently write down the three-tuple for each of the item

that is relevant to third-parties. If the tuples written by the

two group members are inconsistent, the third group member

is involved to resolve the differences. In this way, we obtain a

tuple set T for each of the 24 apps, and this tuple set is used

as the ground truth for both static analysis and privacy policy

analysis. Finally, we apply PTPDroid to the 24 apps. Assume

that the obtained results (tuple sets) of the static analysis and

privacy policy analysis are recorded in Ts and Tp, respectively.

We adopt the F-score of precision and recall to evaluate the

effectiveness of the two analysis. For example, the F-score of

the static analysis is obtained as follows: precision =
|Ts∩T |
|Ts| ,

recall =
|Ts∩T |
|T | , and F -measure = 2× precision×recall

precision+recall .

Table III summarizes the experimental results, where the

columns “Recall” and “F-score” list the actual recall and F-

score, as well as those (in the brackets) when the false neg-

atives caused by code obfuscation are excluded. The average

precision of our static analysis reaches up to 87.9%. For those

false positives of the static analysis, most are due to that

our construction of third-party ontology is inadequate. For

example, we detect that the third-party Moat collects the de-

vice identifier in more than one app (FileMaster, OneBooster,

and Ibis) but this is not declared in the privacy policies. In

this case, we find that the privacy policy uses another phrase

(such as the organization name of Moat) to replace Moat, so

this can also be regarded that the privacy policy has a vague

disclosure. The average recall of our static analysis reaches to

3https://www.digitaltrends.com/mobile/best-android-apps/

TABLE III
EXPERIMENTAL RESULTS ANSWERING RQ1

App Static analysis Policy analysis
Precision Recall F-score Time F-score Time

Duolingo 100% 75% (100%) 85.7% (100%) 12.3 m 100% 2.8 m
Kinemaster 100% 66.7% (66.7%) 80.0% (80%) 10.3 m 100% 2.6 m

APnews 66.7% 50% (75%) 57.2% (70.6%) 9.1 m 100% 1.8 m
Moon+ 50% 50% (100%) 50% (66.7%) 9.7 m 100% 3.4 m

ShopPackage 66.7% 40% (60%) 50.0% (63.2%) 12.7 m 100% 2.4 m
Kik 100% 33.3% (66.7%) 50.0% (80.0%) 5.4 m 100% 2.5 m

MicrosoftT∗ 100% 33.3% (33.3%) 50.0% (50.0%) 6.2 m 100% 2.1 m
Indeed 100% 25% (50%) 40% (66.7%) 6.5 m 100% 2.8 m

Geocaching 100% 25% (50%) 40% (66.7%) 7.1 m 100% 2.0 m
BodyFast 75% 75% (75%) 75% (75%) 8.3 m 100% 1.8m

FileMaster 88.9% 53.3% (80%) 66.6% (84.2%) 6.2 m 100% 3.9 m
Urbandroid 100% 100% (100%) 100% (100%) 12.6 m 100% 2.4 m
EverMatch 80% 75% (75%) 77.4% (77.4%) 9.2 m 100% 2.5 m
Headway 100% 40% (100%) 57.1% (100%) 5.3 m 100% 1.6 m

OneBooster 91.6% 78.6% (85.7%) 84.6% (88.6%) 10.5 m 100% 2.5 m
Ibis 83.3% 71.4% (71.4%) 76.9% (76.9%) 8.7 m 100% 3.3 m

Kptncook 100% 75% (100%) 85.7% (100%) 11.3 m 100% 2.7 m
Reality 100% 100% (100%) 100% (100%) 17.3 m 100% 3.6 m
Ashley 100% 40% (40%) 57.1% (57.1%) 8.1m 100% 2.4 m

GetContact 66.7% 40% (80%) 50.5% (72.7%) 5.9 m 100% 2.3 m
Blob 85.7% 75% (81.3%) 80.0% (83.4%) 12.1 m 100% 2.2 m
Infly 80% 80% (80%) 80% (80%) 9.9 m 100% 2.3 m

PhoneOpt∗ 92.3% 80% (86.7%) 85.7% (89.4%) 12.3 m 100% 2.7 m
PowerfulC∗ 83.3% 66.7% (80%) 73.6% (81.6%) 11.4 m 100% 1.9 m

Average 87.9% 60.3% (76.5%) 68.9% (79.6%) 9.5 m 100% 2.5 m

60.3%. If we exclude third-parties that are obfuscated in the

app code, the average recall can reach to 76.5%. There are

two main reasons for the false negatives of the static analysis.

First, some third-parties (e.g., websites) can only be obtained

at runtime. Second, our static analysis (also the other static

analysis techniques) can only analyze the app code of the client

side, whereas user privacy can be sent to third-parties by the

app code of the server side. The average F-score of the static

analysis reaches to 68.9% and if third-parties obfuscated in the

code are excluded, the average F-score can increase to 79.6%.

These indicate that our static analysis of the data flows to third-

parties tends to be effective. The average F-score of the privacy

policy analysis is 100%, which demonstrates that our privacy

policy analysis that extends PolicyLint is also effective. The

average time cost of the static analysis and privacy policy

analysis is 9.5 minutes (m) and 2.5 minutes, respectively. Thus,

it takes about on average 12 minutes in total to analyze a large

Android app.

