
 

Draft document generated by the xSDK project.  

We are actively soliciting suggestions from the community at https://xsdk.info/policies and 

https://github.com/xsdk-project/xsdk-community-policies 

 

1 

 

 xSDK Community Package Policies 
The xSDK4ECP Team 

Version 1.0.0, February 17, 2023 

https://xsdk.info/policies 

 

Background: A key aspect of work in the IDEAS Scientific Software Productivity Project is developing 

an Extreme-scale Scientific Software Development Kit (xSDK) — a collection of related and 

complementary software elements that provide the building blocks, tools, models, processes, and 

related artifacts for rapid and efficient development of high-quality applications. As an initial step in 

creating the xSDK, we have written the following draft xSDK package community policies to help 

address challenges in interoperability and sustainability of software developed by diverse groups at 

different institutions. 

 

Goal: Develop a set of xSDK community policies that a software library/framework (henceforth 

referred to as package)1 must satisfy in order to be xSDK compatible.  The designation of a package 

being xSDK compatible informs potential users that the package can be easily used with other xSDK 

libraries and components and thus helps to address issues in long-term sustainability2 and 

interoperability among packages.   

 

We consider two categories of xSDK packages: xSDK compatible packages and xSDK member 

packages. We also consider two levels of xSDK compatibility: mandatory policies and 

recommended policies.  

 

● A package will be declared xSDK compatible once the xSDK team has determined that the 

package satisfies the mandatory xSDK policies listed below.   In addition to the required 

policies, we specify recommended xSDK policies that further help to address issues in 

software interoperability. 

 

 
1 For the purpose of this document, the term package refers to a collection of source code (possibly containing 
C, Fortran, or C++) that can generate zero or more shared or static libraries, zero or more include files, zero or 
more Fortran modules, and possibly other auxiliary artifacts, including executables, and whose functionality can 
be used by other packages and by application codes. A software artifact that generates only an executable is, 
by this definition, not an xSDK package; that is, xSDK packages are libraries, frameworks, and domain 
components. 
2 See, for example, "Self-Sustaining Software" as outlined in 
http://trac.trilinos.org/wiki/TribitsLifecycleModelOverview#self_sustaining_software. 

https://xsdk.info/policies
https://github.com/xsdk-project/xsdk-community-policies
https://xsdk.info/policies
http://www.ideas-productivity.org/
http://xsdk.info/
http://trac.trilinos.org/wiki/TribitsLifecycleModelOverview#self_sustaining_software


 

Draft document generated by the xSDK project.  

We are actively soliciting suggestions from the community at https://xsdk.info/policies and 

https://github.com/xsdk-project/xsdk-community-policies 

 

2 

● Similarly, a package can become an xSDK member package if (1) it is an xSDK-compatible 

package, and (2) it uses or can be used by another package in the xSDK, and the connecting 

interface is regularly tested for regressions.  

 

Initially the requirements and process are informally presented; over time, if needed, we can begin to 

formalize them. Currently the xSDK includes twenty-six popular numerical libraries (AMREX, ArborX, 

ButterflyPACK, DataTransferKit (DTK),  deal.II, ExaGO,  Ginkgo, heFFTe, HiOp, hypre, libEnsemble, 

MAGMA, MFEM, Omega_h, PETSc/TAO, PHIST, PLASMA, preCICE, PUMI, SLATE, SLEPc,  

STRUMPACK, SUNDIALS, SuperLU, TASMANIAN, and Trilinos) and two application packages 

(Alquimia and PFLOTRAN), which satisfy the required policies. Over the longer term, the xSDK may 

expand to incorporate additional packages, depending on community needs and contributions.   

