data_compound4_SMOF-7 _publ_contact_author_name 'Mark A. Rodriguez' _publ_contact_author_address ; PO Box 5800 MS 1411 Sandia National Laboratories Albuquerque, New Mexico 87185-1411 USA ; _publ_contact_author_email 'marodri@sandia.gov' _publ_contact_author_fax '1-505-844-9781' _publ_contact_author_phone '1-505-844-3583' _publ_requested_journal 'Chem. Mater.' _publ_requested_category ? _publ_section_title ; SMOF-7 ; loop_ _publ_author_name _publ_author_address 'Rodriguez, Mark A.' ; PO Box 5800 MS 1411 Sandia National Laboratories Albuquerque, NM 87185 USA ; 'Sava, Dorina F.' ; PO Box 5800 MS 1415 Sandia National Laboratories Albuquerque, NM 87185 USA ; 'Nenoff, Tina M.' ; PO Box 5800 MS 1415 Sandia National Laboratories Albuquerque, NM 87185 USA ; _publ_section_abstract ; ; _publ_section_comment ; ; _publ_section_related_literature ; ; _publ_section_exptl_prep ; ; _publ_section_acknowledgements ; This work was supported by the U.S. DOE-NE/FCRD-SWG. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. ; _publ_section_references ; Bruker (2007). APEX II software suite. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2000). XSHELL Version 4.01 and SHELXTL Version 6.10. Bruker AXS, Inc., Madison, Wisconsin, USA. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). J. Appl. Cryst., 41, 466-470. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13. Sheldrick, G. M. (1999). SADABS Version 2.03. University of Gottingen, Germany. Sheldrick, G. M. (2008). Acta Cryst., A64, 112-122. ; _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C48 H30 N6 O12 Eu2, 7(C5 H11 N O), 2(H2O)' _chemical_formula_sum 'C83 H111 N13 O21 Eu2' _chemical_formula_weight 1930.77 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Eu' 'Eu' -0.1578 3.6682 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'C 2/c' _symmetry_space_group_name_Hall '-C 2yc' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z-1/2' _cell_length_a 31.818(8) _cell_length_b 13.992(3) _cell_length_c 19.340(5) _cell_angle_alpha 90.00 _cell_angle_beta 98.544(3) _cell_angle_gamma 90.00 _cell_volume 8515(4) _cell_formula_units_Z 4 _cell_measurement_temperature 193(2) _cell_measurement_reflns_used 200 _cell_measurement_theta_min 1.0 _cell_measurement_theta_max 17.5 _exptl_crystal_description plate _exptl_crystal_colour yellow _exptl_crystal_size_max 0.15 _exptl_crystal_size_mid 0.10 _exptl_crystal_size_min 0.02 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.506 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 3976 _exptl_absorpt_coefficient_mu 1.539 _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.8020 _exptl_absorpt_correction_T_max 0.9699 _exptl_absorpt_process_details 'SADABS (Sheldrick, 1999)' _exptl_special_details ; ? ; _diffrn_ambient_temperature 193(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX CCD' _diffrn_measurement_method 'omega and phi scans' _diffrn_detector_area_resol_mean ? _diffrn_reflns_number 12959 _diffrn_reflns_av_R_equivalents 