B. Comparison and Superiority

To answer RQ2, we compare PTPDroid with

PoliCheck [18], the-state-of-the-art tool that can detect

violated user privacy disclosures to third-parties. PoliCheck
employs PolicyLint [20] to process privacy policies and

AppCensus [19] to analyze the app code. Since we also

use PolicyLint to analyze privacy policies, we compare

PTPDroid with PoliCheck only based on the results of code

analysis. Note that AppCensus (thus PoliCheck as well) is

not open-source or publicly available, we can only retrieve

its analysis results in AppSearch4. We randomly select

48 popular apps AppCensus analyzed, covering various

types and functionalities. We download these apps of the

same versions from androidapksfree.com. For the results of

Appcensus, only the obtained data flows that are relevant to

third-parties are preserved. In addition, we remove data flows

4https://search.appcensus.io/

TABLE IV
EXPERIMENTAL RESULTS ANSWERING RQ2

App AppCensus PTPDroid Intersection
Accuweather v6.1.2 2 11 2

Askfm v4.38.4 0 27 0
Bitmoji v10.61.105 1 2 1

CalorieCounter v19.6.10 4 12 4
Camfrog v7.0.4.55 5 10 5

Dailymotion v1.36.12 6 4 3
Diskdigger v1.0 0 0 0
eBay v5.38.0.14 1 6 1
Edmodo v10.6.1 1 3 1
FieldTrip v2.0.9 0 0 0

FileCommander v6.2.33122 1 6 1
FilmoraGo v3.1.4 1 4 1

Firefox v68.3.0 0 2 0
HAGO v2.12.7 2 4 2

Hulu v3.62.1.307830 2 6 2
GooglePlayGames v5.13.7466 0 0 0

Instagram v123.0.0.21.114 1 1 1
JioChat v3.2.7 1 2 1

Maps-Navigate v10.4.1 0 0 0
Medscape v5.0 4 5 3

Mercado v9.47.5 1 3 1
MemeGenerator v4.557 6 10 3

Netflix v7.14.0 1 2 1
Nova v6.2.3 0 0 0

Periscope v1.24.18.69 5 8 5
Pinterest v7.38.0 4 8 3
Pocket v6.7.15.7 1 3 1

Prisma v3.1.4.381 4 9 3
Psiphon v244 1 3 0
Quora v2.5.13 0 2 0

SHAREit v4.7.48 1 5 1
Snapchat 10.45.7.0 0 4 0
Skype v8.55.0.123 0 3 0

Steam v2.3.11 0 0 0
Tango v6.16.240967 2 12 2

TikTok v9.6.0 3 10 3
Twilight v10.3 0 0 0
Twitter v7.93.2 1 2 1

UCBrowser v12.11.3.1204 2 5 2
Viber v12.1.0.11 2 10 2
Wattpad v8.45.0 4 14 4
Waze v4.52.3.4 0 1 0
WeChat v6.7.3 0 0 0

Windfinder v3.8.2 0 4 0
WWE v4.0.24 2 3 2

Xbox v1910.1023.1856 1 2 1
Yelp v10.28.0 3 10 3

YouNow v15.9.7 4 10 4
Aggregate 80 248 70

where the entities are the third-parties (e.g., those employ

advertisers) of the third-parties (e.g., advertisers) of the app.

The comparison results are summarized in Table IV.

As shown in Table IV, AppCensus detects a total of 80 data

flows that third-parties collect user privacy, while PTPDroid
detects 248 such data flows. There are 70 data flows that are

detected by both tools. Of all 48 apps, PTPDroid detects more

data flows in 34 of them and the same data flows in eight

of them. However, for the remaining six apps, AppCensus
detects more data flows than PTPDroid does. For the 10 data

flows that PTPDroid fails to detect, we analyze their source

code and find the reasons which are summarized in Table V:

Among the 10 undetected data flows, three are due to code

obfuscation, five are because the third-parties request private

information directly from the app server side, and the last two

impute to the inherent limitations of our static analysis. The

first two reasons are further explained as follows.

Code obfuscation. Some undetected data flows are due to

TABLE V
DETAILS OF THE DATA FLOWS UNDETECTED BY PTPDROID

App Code obfuscation Request to server Others
Dailymotion 1 1 1
Medscape 1

Memegenerator 2 1
Pinterest 1
Prisma 1
Psiphon 1

Aggregate 3 5 2

TABLE VI
THE DISTRIBUTION OF DIFFERENT DISCLOSURES TO THIRD-PARTIES

ACROSS APPS AND DATA FLOWS

111 Clear Vague Omitted Denied
Apps 38 719 178 12

Data flows 324 2,389 605 33

code obfuscation, which is used to prevent app decompilation

by rewriting various elements of the app code to meaningless

strings. For example, in app Pinterest, the third-party library

Crashlytics is obfuscated into com.b.a.a. As a consequence,

the relevant data flow is not pinpointed by PTPDroid. The

same situation occurs to Prisma and Dailymotion, where the

third-party libraries Amplitude and Branch are obfuscated into

o0Q10 and a.a, respectively.

Request to server. As aforesaid, for the APIs that request

to the app server, we cannot get the data type directly from the

API names. In this case, we search for the variables which can

map to data types from the arguments (in)directly passed to

the source methods. Nonetheless, this does not always work.

For example, in app Medscape, we do find the data flow that

the third-party Appboy requests information from the server,

but we do not find the arguments that can be mapped to any

data type. Consequently, we have to discard the data flow.

The experimental results indicate that although our static

analysis misses some data flows due to reasons like code

obfuscation, PTPDroid still detects 168 more data flows

than PoliCheck (AppCensus) does, because the latter is

limited to the observed exploration (major cause) and does

not consider some data types (minor cause). These results

justify the necessity ofPTPDroid. Although PTPDroid shows

advantages, it and PoliCheck are complementary in practice.