 

 

xSDK Mandatory Policies 

 

M1. Each xSDK-compatible package must support portable installation through Spack. All 

configuration, build, and installation phases must be specified in a Spack package recipe. Packages 

should have a build system that is appropriate for the language (e.g., ~ CMake, Autoconf, setup.py), 

and the packages should attempt to follow the best practices and guidelines of the respective 

environment. For example, a proper configuration phase should be used where relevant (a list of 

platform-specific makefiles would not be acceptable). It is recommended that packages have a 

mechanism for 'smoke' testing (e.g. make test_install). The package should provide Spack variants 

compliant with the [xSDK Spack variant guidelines]. Packages must not override Spack's resolved 

dependencies (as determined by `spack spec`). For example, if a BLAS library is part of the 

concretized `spack spec`, a package cannot silently substitute a different BLAS implementation.The 

goal of this policy is to enable easy and customizable installation of the package in a way that is 

compatible with other xSDK packages on the same system. 

 

M2. Each xSDK-compatible package must provide a comprehensive test suite that can be run by 

users and does not require the purchase of commercial software. It is recommended that at least a 

significant subset of the test suite will complete within a few hours on standard workstation-level 

hardware. It is also recommended that at least a significant subset of the tests be runnable in batch-

only environments, that is, systems that require the use of PBS or other submission scripts. 

 

M3. Each xSDK-compatible package that utilizes MPI must restrict its MPI operations to MPI 

communicators that are provided to it and not use directly MPI_COMM_WORLD. The package should 

use configure tests or version tests to detect MPI 3 features that may not be available; it should not be 

https://xsdk.info/policies
https://github.com/xsdk-project/xsdk-community-policies
https://amrex-codes.github.io/amrex/
https://github.com/arborx/arborx
https://github.com/liuyangzhuan/ButterflyPACK
https://github.com/ORNL-CEES/DataTransferKit
https://www.dealii.org/
https://gitlab.pnnl.gov/exasgd/frameworks/exago
https://github.com/ginkgo-project/ginkgo
https://bitbucket.org/icl/heffte/src/master/
https://github.com/LLNL/hiop
https://computation.llnl.gov/project/linear_solvers/
https://github.com/Libensemble/libensemble
http://icl.utk.edu/magma
http://mfem.org/
https://github.com/ibaned/omega_h
http://www.mcs.anl.gov/petsc/
https://bitbucket.org/essex/phist/wiki/Home
https://icl.utk.edu/plasma/
https://precice.org/
https://github.com/SCOREC/core
https://bitbucket.org/icl/slate/src/master/
https://slepc.upv.es/
https://portal.nersc.gov/project/sparse/strumpack/
https://computation.llnl.gov/projects/sundials
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
https://ornl.github.io/TASMANIAN/stable/
https://trilinos.org/
https://bitbucket.org/berkeleylab/alquimia
http://www.pflotran.org/
https://spack.io/


 

Draft document generated by the xSDK project.  

We are actively soliciting suggestions from the community at https://xsdk.info/policies and 

https://github.com/xsdk-project/xsdk-community-policies 

 

3 

assumed that a full MPI 3 implementation is available. The package can change the MPI error-

handling mode by default but should have an option to prevent it from changing the MPI error 

handling (which may have been set by another package or the application). The package should also 

behave appropriately regardless of the MPI error handling being used. There is no requirement that 

the package provide a sequential (non-MPI) version, although this functionality is welcome, too. If the 

package provides a sequential version, there is no requirement that it be compatible or usable with 

other xSDK-compatible packages running without MPI. 

 

M4. Each package team must do a “best effort” at portability to common platforms, including 

standard Linux distributions, and common compiler toolchains such as GNU, Clang,3 and vendor 

compilers.  Further portability requirements for xSDK subsets may be conditionally applied 

based on sponsor requirements.4  Support for Apple Mac OS and Microsoft Windows Visual Studio 

is recommended.  

 

M5. Each package team must provide a documented, reliable way to contact the development 

team; the mode of contact may be by email or a website. The package teams should not require 

users to join a generic mailing list (and hence receive irrelevant email) in order to report bugs or 

request assistance.  