0.0937 _diffrn_reflns_av_sigmaI/netI 0.0714 _diffrn_reflns_limit_h_min -26 _diffrn_reflns_limit_h_max 26 _diffrn_reflns_limit_k_min -11 _diffrn_reflns_limit_k_max 11 _diffrn_reflns_limit_l_min -16 _diffrn_reflns_limit_l_max 16 _diffrn_reflns_theta_min 1.29 _diffrn_reflns_theta_max 17.15 _reflns_number_total 2548 _reflns_number_gt 1807 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'APEX II (Bruker, 2007)' _computing_cell_refinement 'APEX II (Bruker, 2007)' _computing_data_reduction 'APEX II (Bruker, 2007)' _computing_structure_solution 'SHELXTL (Sheldrick, 2008; Bruker, 2000)' _computing_structure_refinement 'SHELXTL (Sheldrick, 2008; Bruker, 2000)' _computing_molecular_graphics 'SHELXTL (Bruker, 2000) and Mercury (Macrae, et al., 2008)' _computing_publication_material 'SHELXTL (Sheldrick, 2008)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The O7 atom appeared to be coordinated by a diethylformamide DMF molecule. This molecule showed significant disorder, but one orientation appeared to be the most consistent. Bond lengths and angles for a DEF molecule were employed to constrain this DEF molecule to coodinate to the metal site and restraints regarding isotropic temperature parameters for this DEF molecule were also employed. It is important to bear in mind that this orientation is one of many possible orientations. There was a second oxygen atom, the O8 oxygen site, that might possibly be associated with a second coodinated DEF, but all attempts to model such a molecule to attach to the O8 atom were unsuccessful. It appeared that there was not sufficient clearly defined electron density to warrant placement of a DEF molecule off of the O8 atom. So in the case of O8 it was assumed that this terminal oxygen was a water molecule. The hydrogen atoms were left off of the O8 water as well as the DEF molecule coordinated via O7. However, these hydrogen atoms were included in the final refinement to generate proper crystallographic output. There was significant scatter observed within the large channels/voids in the structure; this suggested the presence of solvent in the void space. Solvent density was detected in at least 2 separate crystallographic locations: Site 1 at (0.598, 0.130, 0.516), Site 2 at (0.730, 0.126, 0.697). These were determined via significant Q peaks present in the difference-fourier maps. The program Platon/Squeeze (Spek, 1990) was employed to model the solvent presence. Thermal gravimetric analysis (TGA) coupled with Mass-Spectrometry (MS) suggested that the solvent loss was from diethylformamide (DEF) which was employed in the crystallization process. The application of the Squeeze routine reported solvent accessable void space of 3808.1 cubic Angstroms containing 1115 electrons/cell. Assuming all the density in the solvent voids was from DEF molecules, this translated to approximately 20 DEF molecules per cell as uncoordinated solvent. Association of sites listed above with DEF molecules