Additionally, we also compare our entity-sensitive consis-

tency model with the entity-insensitive consistency model [12],

[13], [14], [15]. The result shows that for the 248 data flows

detected by PTPDroid, under the entity-sensitive consistency

model, 45 of them are clear disclosures, 198 are vague

disclosures, and 5 are omitted disclosures. Whereas if the

entity-insensitive consistency model is adopted, 215 are clear

disclosures and 33 are vague disclosures, with 68.5% of the

data flows are incorrectly classified. The experimental results

demonstrate that the entity-sensitive consistency model more

precise than the entity-insensitive consistency model.

TABLE VII
THE TOP-10 THIRD-PARTY ENTITIES IN 1,000 APPS

Entity Category #Apps Proportion
Facebook Advertiser 322 32.2%

Admob Advertiser 214 21.4%
Unity Advertiser 147 14.7%
Moat Analytics 113 11.3%

Crashlytics Analytics 86 8.6%
Vungle Advertiser 74 7.4%

Adcolony Advertiser 68 6.8%
AppsFlyer Analytics 57 5.7%

Adjust Analytics 57 5.7%
Applovin Advertiser 53 5.3%

C. Empirical Study on 1,000 Commercial Apps

To investigate how severe violated user privacy disclosures

to third-parties are in practice, we further apply PTPDroid
to 1,000 commercial Android apps randomly selected and

downloaded from the app store of Google Play. These 1,000

apps cover various categories and functionalities, and with

sufficient downloads. The privacy policies of these 1,000 apps

are all in English. The empirical results are summarized in

Table VI and we gain the following primary findings.

Primary results. For a total of 3,351 data flows to third-

parties across 947 apps, there are 11 distinct data types shared

with 88 different third-party entities. Overall, device identifiers

are the most frequently collected data type, which accounts

for 87.5% (2,931/3,351) of data flows to 93.2% (82/88) of

unique third-parties. Locations are at the second place, which

account for 9.2% (308/3,351) of data flows. For the data flows,

Facebook is the most common advertiser recipient, which

accounts for 13.7% (458/3,351) of data flows involving four

unique data types and across 32.3% (323/1,000) of apps. Moat
is the most popular analytics providers, which accounts for

6.1% (205/3,351) of data flows across 11.3% (113/1,000) of

apps. The top-10 third-party entities (and their statistics) with

which the 1,000 apps frequently share user data is summarized

in Table VII. Surprisingly, we find that 19% (190/1,000)

of apps contain at least one omitted disclosure or denied

disclosure. The remainder of this section discusses the concrete

findings of our empirical study.

Finding 1: Only 3.8% (38/1,000) of apps detail all cooper-

ating third-party entities in their privacy policies. And only

9.7% (324/3,351) of data flows to third-parties are explicitly

declared by the declarations in the privacy policies that

pinpoint the exact transmitted data types and exact third-

party entities.

Clear disclosures. In total, only 324 data flows to third-

parties are clear disclosures. Of these, 144 data flows detected

from 83 apps are just used as examples declared in the privacy

policies. For instance, in app Life3605, its privacy policy shows

5https://play.google.com/store/apps/details?id=com.subsplash.thechurchapp.
life360church

only one example (Arity) that collects user private information:

“One of the 3rd parties who we share data with is Arity.

Arity collects the following via the app and/or your mobile

device. Some of the information they may collect includes:

Geolocation and movement data; Mobile device information

and application analytics, including IP address and device

identifiers.” Although a clear disclosure can be derived from

this declaration, our detected data flows to the third-parties

Amplitude and Appsflyer are vague disclosures. Consequently,

such declarations are not entirely clear. This indicates that

the app vendors (developers) do not realize the necessity

or importance of enumerating all third-party entities in their

privacy policies.

Finding 2: 71.9% (719/1,000) of apps contain at least one

vague disclosure. Moreover, 8.1% (81/1,000) of apps use

the term “third-party” generally to refer to all third-party

entities.

Vague disclosures. A total of 2,389 data flows (declara-

tions) in the privacy policies use vague terms to blur the

specific third-party entities, the concrete data types, or both.

Among the 2,389 data flows, 57.3% (1,369/2,389) are dis-

closed using vague terms to refer to concrete data types, and

42.7% (1,020/2,389) are disclosed using vague terms to refer

to specific entities. For vague representations of third-party

entities, 88.2% (634/719) are represented by the functionalities

(services) provided by the third-parties, such as advertisement

and data analysis. 9.4% (225/2,389) of data flows replace some

specific third-party entities with the term “third-party”, which

raises the concern that these apps do not comply with the

mandate of GDPR on specificity of disclosures. For example,

the app iHeartRadio6 shares device identifiers to Amazonad,

Appboy, and Adobe, but its privacy policy only states: “We

may share your personal information with our external third-

party service providers.”.

For some of apps, the private information collected by

the third-parties can be obtained from some links in privacy

policies, but is not directly declared in privacy policies. For

example, a part of privacy policy of the app Evermatch7 is

shown in Figure 4. Despite the fact that there is no clear legal

issues to use third-party links in privacy policies, users need

to browse several pages to get the privacy data collected by

third-parties (many users may give up), which can be regarded

as vague/hidden disclosures from users’ perspective. Even for

the users who browse the third-party links, they are not sure

whether all or partial data mentioned in the links are collected.