 

M6. Each package should respect the decisions made by other previously called packages 

regarding system resources and settings. For example, each package may provide an API for changing 

the floating-point exception (FPE) and signal handlers, and even set them in a particular way by default, 

but there must be a way to prevent the change. Because it is impossible to determine the current state 

of the FPE and signal handlers and thus restore them to the current state after changing them, it is 

recommended that the xSDK packages adopt a common protocol for pushing and popping FPE and 

signal handlers. 

 

M7. The xSDK collaboration has a strong preference for packages to use an OSI-approved, 

permissive open-source license (e.g., MIT or BSD 3-Clause). All new packages will be required to 

use such a license. Current packages using other licenses are encouraged to relicense, where 

possible. Required dependencies must use an OSI-approved license that is considered compatible 

with the preferred permissive licenses for distribution purposes (see 

 
3 This does not mean that xSDK packages and all their dependencies cannot have a dependency of Fortran, 
merely that the C and C++ portions of the packages and their dependencies should be compilable with the 
Clang compilers. 
4 For example, xSDK packages that receive funding from the mathematical libraries component of the U.S. 
Department of Energy (DOE) Exascale Computing Project (ECP) must support portability to target machines at 
the computing facilities ALCF, NERSC, and OLCF. 

https://xsdk.info/policies
https://github.com/xsdk-project/xsdk-community-policies


 

Draft document generated by the xSDK project.  

We are actively soliciting suggestions from the community at https://xsdk.info/policies and 

https://github.com/xsdk-project/xsdk-community-policies 

 

4 

https://en.wikipedia.org/wiki/License_compatibility). Non-critical optional dependencies can use any 

OSI-approved license.  

RATIONALE: The choice of a permissive open-source license is friendlier to use by commercial 

entities. Note that strong copyleft licenses (e.g., GPL) are not considered compatible with permissive 

licenses. Weaker copyleft licenses (e.g., LGPL or GPL v2 with runtime exception) can be considered 

compatible for xSDK distribution purposes. Licenses that restrict commercial use are not acceptable 

in the xSDK. The xSDK leadership reserves the right to define a build where packages with weaker 

copyleft licenses (e.g., LGPL or GPL v2 with runtime exception) are optional, so that users who wish 

to avoid these restrictions can do so. 

 

M8. Each package must provide a runtime API, for example a function call, to return the current 

version number of the software and indicate what configure/CMAKE and compiler options were used 

to build the package. For development versions of the software, each package must provide the 

current commit ID in the repository. With this information users should be able to rebuild the package 

in the same state. We do not currently require that version information for all dependent packages be 

provided, so it may not be possible to rebuild the entire software stack in the same state. 

 

M9. Each package should use a limited and well-defined symbol, macro, library, and include file 

name space. For example, there should be no publicly visible include files such as utils.h, or package 

named libutil.a or macros named YES or TRUE. Namespacing of include files can be handled either 

by prepending each include file with a package name, for example <XXXmat.h>, or by placing and 

referencing all include files in a subdirectory with a package name, for example <XXX/mat.h>. Note 

that using a -I/XXX/ and referencing via <mat.h> would not be acceptable namespacing. 

 

M10. It is mandatory that each package have a public repository, for example at GitHub, GitLab or 

Bitbucket, where the development version of the package is available. It is recommended supporting 

pull requests, which enables xSDK library developers and users to provide improvements, bug fixes 

and interoperability fixes.  

 

M11. No package should have hardwired print or I/O statements that cannot be turned off through a 

programmatic interface5; output should never be hard-wired to stdout or stderr.  It is recommended 

that packages provide a way for users to turn on output and allow them to direct where it goes.6Also, 

 
5 Packages should not exclusively use environmental variables as a programmatic interface since other 
packages that may be controlling the simulation process cannot set such environmental variables. There must 
be an API that can be called from with the source code. It is fine to also support using environmental variables, 
but that cannot be the only way. 
6 For example, allowing users to control output in a C++ package means that the package must accept an 
arbitrary std::ostream object and all output should go to that object.  In C, the package should accept a FILE 
object to which it can direct its output. 

https://xsdk.info/policies
https://github.com/xsdk-project/xsdk-community-policies
https://en.wikipedia.org/wiki/License_compatibility


 

Draft document generated by the xSDK project.  