would account for 16 of the 20 DEF solvent molecules (or about 75 percent of the solvent density predicted by the electron count determined by Squeeze). The remaining solvent sites in the channels proved more difficult to located due a lack of clearly located electron density nodes. This suggests that the solvent is highly disordered, resulting in smearing of the electron density. Even so, the Squeeze process was still able to model this density and account for the total DEF presence via the electron count. The estimated weight of DEF present within the structure (based on the electron density of DEF detected via Squeeze) was 26.5 weight percent. The inclusion of the coordinated solvent (O7) and the O8 water molecules resulted in an increase to 43.9 wt percent. This is in good agreement with TGA analysis. Refinement of the structure after solvent modeling resulted in a signifant drop in residual error. While the final structure factors do not reflect the now absent DEF solvent molecules, the final refinement included the additional DEF chemical species within the chemical formula and the reported crystal data reflect the presence of 7 DEF molecules per formula unit for the SMOF-7 structure. Of these DEF molecules, 2 of them are due to the O7 coordinated DEF and there are 5 additional DEF solvent molecules present as uncoordinated solvent. The addition of the solvent to the formula unit generates significant A-level errors (e.g. density, chemical formula, density) in the final CIF output. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1127P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 2548 _refine_ls_number_parameters 209 _refine_ls_number_restraints 14 _refine_ls_R_factor_all 0.0874 _refine_ls_R_factor_gt 0.0625 _refine_ls_wR_factor_ref 0.1690 _refine_ls_wR_factor_gt 0.1601 _refine_ls_goodness_of_fit_ref 1.007 _refine_ls_restrained_S_all 1.006 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Eu1 Eu 0.56042(3) 0.44150(6) 0.49884(5) 0.0402(5) Uani 1 1 d . . . N1 N 0.8401(6) 0.4201(12) 0.7103(9) 0.093(6) Uiso 1 1 d . . . H1 H 0.8241 0.3759 0.7255 0.112 Uiso 1 1 calc R . . N2 N 0.9074(7) 0.4911(15) 0.7052(10) 0.111(7) Uiso 1 1 d . . . H2 H 0.9351 0.4916 0.7183 0.133 Uiso 1 1 calc R . . N3 N 0.8466(5) 0.5629(12) 0.6452(8) 0.081(5) Uiso 1 1 d . . . H3 H 0.8347 0.6095 0.6185 0.097 Uiso 1 1 calc R . . N4 N 0.6065(6) 0.5406(13) 0.2935(11) 0.222(7) Uiso 1 1 d D . . O1 O 0.6243(4) 0.4094(8) 0.5832(6) 0.061(4) Uani 1 1 d . . . O2 O 0.6302(3) 0.5327(8) 0.5173(6) 0.055(4) Uani 1 1 d . . . O3 O 0.5223(4) 0.5734(9) 0.4499(6) 0.061(4) Uani 1 1 d . . . O4 O 0.5549(4) 0.5511(9) 0.5896(6) 0.057(4) Uani 1 1 d . . . O5 O 0.5335(4) 0.3343(8) 0.5800(6) 0.061(4) Uani 1 1 d . . . O6 O 0.5054(4) 0.3670(9) 0.4208(6) 0.066(4) Uani 1 1 d . . . O7 O 0.5851(4) 0.4585(10) 0.3831(8) 0.107(6) Uani 1 1 d D . . O8 O 0.5885(4) 0.2713(12) 0.4812(8) 0.113(6) Uani 1 1 d . . . C1 C 0.6454(6) 0.4740(14) 0.5624(10) 0.038(6) Uiso 1 1 d . . . C2 