We note that most of apps with vague disclosures share two

or fewer unique data types. As a result, it is feasible for the

developers to explicitly disclose the exact data types shared

with the concrete entities because the developers who use the

third-party libraries are likely and should be aware the data

collected by the libraries.

6https://play.google.com/store/apps/details?id=com.thisisglobal.player.heart
7https://sites.google.com/view/evermatch

Fig. 4. Part of privacy policy of Evermatch.

Finding 3: 17.8% (178/1,000) of apps omit to declare the

user private information to third-parties in their privacy

policies. Such apps may also have confusing sentences in

privacy policies.

Omitted disclosures. Of the 605 omitted disclosures,

the most frequently omitted data type is device identifiers

(549/605 = 90.7%) and the most frequently omitted third-

party entities is Unity (54/605 = 8.9%). For instance, the app

Decision Roulette8 shares device identifiers to Appboy and

Adwizz, but this is not declared in its privacy policy. The large

number of omitted disclosures to third-parties reflect that either

the developers do not know the data types collected by the

third-party libraries they embed into their apps or they do not

think omitted disclosure is a serious problem.

Finding 4: 1.2% (12/1,000) of apps’ privacy policies in-

volve denied disclosures to third-parties. And, such privacy

policies are often difficult to understand.

Denied disclosures. A total of 12 apps contain denied

disclosures to third-parties in their privacy policies, and these

apps contribute to only 1.0% (33/3,351) of the data flows. This

shows denied disclosures are not so severe in practice. One

such example is a children’s app called “FamilyAlbum - Easy
Photo & Video Sharing”9. We detect the data flows in its code

that it shares device identifiers to Facebook and Appsflyer,

while its privacy policy explicitly states: “Even if the statistical

data is anonymized, we will not sell or provide the user’s

data to a third party.” Obviously, its privacy policy contains

denied disclosures. On the other hand, its privacy policy also

states that the first-party may collect device identifiers, and

if we do not differentiate the entities, these data flows will

be misclassified as clear disclosures, which illustrates the

importance of considering third-party entities. In addition,

most privacy policies with denied disclosures are difficult to

understand, which indicates that many developers may not take

privacy policies seriously.

8https://play.google.com/store/apps/details?id=com.fireshooters.roulette
9https://mitene.us

TABLE VIII
VENDOR CONFIRMATION OR CORRECTION

App Developer confirmation or the corrected privacy policy
Breeze We do use 3rd party services and 3rd party advertising in our apps.
Familyalbum We cooperate with facebook to provide advertising service.
Trainman https://www.trainman.in/static/privacy-policy.html
DStv https://www.dstv.com/en-za/legal/privacy-cookie-notice/
Nyari Kopi https://dashboard.createappasia.com/users/appPrivacyPolicy
BetterSleep https://www.ipnos.com/privacy-policy/
Fitbit https://www.fitbit.com/global/us/legal/privacy-policy
iHealth https://cdn.ihealthlabs.com/policy/iHealth-Privacy-Policy.html

Finding 5: Only 2.3% (23/1,000) of apps may not share

user privacy data with third-parties. In addition, 3.0%

(30/1,000) of apps state third-party sharing in their privacy

policies, yet we do not detect such data flows.

No third-party sharing. Altogether, only 53 apps of the

1,000 apps do not involve any data flows to third-parties in

the observed client-side behavior. 44.2% (23/53) of those apps

whose privacy policies do not state user privacy sharing to

third-parties. Therefore, assuming that their privacy policy ac-

curately reflects both the client-side and server-side behaviors,

only 23 apps do not share data with third-parties. While the

other 56.6% (30/53) of apps do not contain any data flows to

third-parties in the observed client-side behavior, their privacy

policies contain the declarations about third-party sharing.

This could be due to the limitation of the static analysis,

for example, code obfuscation and the fact that user private

information can be shared by the server side.

Vendor feedback. For those apps whose privacy policies

involve violated disclosures, we try to contact their vendors

to verify our findings. We get a few confirmations and some

of them have already corrected their privacy policies recently

(their previous privacy policies can be found in our data

sets), which are summarized in Table VIII. Frankly, it is

uneasy to get vendors’ confirmation because this is related to

whether they disobey the laws concerned, and most vendors

are reluctant to answer positively.

Summary. Our empirical study reveals that while sharing

user private information with third-party entities has become

a common practice in Android ecosystems, the app vendors

have neither paid enough attention nor noticed the importance

of clearly disclosing this in app privacy policies.

D. Threats to Validity and Limitations

Internal validity. The major threat to the first experiment

answering RQ1 comes from the ground truth used for the

evaluation, because the privacy policies of the 24 popular

Android apps might not be perfect or not be necessarily

consistent with the app code. Our conclusions are based on

partial observations that carry a probability of an error, and

Bayesian data analysis may help to reduce the threat. In

addition, for the construction of third-party ontology, we only

consider the popular third-parties and the third-parties involved

in our first two experiments, which could affect the results of

the empirical study on 1,000 commercial apps.

External validity. To answer RQ1 and RQ2, only 24 and

48 apps are used, respectively. And, our empirical study is

based on the 1,000 real-world commercial apps. Since there

are more than three million apps available on Google Play, the

number of apps for the empirical analysis is small. Fortunately,

both the 48 and 1,000 apps are randomly selected, and are

with different functionalities and categories, we believe that

the results are generalized to a larger population of apps.

Limitations. The reported experimental/empirical results

are just an under-approximation of the reality due to the

following limitations of our work.