We are actively soliciting suggestions from the community at https://xsdk.info/policies and 

https://github.com/xsdk-project/xsdk-community-policies 

 

5 

packages may print to stdout by default but only on one process (i.e., root rank “0”).  But packages 

may also be completely silent by default (and require that users turn on outputting in the appropriate 

way). 

 

M12. If a package imports software that is externally developed and maintained,7 then it must allow 

installing, building, and linking against an outside copy of that software.  Acceptable ways to 

accomplish this include (1) forsaking the internal copied version and using an externally provided 

implementation or (2) changing the file names and namespaces of all global symbols to allow the 

internal copy and the external copy to coexist in the same downstream libraries and programs. 

 

M13. When configured with a prefix, a package must install its headers and libraries under <install-

prefix>/include/ and <install-prefix>/[lib,lib64]/, respectively. In addition, the libraries and header file 

names should not have the version number embedded in them (except for shared libraries that can 

have soname versions and symlinks like lib<package>.so -> lib<package>.so.X -> 

lib<package>.so.X.Y.Z). 

The aim of this policy is to prevent packages from installing into a non-standard directory layout 

and for other xSDK packages to be able to detect the location of include files and libraries. 

 

M14. All xSDK-compatible packages must be buildable using 64-bit pointers (this is commonly the 

default). It is not required that they be buildable with 32-bit pointers. 

 

M15. All xSDK compatibility changes should be sustainable (i.e., they should go into the regular 

development and release versions of the package and should not be in a private release/branch that 

is provided only for xSDK releases) 

 

M16. Any xSDK-compatible package that compiles code should have a configuration option to build in 

Debug mode. Debug mode must produce debugging symbols in compiled code and may contain 

further useful debugging information and additional error checking. In Spack, the debug build type 

may be enabled via the variants recommended in the [xSDK Spack variant guidelines]. The aim of this 

policy is to enable the end-user to produce a version of the code that is suitable for debugging. 

 

M17. Each xSDK member package should have sufficient documentation to support use and 

further development. While it is difficult to formalize what constitutes sufficiency of documentation, the 

 
7 For example, some projects import source for some routines from BLAS and LAPACK.  The Trilinos Teuchos 
package imported an early version of the boost::any class.  Also, Trilinos has its own copy of an older version of 
SparseSuite.  In the latter two cases, new file names and namespaces were created for the imported software to 
allow coexistence with the (updated) external versions. 

https://xsdk.info/policies
https://github.com/xsdk-project/xsdk-community-policies


 

Draft document generated by the xSDK project.  

We are actively soliciting suggestions from the community at https://xsdk.info/policies and 

https://github.com/xsdk-project/xsdk-community-policies 

 

6 

requirement will be reviewed by the xSDK community based on documentation elements and must 

include: 

● Instructions on installation and getting started, 

● Documentation on functionality, for example class- and member-level documentation (in 

object-oriented languages) or more generally API-level documentation. 

 

It is recommended that the documentation also include the following: 

● Discussions of how individual components of the code base interact (for example, in object-

oriented languages, how classes or groups of classes interact), ideally using "typical use case" 

code snippets, 

● Presence of complete example codes that illustrate typical use cases, 

● Links to external resources such as mailing lists and forums where users and developers can 

find help, 

● Instructions for on-ramping new developers, 

● Description of team processes. 

 

 

xSDK Recommended Policies 

 

In addition to the required xSDK policies listed above, the following capabilities are also 

recommended.  