C 0.6923(6) 0.4797(14) 0.5922(10) 0.065(6) Uiso 1 1 d . . . C3 C 0.7114(6) 0.4100(14) 0.6357(10) 0.069(6) Uiso 1 1 d . . . H3A H 0.6948 0.3577 0.6475 0.083 Uiso 1 1 calc R . . C4 C 0.7543(6) 0.4132(14) 0.6631(10) 0.073(6) Uiso 1 1 d . . . H4 H 0.7679 0.3647 0.6928 0.087 Uiso 1 1 calc R . . C5 C 0.7756(7) 0.4920(17) 0.6437(12) 0.085(7) Uiso 1 1 d . . . C6 C 0.7588(7) 0.5589(17) 0.6000(12) 0.095(7) Uiso 1 1 d . . . H6 H 0.7766 0.6071 0.5853 0.114 Uiso 1 1 calc R . . C7 C 0.7151(7) 0.5599(16) 0.5749(11) 0.087(7) Uiso 1 1 d . . . H7 H 0.7019 0.6114 0.5480 0.105 Uiso 1 1 calc R . . C8 C 0.8229(8) 0.4935(18) 0.6681(12) 0.093(8) Uiso 1 1 d . . . C9 C 0.8894(8) 0.5590(18) 0.6645(12) 0.096(8) Uiso 1 1 d . . . C10 C 0.8833(9) 0.4193(19) 0.7275(14) 0.109(8) Uiso 1 1 d . . . C11 C 0.9017(8) 0.3471(18) 0.7743(13) 0.103(8) Uiso 1 1 d . . . C12 C 0.8799(7) 0.2770(15) 0.8013(11) 0.085(7) Uiso 1 1 d . . . H12 H 0.8498 0.2769 0.7911 0.102 Uiso 1 1 calc R . . C13 C 0.9002(6) 0.2040(14) 0.8440(10) 0.066(6) Uiso 1 1 d . . . H13 H 0.8837 0.1584 0.8645 0.080 Uiso 1 1 calc R . . C14 C 0.9447(7) 0.1984(15) 0.8564(11) 0.073(6) Uiso 1 1 d . . . C15 C 0.9679(9) 0.2657(19) 0.8273(13) 0.122(9) Uiso 1 1 d . . . H15 H 0.9980 0.2604 0.8340 0.146 Uiso 1 1 calc R . . C16 C 0.9486(9) 0.342(2) 0.7881(14) 0.145(11) Uiso 1 1 d . . . H16 H 0.9654 0.3900 0.7707 0.174 Uiso 1 1 calc R . . C17 C 0.5836(6) 0.8639(14) 0.3593(10) 0.067(6) Uiso 1 1 d . . . C18 C 0.5398(6) 0.8679(15) 0.3340(10) 0.073(6) Uiso 1 1 d . . . H18 H 0.5282 0.9182 0.3042 0.087 Uiso 1 1 calc R . . C19 C 0.5143(6) 0.7957(13) 0.3541(9) 0.063(6) Uiso 1 1 d . . . H19 H 0.4847 0.7939 0.3370 0.075 Uiso 1 1 calc R . . C20 C 0.5336(6) 0.7238(13) 0.4015(9) 0.055(6) Uiso 1 1 d . . . C21 C 0.5771(6) 0.7226(15) 0.4269(10) 0.078(7) Uiso 1 1 d . . . H21 H 0.5893 0.6741 0.4579 0.093 Uiso 1 1 calc R . . C22 C 0.6017(6) 0.7960(14) 0.4048(10) 0.070(6) Uiso 1 1 d . . . H22 H 0.6313 0.7987 0.4216 0.084 Uiso 1 1 calc R . . C23 C 0.5048(7) 0.6491(15) 0.4246(10) 0.046(6) Uiso 1 1 d . . . C24 C 0.5330(8) 0.6203(16) 0.6013(10) 0.053(6) Uiso 1 1 d . . . C25 C 0.6083(7) 0.5191(15) 0.3597(13) 0.222(7) Uiso 1 1 d D . . C26 C 0.5745(9) 0.489(2) 0.2435(16) 0.222(7) Uiso 1 1 d D . . C27 C 0.5302(8) 0.528(2) 0.248(2) 0.222(7) Uiso 1 1 d D . . C28 C 0.6328(8) 0.6111(19) 0.2631(16) 0.222(7) Uiso 1 1 d D . . C29 C 0.6056(11) 0.693(2) 0.2303(19) 0.222(7) Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Eu1 0.0229(7) 0.0518(8) 0.0439(8) -0.0037(6) -0.0018(5) -0.0068(6) O1 0.046(9) 0.054(9) 0.077(10) 0.015(7) -0.006(8) -0.012(7) O2 0.036(8) 0.065(9) 0.062(9) 0.008(8) -0.004(7) -0.019(7) O3 0.048(8) 0.051(9) 0.074(9) 0.003(8) -0.018(7) -0.007(8) O4 0.040(8) 0.071(9) 0.057(9) -0.025(8) -0.005(7) -0.011(8) O5 0.041(9) 0.071(9) 0.076(10) 0.032(8) 0.020(7) -0.010(8) O6 0.026(9) 0.086(11) 0.076(10) -0.042(8) -0.022(7) 0.006(7) O7 0.055(10) 0.140(14) 0.131(13) -0.041(11) 0.033(9) -0.053(10) O8 0.045(9) 0.178(16) 0.122(13) -0.105(12) 