1) Our analysis is limited to predefined third-parties, while

other actors might be harvesting personal data this way.

2) Our analysis is limited to in-app flow analysis, but

app back-ends operating in data centers may also share

sensitive information with third-parties.

3) PTPDroid does not consider user input data from app

GUI [15], which may also involve user privacy.

4) The precision and recall of PTPDroid is far from per-

fect. For instance, we use keyword matching to map API

methods to ontology phrases, even if topic modelling is

used, the matching is affected by code obfuscation.

V. RELATED WORK

In this section, we briefly review several strands of re-

searches related to our work.

Privacy policy analysis. Various studies concentrate on

extracting the useful information from the privacy policy to

make it easier for users to understand. Privee [26] employs

natural language processing for deriving a set of binary ques-

tions from privacy policies to increase privacy transparency.

Hermes [27] utilizes topic modeling to reduce the ambiguities

in privacy policies to facilitate users. PrivacyCheck [28]

and Polisis [29] analyze the privacy policies to automatically

extract their graphical summaries representing what and how

information is used. The difference is that the former leverages

data mining techniques, whereas the latter uses deep learning.

PI-Extract [30] trains a large data set to improve the users’

reading comprehension of policy texts.

Analyzing the usability of privacy policies [31], [32], [33] is

another well-researched area. Some studies [34], [35] find that

the disclosures are increasing while readability is decreasing

in privacy policies over the years. Some surveys [36], [37]

investigate privacy policy shortcomings in specific sectors,

such as healthcare and finance. A recent study [38] finds that

some privacy policies fail to disclose the presence of common

tracking technologies and third-parties. All of these studies

show that most of the privacy policies on the market are more

or less problematic.

Other researches focus on finding conflicting declarations in

privacy policies. Breaux et al. [39] propose a formal language

Eddy to analyze the privacy policy of multi-tier systems to find

the conflicts between the policies regarding data collection,

usage, retention and transfer. PolicyLint [20] considers the

entities and negative sentiment declarations, which can better

pinpoint conflicts.

Privacy policy generation. From the perspective of de-

velopers, it is a challenging task to write a privacy policy

that correctly reflects an app’s privacy practices and keeping

the policy up-to-date as the app evolves over time. Therefore,

some studies concentrate on generating privacy policies au-

tomatically to facilitate developers. For example, Liccardi et

al. [40] develop a framework to generate policies based on

questionnaires filled by the developers. PAGE [41] is a plugin

for the Eclipse IDE that can be used to create privacy poli-

cies based on questionnaires during the development process.

However, purely questionnaire-based generators can lead to

inaccurate representations of an app’s privacy practices if the

questions are not answered accurately or completely.

There is some work [42], [43] that leverages the source

code to generate privacy policy. AutoPPG [43] extracts code

from Android apps to create short text snippets for the cor-

responding app behavior. A corpus of policies collected in

the wild is used for generating snippets of the form (subject,
verb, object). PrivacyFlash Pro [42] creates legally compliant

policies by mapping app analysis results and questionnaire

answers to standardized legal templates.

Some other work uses code analysis to generate templates

with app privacy settings [44] and security descriptions [45].

Although these templates and descriptions are not directly used

as privacy policies, they can be helpful for users to understand

and adjust the privacy and security settings of an app.

Flow-to-policy consistency. Some early studies focus on

analyzing policy-code consistency of specific app categories,

such as those designed for families or children [46], [47].

While these approaches potentially work for a category of

apps, they are severely limited in the analysis accuracy for

broader categories. A deal of recent work [12], [13], [14]

uses similar approaches to detect privacy policy violations in

Android apps based on Android’s API (application program

interface) calls. These approaches are useful in identifying

leaks when the API calls collect personal information from

a mobile device. GUILeak [15] extends the taint sources

to include the sensitive data entered by users through an

app’s user interface. However, since it is too costly to build

the privacy ontology for each app category, GUILeak only

considers three app categories: finance, health, and dating. Yu

et al. [48] develop an approach for detecting policy violations

with more advanced data flow models, which performs the

cross-verification among privacy policy, byte code, description,

and permissions. Unfortunately, the above effort does not

differentiate first-party entities and third-party entities that

collect user privacy, which may falsely classify violated third-

party flows as clear disclosures.

PoliCheck [18], the closest work to ours, is an entity-

sensitive tool to detect inconsistency between privacy poli-

cies and Android apps. PoliCheck makes advancement over

prior work by considering DNS domains of entities (first-

parties and third-parties) for comprehensive analysis. However,

PoliCheck considers only a small number of data types and

may miss a large number of data flows due to the limitation

of dynamic analysis. In contrast to PoliCheck, PTPDroid is

based on static analysis and takes all of the data types accessed

by the sensitive API methods into account. IoTPrivComp [49]

is another entity-sensitive work, but it only focuses on flow-

to-policy consistency of IoT apps.

Taint analysis. PTPDroid leverages data flow analysis to

check whether the private information accessed from a certain

method transmits to a third-party. PTPDroid is based on Flow-
Droid [21], the state-of-art static taint analysis tool for Android

apps. Other static analysis techniques include CHEX [50],

IccTA [51], VulHunter [52], and EdgeMiner [53]; EdgeM-
iner is used in some work on consistency analysis [12],

[13], [14]. Dynamic data flow analysis techniques, such as

TaintDroid [5], AppCensus [19], and CopperDroid [54],

detect the privacy leak at runtime. By using Monkey [55],

in addition to differentiating first-parties and third-parties data

flows, Guamán et al. [56] also consider the countries where

the recipient servers are located. Based on this, they conduct

GDPR compliance assessment for cross-border private data

transfers in Android apps. In general, static analysis can obtain

more comprehensive data flows, while dynamic analysis can

ensure the realness of the detected data flows.