 

R1. Each package should have at least one validation (smoke) test that can be invoked through the 

Spack package.  This will be a post-installation test that validates the usability of the package and 

must be executable via ‘spack test run <package_name>’. 

Policy compliance requires that the ‘spack test run’ interface works on a standalone system. For MPI 

tests, MPICH or OpenMPI may be used. 

Some xSDK packages with existing validation tests include PETSc, Tasmanian, and libEnsemble. 

This policy enables successful installation to be quickly tested before proceeding with more resource-

intensive tests. Further information can be found in the Spack packaging guide. 

 

R2. It is recommended that all packages make it possible to run their test suite under Valgrind in order 

to test for memory corruption issues. 

 

R3. It is recommended that each package adopt and document a consistent system for 

propagating/returning error conditions/exceptions and provide an API for changing the behavior. 

For example, all routines may, by default, return an error code with the option of changing it to 

https://xsdk.info/policies
https://github.com/xsdk-project/xsdk-community-policies


 

Draft document generated by the xSDK project.  

We are actively soliciting suggestions from the community at https://xsdk.info/policies and 

https://github.com/xsdk-project/xsdk-community-policies 

 

7 

generate an abort on the error (for running in the debugger). No package should have hardwired calls 

to abort, exit, or MPI_Abort(). Also, no package should have hardwired print statements for error 

conditions. Each package should document which error codes/exceptions are recoverable, which may 

result in lost resources (for example, unfreed memory), and which indicate that the process may be in 

an undefined or totally broken state (for example, after a segmentation violation). It is the 

responsibility of the calling routine not to simply continue the computation when a “hard” error is 

returned; the calling routine will likely, by default, call an abort, but again that should be possible to 

override. 

 

R4. It is recommended that each package free all system resources it has acquired as soon as 

they are no longer needed. This recommendation includes closing open files, freeing memory, freeing 

MPI communicators, and freeing MPI data types created by the package. In particular, it is crucial that 

xSDK compatible code not have any growing memory leaks (such as leaking memory during every 

timestep). Any resources created by the package that should be freed by the user, rather than by the 

package, must be fully documented. Valgrind can be used to locate when these resources are 

mistakenly not released. 

 

R5. It is recommended that each package provide a mechanism to export its ordered list of library 

dependencies so that any other package or executable linking to the package knows to include these 

dependencies when linking. 

RATIONALE: When using static libraries, some compilers require the libraries in the link command to 

be listed in the correct dependency order - to avoid unresolved symbol errors. 

One way this information can be provided  to the users is via pkg-config file. 

 

R6: Each package should document the versions of packages with which it can work or upon 

which it depends, including software external to the xSDK, preferably in a machine-readable form.  

The developers of xSDK member packages will coordinate the needed versions of various packages 

for each xSDK release. 

 

R7. It is recommended that each package should have a README or README.md, a SUPPORT or 

SUPPORT.md, a LICENSE or LICENSE.md, and a CHANGELOG or CHANGELOG.md file in its top 

directory. The README file should contain at least the following information:  

● a brief description of the package, 

● information on how to install the package or a link to a file (e.g., INSTALL, INSTALL.md or 

similar) or a website with the installation information,  

● a link to the package webpage (if there is one)  

https://xsdk.info/policies
https://github.com/xsdk-project/xsdk-community-policies


 

Draft document generated by the xSDK project.  

We are actively soliciting suggestions from the community at https://xsdk.info/policies and 

https://github.com/xsdk-project/xsdk-community-policies 

 

8 

The LICENSE file should contain the full text of the license. If the full text can be found in a different 

directory or via a link to a website it is sufficient to provide a link to the full text in the file.  

The SUPPORT file should contain the contact information that is required by community policy M5 to 

be able to get help.  

The CHANGELOG file should contain important changes or a link to a file or webpage with this 

information, but not each individual commit message. 