0.028(9) -0.004(10) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Eu1 O3 2.331(12) . ? Eu1 O4 2.357(12) . ? Eu1 O6 2.376(11) . ? Eu1 O5 2.419(10) . ? Eu1 O1 2.452(11) . ? Eu1 O7 2.491(14) . ? Eu1 O2 2.539(10) . ? Eu1 O8 2.584(15) . ? Eu1 C1 2.837(19) . ? Eu1 O3 2.954(12) 5_666 ? Eu1 C23 3.00(2) 5_666 ? Eu1 Eu1 4.1855(19) 5_666 ? N1 C10 1.37(3) . ? N1 C8 1.37(2) . ? N1 H1 0.8800 . ? N2 C9 1.31(2) . ? N2 C10 1.37(3) . ? N2 H2 0.8800 . ? N3 C8 1.34(2) . ? N3 C9 1.36(2) . ? N3 H3 0.8800 . ? N4 C25 1.308(16) . ? N4 C28 1.471(16) . ? N4 C26 1.483(17) . ? O1 C1 1.230(19) . ? O2 C1 1.243(19) . ? O3 C23 1.262(19) . ? O3 Eu1 2.954(12) 5_666 ? O4 C24 1.23(2) . ? O5 C23 1.23(2) 5_666 ? O6 C24 1.24(2) 5_666 ? O7 C25 1.253(17) . ? C1 C2 1.52(2) . ? C2 C3 1.37(2) . ? C2 C7 1.40(2) . ? C3 C4 1.39(2) . ? C3 H3A 0.9500 . ? C4 C5 1.38(3) . ? C4 H4 0.9500 . ? C5 C6 1.32(3) . ? C5 C8 1.51(3) . ? C6 C7 1.40(3) . ? C6 H6 0.9500 . ? C7 H7 0.9500 . ? C9 C17 1.49(3) 7_666 ? C10 C11 1.42(3) . ? C11 C12 1.35(3) . ? C11 C16 1.48(3) . ? C12 C13 1.41(2) . ? C12 H12 0.9500 . ? C13 C14 1.40(2) . ? C13 H13 0.9500 . ? C14 C15 1.37(3) . ? C14 C24 1.48(2) 4_646 ? C15 C16 1.40(3) . ? C15 H15 0.9500 . ? C16 H16 0.9500 . ? C17 C22 1.36(2) . ? C17 C18 1.41(2) . ? C17 C9 1.49(3) 7_666 ? C18 C19 1.39(2) . ? C18 H18 0.9500 . ? C19 C20 1.44(2) . ? C19 H19 0.9500 . ? C20 C21 1.40(2) . ? C20 C23 1.50(2) . ? C21 C22 1.40(2) . ? C21 H21 0.9500 . ? C22 H22 0.9500 . ? C23 O5 1.23(2) 5_666 ? C23 Eu1 3.00(2) 5_666 ? C24 O6 1.24(2) 5_666 ? C24 C14 1.48(2) 4_656 ? C26 C27 1.528(19) . ? C27 C27 1.93(5) 2_655 ? C28 C29 1.515(18) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O3 Eu1 O4 72.3(4) . . ? O3 Eu1 O6 78.4(4) . . ? O4 Eu1 O6 129.0(4) . . ? O3 Eu1 O5 122.8(4) . . ? O4 Eu1 O5 81.3(4) . . ? O6 Eu1 O5 80.8(4) . . ? O3 Eu1 O1 138.2(4) . . ? O4 Eu1 O1 76.7(4) . . ? O6 Eu1 O1 143.4(4) . . ? O5 Eu1 O1 78.1(4) . . ? O3 Eu1 O7 76.9(4) . . ? O4 Eu1 O7 132.5(4) . . ? O6 Eu1 O7 76.8(4) . . ? O5 Eu1 O7 146.3(4) . . ? O1 Eu1 O7 106.0(4) . . ? O3 Eu1 O2 92.9(4) . . ? O4 Eu1 O2 74.2(4) . . ? O6 Eu1 O2 148.9(4) . . ? O5 Eu1 O2 127.4(4) . . ? O1 Eu1 O2 51.5(4) . . ? O7 Eu1 O2 72.1(4) . . ? O3 Eu1 O8 147.7(4) . . ? O4 Eu1 O8 139.8(5) . . ? O6 Eu1 O8 75.4(4) . . ? O5 Eu1 O8 71.1(5) . . ? O1 Eu1 O8 69.5(4) . . ? O7 Eu1 O8 79.0(5) . . ? O2 Eu1 O8 99.8(4) . . ? O3 Eu1 C1 117.0(5) . . ? O4 Eu1 C1 75.2(4) . . ? O6 Eu1 C1 155.7(4) . . ? O5 Eu1 C1 103.1(5) . . ? O1 Eu1 C1 25.6(4) . . ? O7 Eu1 C1 88.1(5) . . ? O2 Eu1 C1 26.0(4) . . ? O8 Eu1 C1 83.0(5) . . ? O3 Eu1 O3 75.9(4) . 5_666 ? O4 Eu1 O3 68.2(3) . 5_666 ? O6 Eu1 O3 64.7(4) . 5_666 ? O5 Eu1 O3 47.1(4) . 5_666 ? O1 Eu1 O3 117.1(4) . 5_666 ? O7 Eu1 O3 136.3(4) . 5_666 ? O2 Eu1 O3 142.4(3) . 5_666 ? O8 Eu1 O3 108.8(4) . 5_666 ? C1 Eu1 O3 134.9(4) . 5_666 ? O3 Eu1 C23 100.3(6) . 5_666 ? O4 Eu1 C23 77.0(4) . 5_666 ? O6 Eu1 C23 68.2(5) . 5_666 ? O5 Eu1 C23 23.1(4) . 5_666 ? O1 Eu1 C23 99.2(5) . 5_666 ? O7 Eu1 C23 144.7(4) . 