VI. CONCLUSIONS

For most Android users, privacy threats from mobile apps

are arguably a greater risk than malware. Recently, many

approaches focus on checking the consistency between the

app code and the privacy policy. However, prior work seldom

differentiates the entities collecting the data. To this end, we

propose PTPDroid, an entity-sensitive flow-to-policy consis-

tency checking technique to detect violated privacy disclosures

to third-parties. PTPDroid achieves this by utilizing static

analysis to obtain data flows in the app code and using natural

language processing to extract declarations in the privacy pol-

icy. Our experimental evaluation on a benchmark of 24 popular

commercial Android apps demonstrates the effectiveness and

efficiency of PTPDroid, and the comparison experiment on 48

Android apps proves the advantage of PTPDroid. Moreover,

our empirical study on 1,000 commercial Android apps based

on PTPDroid shows that vague, omitted, and denied user

privacy disclosures to third-parties are prevailing in reality,

and we suggest app vendors to take this matter seriously.

The future work can consider to automatically synthesize

the privacy disclosures to third-parties, and extend our ap-

proach to IoT apps by taking more data types into account.

DATA AVAILABILITY

Our open-source tool PTPDroid can be found in GitHub10.

All apps used for answering RQ1-RQ3 in our experiments and

empirical study are publicly available11.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science

Foundation of China under Grant No. 61761136003.

10https://github.com/wsong-nj/PTPDroid
11https://doi.org/10.5281/zenodo.5442986

REFERENCES

[1] Statista, “Google play statistics,” 2021. [On-
line]. Available: https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store

[2] IDC, “International data corporation (idc) smartphone os market
share 2021 q1,” 2021. [Online]. Available: https://www.idc.com/promo/
smartphone-market-share

[3] L. Zhao, N. W. H. Chan, S. J. Yang, and R. W. Melton, “Privacy sensitive
resource access monitoring for android systems,” in Proceedings of
the 24th International Conference on Computer Communication and
Networks, ICCCN’15, Las Vegas, NV, USA, August 3-6. IEEE, 2015,
pp. 1–6.

[4] S. Yang, Z. Zeng, and W. Song, “Permdroid: automatically testing
permission-related behaviour of android applications,” in Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA’22, Virtual Event, South Korea, July 18 - 22. ACM,
2022, pp. 593–604.

[5] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. D. McDaniel, and A. N. Sheth, “Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smartphones,” ACM
Trans. Comput. Syst., vol. 32, no. 2, pp. 5:1–5:29, 2014.

[6] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 ways to leak your data: An exploration of apps’
circumvention of the android permissions system,” in Proceedings of the
28th USENIX Security Symposium, USENIX Security’19, Santa Clara,
CA, USA, August 14-16. USENIX Association, 2019, pp. 603–620.

[7] S. Matsumoto and K. Sakurai, “A proposal for the privacy leakage ver-
ification tool for android application developers,” in Proceedings of the
7th International Conference on Ubiquitous Information Management
and Communication, ICUIMC ’13, Kota Kinabalu, Malaysia - January
17 - 19. ACM, 2013, p. 54.

[8] P. G. Kelley, L. F. Cranor, and N. M. Sadeh, “Privacy as part of the
app decision-making process,” in Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems, CHI’13, Paris,
France, April 27 - May 2. ACM, 2013, pp. 3393–3402.

[9] CCPA, “California consumer privacy act.” 2018. [Online]. Available:
https://oag.ca.gov/privacy/ccpa

[10] FTC, “Ftc path case helps app developers stay on the right, er, path,”
2013. [Online]. Available: https://goo.gl/JKgJT4

[11] ——, “In the matter of snapchat,” 2014. [On-
line]. Available: https://www.ftc.gov/enforcement/cases-proceedings/
132-3078/snapchat-inc-matter

[12] R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Krishnan, J. Bhatia,
T. D. Breaux, and J. Niu, “Toward a framework for detecting privacy
policy violations in android application code,” in Proceedings of the 38th
International Conference on Software Engineering, ICSE’16, Austin, TX,
USA, May 14-22. ACM, 2016, pp. 25–36.

[13] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub, S. Wilson,
N. M. Sadeh, S. M. Bellovin, and J. R. Reidenberg, “Automated analysis
of privacy requirements for mobile apps,” in Proceedings of the 24th
Annual Network and Distributed System Security Symposium, NDSS’17,
San Diego, California, USA, February 26 - March 1. The Internet
Society, 2017.

[14] L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the privacy policies
of android apps?” in Proceedings of the 46th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, DSN’16,
Toulouse, France, June 28 - July 1. IEEE Computer Society, 2016, pp.
538–549.

[15] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. D. Breaux, and J. Niu,
“Guileak: tracing privacy policy claims on user input data for android
applications,” in Proceedings of the 40th International Conference on
Software Engineering, ICSE’18, Gothenburg, Sweden, May 27 - June
03. ACM, 2018, pp. 37–47.

[16] H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang, and X. Wang,
“Demystifying resource management risks in emerging mobile app-in-
app ecosystems,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, CCS’20, Virtual Event, USA,
November 9-13. ACM, 2020, pp. 569–585.