If providing additional information, e.g. on how to contribute, authorship, code of conduct, etc, it is 

recommended to consider suggestions in https://github.com/kmindi/special-files-in-

repositoryroot/blob/master/README.md . 

 

R8. Each package should provide pre-processor macros that allow for version comparison 

(for languages that support it - like C/C++/Fortran). Using these macros, dependent software 

can potentially be compatible with multiple versions of the package. 

Example implementations for a given  package version 1.2.3 

● Example 1: provide version macros only, via public include files (or can be done easily 

via CMake) 

#define <PACKAGE>_VERSION_MAJOR 1 

#define <PACKAGE>_VERSION_MINOR 2 

#define <PACKAGE>_VERSION_PATCH 3 

● Example 2: provide a single integer version macro to encode major, minor, patch 

version 

#define <PACKAGE>_VERSION 1002003 

Additional comparison macros can help usage 

● With Example 1 (via public include files) 

#define <PACKAGE>_VERSION_GE(Major, Minor, Patch) \ 

(((Major == <PACKAGE>_VERSION_MAJOR) && (Minor == <PACKAGE>_VERSION_MINOR) && (Patch <= 

<PACKAGE>_VERSION_PATCH)) || \ 

((Major == <PACKAGE>_VERSION_MAJOR) && (Minor < <PACKAGE>_VERSION_MINOR)) || 

(Major < <PACKAGE>_VERSION_MAJOR)) 

 

#define <PACKAGE>_VERSION_GT(Major, Minor, Patch) \ 

https://xsdk.info/policies
https://github.com/xsdk-project/xsdk-community-policies
https://github.com/kmindi/special-files-in-repositoryroot/blob/master/README.md
https://github.com/kmindi/special-files-in-repositoryroot/blob/master/README.md


 

Draft document generated by the xSDK project.  

We are actively soliciting suggestions from the community at https://xsdk.info/policies and 

https://github.com/xsdk-project/xsdk-community-policies 

 

9 

(((Major == <PACKAGE>_VERSION_MAJOR) && (Minor == <PACKAGE>_VERSION_MINOR) && (Patch < 

<PACKAGE>_VERSION_PATCH)) || \ 

((Major == <PACKAGE>_VERSION_MAJOR) && (Minor < <PACKAGE>_VERSION_MINOR)) || 

(Major < <PACKAGE>_VERSION_MAJOR)) 

 

#define <PACKAGE>_VERSION_EQ(Major, Minor, Patch) \ 

((Major == <PACKAGE>_VERSION_MAJOR) && (Minor == <PACKAGE>_VERSION_MINOR) && (Patch == 

<PACKAGE>_VERSION_PATCH)) 

 

#define <PACKAGE>_VERSION_LE(Major, Minor, Patch) \ 

!<PACKAGE>_VERSION_GT(Major, Minor, Patch) 

 

#define <PACKAGE>_VERSION_LT(Major, Minor, Patch) \ 

!<PACKAGE>_VERSION_GE(Major, Minor, Patch) 

● With Example 2 (via public include files) 

#define <PACKAGE>_VERSION_GE(Major, Minor, Patch) \ 

(Major * 10000 + Minor * 100 + Patch <= <PACKAGE>_VERSION) 

 

#define <PACKAGE>_VERSION_GT(Major, Minor, Patch) \ 

(Major * 10000 + Minor * 100 + Patch < <PACKAGE>_VERSION) 

 

#define <PACKAGE>_VERSION_LE(Major, Minor, Patch) \ 

!<PACKAGE>_VERSION_GT(Major, Minor, Patch) 

 

#define <PACKAGE>_VERSION_LT(Major, Minor, Patch) \ 

!<PACKAGE>_VERSION_GE(Major, Minor, Patch) 

Implementations that are NOT acceptable include: 

● providing a string #define <PACKAGE>_VERSION "1.2.3" (as string version comparisons 

are not easy) 

● expecting the user to "know" the version or expecting the user to manually edit source-

code 

● requiring the use of external tools such as CMake or git (on the user application or 

library side) to generate and access package version macros 

● not having "namespaced" macros (as they could conflict with macros defined in other 

packages, using the package name as a prefix can avoid this issue) 

https://xsdk.info/policies
https://github.com/xsdk-project/xsdk-community-policies


 

Draft document generated by the xSDK project.  