5_666 ? O2 Eu1 C23 142.8(4) . 5_666 ? O8 Eu1 C23 87.3(5) . 5_666 ? C1 Eu1 C23 122.6(6) . 5_666 ? O3 Eu1 C23 24.4(4) 5_666 5_666 ? O3 Eu1 Eu1 43.2(3) . 5_666 ? O4 Eu1 Eu1 64.4(3) . 5_666 ? O6 Eu1 Eu1 65.6(3) . 5_666 ? O5 Eu1 Eu1 79.7(3) . 5_666 ? O1 Eu1 Eu1 137.5(3) . 5_666 ? O7 Eu1 Eu1 112.6(3) . 5_666 ? O2 Eu1 Eu1 126.0(3) . 5_666 ? O8 Eu1 Eu1 134.3(3) . 5_666 ? C1 Eu1 Eu1 138.7(3) . 5_666 ? O3 Eu1 Eu1 32.7(2) 5_666 5_666 ? C23 Eu1 Eu1 57.1(4) 5_666 5_666 ? C10 N1 C8 117(2) . . ? C10 N1 H1 121.7 . . ? C8 N1 H1 121.7 . . ? C9 N2 C10 120(2) . . ? C9 N2 H2 119.8 . . ? C10 N2 H2 119.8 . . ? C8 N3 C9 118(2) . . ? C8 N3 H3 121.1 . . ? C9 N3 H3 121.1 . . ? C25 N4 C28 127(2) . . ? C25 N4 C26 116.9(17) . . ? C28 N4 C26 116.2(18) . . ? C1 O1 Eu1 95.0(12) . . ? C1 O2 Eu1 90.5(11) . . ? C23 O3 Eu1 174.8(13) . . ? C23 O3 Eu1 79.9(11) . 5_666 ? Eu1 O3 Eu1 104.1(4) . 5_666 ? C24 O4 Eu1 138.9(13) . . ? C23 O5 Eu1 106.2(12) 5_666 . ? C24 O6 Eu1 138.5(13) 5_666 . ? C25 O7 Eu1 132.1(14) . . ? O1 C1 O2 122.7(18) . . ? O1 C1 C2 117.9(19) . . ? O2 C1 C2 119.4(19) . . ? O1 C1 Eu1 59.4(10) . . ? O2 C1 Eu1 63.5(10) . . ? C2 C1 Eu1 172.8(12) . . ? C3 C2 C7 121(2) . . ? C3 C2 C1 121.1(19) . . ? C7 C2 C1 117.8(19) . . ? C2 C3 C4 122(2) . . ? C2 C3 H3A 118.9 . . ? C4 C3 H3A 118.9 . . ? C5 C4 C3 115(2) . . ? C5 C4 H4 122.7 . . ? C3 C4 H4 122.7 . . ? C6 C5 C4 125(2) . . ? C6 C5 C8 119(2) . . ? C4 C5 C8 116(2) . . ? C5 C6 C7 121(2) . . ? C5 C6 H6 119.5 . . ? C7 C6 H6 119.5 . . ? C6 C7 C2 116(2) . . ? C6 C7 H7 122.2 . . ? C2 C7 H7 122.2 . . ? N3 C8 N1 123(2) . . ? N3 C8 C5 119(2) . . ? N1 C8 C5 118(2) . . ? N2 C9 N3 122(2) . . ? N2 C9 C17 119(2) . 7_666 ? N3 C9 C17 119(2) . 7_666 ? N1 C10 N2 120(2) . . ? N1 C10 C11 118(2) . . ? N2 C10 C11 122(3) . . ? C12 C11 C10 125(3) . . ? C12 C11 C16 117(3) . . ? C10 C11 C16 117(3) . . ? C11 C12 C13 123(2) . . ? C11 C12 H12 118.7 . . ? C13 C12 H12 118.7 . . ? C14 C13 C12 120(2) . . ? C14 C13 H13 119.9 . . ? C12 C13 H13 119.9 . . ? C15 C14 C13 119(2) . . ? C15 C14 C24 119(2) . 4_646 ? C13 C14 C24 122(2) . 4_646 ? C14 C15 C16 122(3) . . ? C14 C15 H15 119.0 . . ? C16 C15 H15 119.0 . . ? C15 C16 C11 119(3) . . ? C15 C16 H16 120.5 . . ? C11 C16 H16 120.5 . . ? C22 C17 C18 124(2) . . ? C22 C17 C9 120(2) . 7_666 ? C18 C17 C9 117(2) . 7_666 ? C19 C18 C17 118(2) . . ? C19 C18 H18 121.2 . . ? C17 C18 H18 121.2 . . ? C18 C19 C20 118.4(19) . . ? C18 C19 H19 120.8 . . ? C20 C19 H19 120.8 . . ? C21 C20 C19 122.8(19) . . ? C21 C20 C23 120.2(18) . . ? C19 C20 C23 117.0(18) . . ? C20 C21 C22 117(2) . . ? C20 C21 H21 121.5 . . ? C22 C21 H21 121.5 . . ? C17 C22 C21 121(2) . . ? C17 C22 H22 119.7 . . ? C21 C22 H22 119.7 . . ? O5 C23 O3 124.3(19) 5_666 . ? O5 C23 C20 119.3(19) 5_666 . ? O3 C23 C20 116.4(19) . . ? O5 C23 Eu1 50.7(10) 5_666 5_666 ? O3 C23 Eu1 75.7(11) . 5_666 ? C20 C23 Eu1 159.8(13) . 5_666 ? O4 C24 O6 127(2) . 5_666 ? O4 C24 C14 116(2) . 4_656 ? O6 C24 C14 117(2) 5_666 4_656 ? O7 C25 N4 124(2) . . ? N4 C26 C27 109.7(19) . . ? C26 C27 C27 159.0(18) . 