[17] GDPR, “The eu general data protection regulation,” 2018. [Online].
Available: https://eugdpr.org

[18] B. Andow, S. Y. Mahmud, J. Whitaker, W. Enck, B. Reaves, K. Singh,
and S. Egelman, “Actions speak louder than words: Entity-sensitive
privacy policy and data flow analysis with policheck,” in Proceedings

of the 29th USENIX Security Symposium, USENIX Security’20, August
12-14. USENIX Association, 2020, pp. 985–1002.

[19] AppCensus, “Appsearch,” 2019. [Online]. Available: https://search.
appcensus.io/

[20] B. Andow, S. Y. Mahmud, W. Wang, J. Whitaker, W. Enck, B. Reaves,
K. Singh, and T. Xie, “Policylint: Investigating internal privacy policy
contradictions on google play,” in Proceedings of the 28th USENIX
Security Symposium, USENIX Security ’19, Santa Clara, CA, USA,
August 14-16. USENIX Association, 2019, pp. 585–602.

[21] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. D. McDaniel, “Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI’14, Edinburgh,
United Kingdom - June 09 - 11. ACM, 2014, pp. 259–269.

[22] T. Gruber, “Ontology,” in Encyclopedia of Database Systems, Second
Edition, L. Liu and M. T. Özsu, Eds. Springer, 2018.

[23] M. B. Hosseini, T. D. Breaux, R. Slavin, J. Niu, and X. Wang,
“Analyzing privacy policies through syntax-driven semantic analysis of
information types,” Inf. Softw. Technol., vol. 138, p. 106608, 2021.

[24] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing the
android permission specification,” in Proceedings of the ACM Confer-
ence on Computer and Communications Security, CCS’12, Raleigh, NC,
USA, October 16-18. ACM, 2012, pp. 217–228.

[25] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach for
classifying and categorizing android sources and sinks,” in Proceedings
of the 21st Annual Network and Distributed System Security Symposium,
NDSS’14, San Diego, California, USA, February 23-26. The Internet
Society, 2014.

[26] S. Zimmeck and S. M. Bellovin, “Privee: An architecture for auto-
matically analyzing web privacy policies,” in Proceedings of the 23rd
USENIX Security Symposium, USENIX Security’14, San Diego, CA,
USA, August 20-22. USENIX Association, 2014, pp. 1–16.

[27] J. W. Stamey and R. A. Rossi, “Automatically identifying relations
in privacy policies,” in Proceedings of the 27th Annual International
Conference on Design of Communication, SIGDOC ’09, Bloomington,
Indiana, USA, October 5-7. ACM, 2009, pp. 233–238.

[28] R. N. Zaeem, R. L. German, and K. S. Barber, “Privacycheck: Automatic
summarization of privacy policies using data mining,” ACM Trans.
Internet Techn., vol. 18, no. 4, pp. 53:1–53:18, 2018.

[29] H. Harkous, K. Fawaz, R. Lebret, F. Schaub, K. G. Shin, and K. Aberer,
“Polisis: Automated analysis and presentation of privacy policies using
deep learning,” in Proceedings of the 27th USENIX Security Symposium,
USENIX Security’18, Baltimore, MD, USA, August 15-17. USENIX
Association, 2018, pp. 531–548.

[30] D. Bui, K. G. Shin, J.-M. Choi, and J. Shin, “Automated extraction and
presentation of data practices in privacy policies,” Proc. Priv. Enhancing
Technol., vol. 2021, no. 2, pp. 88–110, 2021.

[31] F. Liu, R. Ramanath, N. M. Sadeh, and N. A. Smith, “A step towards
usable privacy policy: Automatic alignment of privacy statements,” in
Proceedings of the 25th International Conference on Computational
Linguistics, COLING’14, August 23-29, Dublin, Ireland. ACL, 2014,
pp. 884–894.

[32] R. Ramanath, F. Liu, N. M. Sadeh, and N. A. Smith, “Unsupervised
alignment of privacy policies using hidden markov models,” in Proceed-
ings of the 52nd Annual Meeting of the Association for Computational
Linguistics, ACL’14, June 22-27, Baltimore, MD, USA, Volume 2: Short
Papers. The Association for Computer Linguistics, 2014, pp. 605–610.

[33] E. Costante, Y. Sun, M. Petkovic, and J. den Hartog, “A machine
learning solution to assess privacy policy completeness: (short paper),”
in Proceedings of the 11th annual ACM Workshop on Privacy in the
Electronic Society, WPES ’12, Raleigh, NC, USA, October 15. ACM,
2012, pp. 91–96.

[34] G. R. Milne and M. J. Culnan, “Using the content of online privacy
notices to inform public policy,” Inf. Soc., vol. 18, no. 5, pp. 345–359,
2002.

[35] A. I. Antón, J. B. Earp, M. W. Vail, N. Jain, C. M. Gheen, and J. M.
Frink, “Hipaa’s effect on web site privacy policies,” IEEE Secur. Priv.,
vol. 5, no. 1, pp. 45–52, 2007.

[36] A. Sunyaev, T. Dehling, P. L. Taylor, and K. D. Mandl, “Availability
and quality of mobile health app privacy policies,” J. Am. Medical
Informatics Assoc., vol. 22, no. e1, pp. e28–e33, 2015.

[37] J. D. Bowers, B. Reaves, I. N. Sherman, P. Traynor, and K. R. B. Butler,
“Regulators, mount up! analysis of privacy policies for mobile money

services,” in Proceedings of the 13th Symposium on Usable Privacy and
Security, SOUPS ’17, Santa Clara, CA, USA, July 12-14. USENIX
Association, 2017, pp. 97–114.