We are actively soliciting suggestions from the community at https://xsdk.info/policies and 

https://github.com/xsdk-project/xsdk-community-policies 

 

10 

 

History of xSDK community policies.  The original version of this document was prepared in 2015 

by Barry Smith with key input from Roscoe Bartlett and feedback from members of the IDEAS project.  

Over time, revisions have been introduced based on discussions with the broader computational 

science community and developers of an expanding collection of xSDK member packages.  We thank 

all xSDK package developers, the IDEAS team, and the scientific computing community for insightful 

discussion about issues and approaches. 

 

● Changes in version 1.0.0, February 17, 2023: 

○ Made R1 (must have a public repository) mandatory, merging it into M10. 

○ Converted R8 (documentation) to a new mandatory policy (M17). 

○ Added new recommended policy requiring a validation test, replacing R1. 

○ Added new recommended policy (provide version comparison preprocessor macros), 

replacing R8. 

○ Added wording to M13, clarifying the requirement and providing motivation for the 

policy. 

○ Added clarification to R5, giving rationale for the policy and an example of how to meet 

the requirement. 

○ Minor wording/grammar changes were made to M7 and R2, without changing meaning. 

● Changes in version 0.6.0, October 12, 2020: 

○ Added new policy R8 on documentation quality 

○ Merged policies M1 and M16 with emphasis on use of Spack as xSDK installer 

○ Eliminated installation policies which were included in previous M1, provided a 

document with xSDK Spack installation guidelines 

○ Added new policy M16, which requires an xSDK package to have a configuration 

option to be built in debug mode, a requirement previously included in the eliminated 

installation policies 

● Changes in version 0.5.0, June 27, 2019: 

○ Added new policy R7, which recommends the inclusion of various information files in 

the top directory 

○ Dropped the requirement to detect MPI 2 features in M3 

○ Made various editorial changes in R2, M5, M13 and M15 for clarification or to fix typo 

● Changes in version 0.4.0, July 27, 2018:  

○ Split policy M4 into 2 parts: M4 (portability to common platforms) and new policy R6 

(package should document the versions of packages with which it can work on on 

which it depends).  See https://github.com/xsdk-project/xsdk-issues/issues/55 

https://xsdk.info/policies
https://github.com/xsdk-project/xsdk-community-policies
https://github.com/xsdk-project/xsdk-issues/issues/55


 

Draft document generated by the xSDK project.  

We are actively soliciting suggestions from the community at https://xsdk.info/policies and 

https://github.com/xsdk-project/xsdk-community-policies 

 

11 

○ Revision to M7: language about open source licensing requirements.  See 

https://github.com/xsdk-project/xsdk-issues/issues/56  

○ New section on history of policies and summary of changes, misc minor edits 

● Changes in version 0.3.0, November 6, 2017: added 2 new policies (M15 and M16), changed 

naming convention to follow xSDK release number, minor typo edits 

● Changes in version 0.3, December 2, 2016: clear definition of xSDK member packages, misc 

minor edits 

● Changes in version 0.2, January 28, 2016: minor edits 

● Version 0.1, November 10, 2015: original version 

 

 

Frequently Asked Questions about the xSDK:  See the xSDK FAQ list. 

 

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Advanced Scientific 

Computing Research and Biological and Environmental Research programs. 

https://xsdk.info/policies
https://github.com/xsdk-project/xsdk-community-policies
https://github.com/xsdk-project/xsdk-issues/issues/56
http://xsdk.info/faq/