2_655 ? N4 C28 C29 110.5(17) . . ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 17.15 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.716 _refine_diff_density_min -0.604 _refine_diff_density_rms 0.122 # start Validation Reply Form _vrf_CHEMW03_compound4_SMOF-7 ; PROBLEM: ALERT: The ratio of given/expected molecular weight as RESPONSE: The program Platon/Squeeze was employed to model the disordered solvent in the structural channels in this MOF. Hence, the reported and calculated structures differ due to the DEF solvent. The selection of Z=4 while doubling the formula unit made more chemical sense and yielded an interger value of solvent molecules per formula unit (7) rather than (3.5 DMF molecules) if Z=8. ; _vrf_THETM01_compound4_SMOF-7 ; PROBLEM: The value of sine(theta_max)/wavelength is less than 0.550 RESPONSE: MOF structures are notoriously weak scattering materials due to their low density and open framework structure. Therefore MOF-type structures such as this crystal structure (SMOF-7) have very few peaks at high diffraction angle. Data below approximately 1.2 Angstroms resolution were at noise level and expansion of integration to include this smaller d-spacing range resulting in integration of background. This did not serve to improve the dataset, and so the cutoff was made 1.2 Angstroms (or sine(theta_max)/wavelength = 0.4149) with full awareness that this could compromise the resolution of bond lengths within the structure. While the bond lengths for C-C, C-O, and C-N bonds were reasonable within the refinement, the low cutoff did demand refinement of isotropic atomic displacement parameters for the light atoms (O, C, N, H). The purpose of this structure refinement is to obtain connectivity of the new MOF phase for qualitative assessments of the lattice. ; _vrf_PLAT023_compound4_SMOF-7 ; PROBLEM: Resolution (too) Low [sin(theta)/Lambda < 0.6].. 17.15 Deg. RESPONSE: see above ; _vrf_PLAT043_compound4_SMOF-7 ; PROBLEM: Check Reported Molecular Weight ................ 1908.59 RESPONSE: Use of Squeeze. See above. Also, number of formula units was doubled to obtain more intuitive results for the chemical formula. ; _vrf_PLAT044_compound4_SMOF-7 ; PROBLEM: Calculated and Reported Dx Differ .............. ? RESPONSE: solvent modeled using squeeze. ; _vrf_PLAT201_compound4_SMOF-7 ; PROBLEM: Isotropic non-H Atoms in Main Residue(s) ....... 33 RESPONSE: Low resolution data so TELP refinement is suspect. It was reasonable to assign isotropic refinement in this case. ; _vrf_PLAT241_compound4_SMOF-7 ; PROBLEM: Check High Ueq as Compared to Neighbors for C25 RESPONSE: The atoms of the coordinated DEF molecule was constrained to be equal to improve stablity of this positionally disordered solvent molecule. ; _vrf_PLAT602_compound4_SMOF-7 ; PROBLEM: VERY LARGE Solvent Accessible VOID(S) in Structure ! RESPONSE: This has been appropriately modeled and documented. ; # end Validation Reply Form