[38] R. Amos, G. Acar, E. Lucherini, M. Kshirsagar, A. Narayanan, and
J. Mayer, “Privacy policies over time: Curation and analysis of a million-
document dataset,” in Proceedings of the Web Conference, WWW’21,
Virtual Event / Ljubljana, Slovenia, April 19-23. ACM / IW3C2, 2021,
pp. 2165–2176.

[39] T. D. Breaux, H. Hibshi, and A. Rao, “Eddy, a formal language for
specifying and analyzing data flow specifications for conflicting privacy
requirements,” Requir. Eng., vol. 19, no. 3, pp. 281–307, 2014.

[40] I. Liccardi, M. Bulger, H. Abelson, D. J. Weitzner, and W. E. Mackay,
“Can apps play by the COPPA rules?” in Proceedings of the 12th Annual
International Conference on Privacy, Security and Trust, Toronto, ON,
Canada, July 23-24. IEEE Computer Society, 2014, pp. 1–9.

[41] M. Rowan and J. Dehlinger, “Encouraging privacy by design concepts
with privacy policy auto-generation in eclipse (page),” in Proceedings of
the 2014 Workshop on Eclipse Technology eXchange, ETX’14, Portland,
OR, USA, October 20 - 24. ACM, 2014, pp. 9–14.

[42] S. Zimmeck, R. Goldstein, and D. Baraka, “Privacyflash pro: Au-
tomating privacy policy generation for mobile apps,” in Proceedings of
the 28th Annual Network and Distributed System Security Symposium,
NDSS’21, virtually, February 21-25. The Internet Society, 2021.

[43] L. Yu, T. Zhang, X. Luo, L. Xue, and H. Chang, “Toward automatically
generating privacy policy for android apps,” IEEE Trans. Inf. Forensics
Secur., vol. 12, no. 4, pp. 865–880, 2017.

[44] X. Chen, H. Huang, S. Zhu, Q. Li, and Q. Guan, “Sweetdroid: Toward
a context-sensitive privacy policy enforcement framework for android
OS,” in Proceedings of the on Workshop on Privacy in the Electronic
Society, Dallas, TX, USA, October 30 - November 3. ACM, 2017, pp.
75–86.

[45] M. Zhang, Y. Duan, Q. Feng, and H. Yin, “Towards automatic generation
of security-centric descriptions for android apps,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, CCS’15, Denver, CO, USA, October 12-16. ACM, 2015, pp.
518–529.

[46] R. Tang, D. Shao, S. Bressan, and P. Valduriez, “What you pay for is
what you get,” in Proceedings of the 24th International Conference on
Database and Expert Systems Applications, DEXA’13, Prague, Czech
Republic, August 26-29, Part II, vol. 8056. Springer, 2013, pp. 395–
409.

[47] I. Reyes, P. Wijesekera, J. Reardon, A. E. B. On, A. Razaghpanah,
N. Vallina-Rodriguez, and S. Egelman, ““won’t somebody think of
the children?” examining COPPA compliance at scale,” Proc. Priv.
Enhancing Technol., vol. 2018, no. 3, pp. 63–83, 2018.

[48] L. Yu, X. Luo, C. Qian, S. Wang, and H. K. N. Leung, “Enhancing
the description-to-behavior fidelity in android apps with privacy policy,”
IEEE Trans. Software Eng., vol. 44, no. 9, pp. 834–854, 2018.

[49] J. Ahmad, F. Li, and B. Luo, “Iotprivcomp: A measurement study
of privacy compliance in iot apps,” in Proceedings of the 27th Eu-
ropean Symposium on Research in Computer Security, ESORICS’22,
Copenhagen, Denmark, September 26-30, Part II, ser. Lecture Notes in
Computer Science, vol. 13555. Springer, 2022, pp. 589–609.

[50] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings
of the ACM Conference on Computer and Communications Security,
CCS’12, Raleigh, NC, USA, October 16-18. ACM, 2012, pp. 229–240.

[51] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. D. McDaniel, “Iccta: Detect-
ing inter-component privacy leaks in android apps,” in Proceedings of
the 37th IEEE/ACM International Conference on Software Engineering,
ICSE’15, Florence, Italy, May 16-24, Volume 1. IEEE Computer
Society, 2015, pp. 280–291.

[52] C. Qian, X. Luo, Y. Le, and G. Gu, “Vulhunter: Toward discovering
vulnerabilities in android applications,” IEEE Micro, vol. 35, no. 1, pp.
44–53, 2015.

[53] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen, “Edgeminer: Automatically detecting implicit control flow
transitions through the android framework,” in Proceedings of the 22nd
Annual Network and Distributed System Security Symposium, NDSS’15,
San Diego, California, USA, February 8-11. The Internet Society, 2015.

[54] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: Auto-
matic reconstruction of android malware behaviors,” in Proceedings of
the 22nd Annual Network and Distributed System Security Symposium,

NDSS’15, San Diego, California, USA, February 8-11. The Internet
Society, 2015.

[55] Google, “The monkey ui android testing tool,” 2020. [Online].
Available: http://developer.android.com/tools/help/monkey.html

[56] D. S. Guamán, J. M. del Álamo, and J. C. Caiza, “GDPR compliance
assessment for cross-border personal data transfers in android apps,”
IEEE Access, vol. 9, pp. 15 961–15 982, 2021.

