Palladium-Catalyzed $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - $\mathrm{H} \quad$ Pyridocarbonylation of N-Aryl-2-aminopyridines: Dual Function of the Pyridyl Moiety

Dongdong Liang, Yimiao He and Qiang Zhu*

State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China

Email: zhu_qiang@gibh.ac.cn

Table of Contents

1. General Information ... 2
2. General Procedure and Product Characterization ... 2
2.1 General procedure.. 2
2.2. Product Characterization... 3
3. Diversification of 2a... 10
4. Mechanistic studies .. 12
4.1 Isotop Labeling Experiments ... 12
4.2 Evidence of oxidation state of the palladium intermediate.................................... 14
5. References.. 15
6. Copies of NMR Spectra.. 15

1. General Information

Substrates 1 were synthesized according to the literature method. ${ }^{1}$ Reactions were monitored using thin-layer chromatography (TLC) on commercial silica gel plates (GF 254). Visualization of the developed plates was performed under UV lights (254 nm). Flash column chromatography was performed on silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 or 500 MHz spectrometer. Chemical shifts (δ) were reported in ppm referenced to an internal tetramethylsilane standard or the DMSO- d_{6} residual peak ($\delta 2.50$) for ${ }^{1} \mathrm{H}$ NMR. Chemical shifts of ${ }^{13} \mathrm{C}$ NMR were reported relative to CDCl_{3} ($\delta 77.0$) or DMSO- d_{6} ($\delta 39.5$). The following abbreviations were used to describe peak splitting patterns when appropriate: br s = broad singlet, s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. Coupling constant, J , was reported in Hertz unit (Hz). IR spectra were recorded on a Bruker Tensor 27 spectrometer using a diamond comb. High resolution mass spectra (HRMS) were obtained on an ESI-LC-MS/MS spectrometer.

2. General Procedure and Product Characterization

2.1 General procedure

In an oven-dried Schlenk tube equipped with a stir bar, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 5.0$ $\mathrm{mol} \%$), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ($162 \mathrm{mg}, 3.0$ equiv) and N -aryl-2-aminopyridines (0.2 mmol) were combined. A balloon filled with CO was connected to the Schlenk tube by the side tube and purged three times. Then, TFA (1.0 mL) was added to the tube through a syringe. The Schlenk tube was heated at $70{ }^{\circ} \mathrm{C}$ for $1.5-8 \mathrm{~h}$ under balloon pressure of CO. The reaction was cooled down to room temperature after complete consumption of $\mathbf{1}$ as monitored by TLC analysis. EtOAc (20 mL) and saturated aqueous NaHCO_{3} (20 mL) were added to the reaction mixture successively. The organic phase was separated, and the aqueous phase was further extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The concentrated residue was purified by column chromatography over silica gel using petroleum ether/ethyl acetate as eluent to give the desired product 2.

2.2. Product Characterization

11H-pyrido[2,1-b]quinazolin-11-one (2a) ${ }^{2,3}$

Yellow solid, $34 \mathrm{mg}, 87 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.87$ (d, J = 7.2 Hz , 1 H), 8.45 (dd, $J=8.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.51-7.45 (m, 3H), 6.88-6.84 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.0,148.5$, 147.7, 135.0, 134.1, 127.3, 126.9, 126.7, 126.3, 125.2, 116.3, 112.4; IR (KBr): 3412, 3111, 2924, 1974, 1700, 1641, 1569, 1545, 1455, 1384, 1302, 1150 764, $685 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$196.0709, found 196.0710.

6-methyl-11H-pyrido[2,1-b]quinazolin-11-one (2b) ${ }^{4}$

Yellow solid, $36 \mathrm{mg}, 86 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.81$ (d, $J=7.2 \mathrm{~Hz}$, 1 H), 8.44 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.84-7.82 (m, 2H), 7.48-7.45 (m, 1H), 7.37 (dd, $J=5.2$ $\mathrm{Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): δ 159.5, 148.3, 147.6, 134.7, 134.5, 132.2, 127.5, 127.2, 125.1, 124.8, 116.1, 112.1, 18.6; IR (KBr): 3551, 3478, 3413, 2978, 2917, 1702, 1640, 1608, 1556, 1529, 1457, 1164, 1137, 1072, 765, $736 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 211.0866, found 211.0865.

6-chloro-11H-pyrido[2,1-b]quinazolin-11-one (2c)

Pale yellow solid, $31 \mathrm{mg}, 67 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.84$ (d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 1 \mathrm{H})$, 7.71-7.69 (m, 1H), $7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.0,147.8,144.4,135.3,133.0,130.4,127.8,127.3,126.1,126.0$, 116.2, 111.0; IR (KBr): 3474, 3453, 3347, 3098, 2925, 1834, 1701, 1633, 1605, 1544, 1523, 1470, 1455, 1248, 1152, 897, 771, $693 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$231.0320, found 231.0321.

7-methyl-11H-pyrido[2,1-b]quinazolin-11-one (2d) ${ }^{2}$

Pale yellow solid, $32 \mathrm{mg}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.78$ (d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.42 (dd, $J=8.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=7.2 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.9,150.7,142.5,135.9,134.6,134.1,130.4$, 129.6, 128.6, 127.6, 110.5, 107.7, 37.1; IR (KBr): 3530, 3369, 3277, 3065, 2919, 1727, 1695, 1649, 1606, 1528, 1457, 1238, 776, $693 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$211.0866, found 211.0868.

7-phenyl-11H-pyrido[2,1-b]quinazolin-11-one (2e)

Yellow solid, $25 \mathrm{mg}, 46 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.92$ (d, $J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.44$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (d, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}$), $7.54-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 158.9,149.0,148.0,146.0,136.4,135.1,129.9,129.3,127.3,126.9,126.82$, 126.80, 125.0, 121.9, 116.2, 112.3; IR (KBr): 3551, 3414, 3050, 2923, 1690, 1648, 1530, 1453, 1261, 1160, 1147, 941, 755, $690 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$273.1022, found 273.1022.

8-fluoro-11H-pyrido[2,1-b]quinazolin-11-one (2f)

Pale yellow solid, $34 \mathrm{mg}, 79 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.76$ (dd, $J=5.2$
$\mathrm{Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.4$ (d, $J=1.8$ $\mathrm{Hz}), 152.3(\mathrm{~d}, \mathrm{~J}=241.9 \mathrm{~Hz}$), 148.1, 145.7, 135.0, 128.3 (d, $J=3.9 \mathrm{~Hz}$), 127.7 (d, $J=$ 27.1 Hz), 127.10, 127.08, 125.9, 115.6, 112.1 (d, $J=41.5 \mathrm{~Hz}$); IR (KBr): 3412, 3069, 3052, 2923, 1972, 1690, 1608, 1568, 1550, 1531, 1311, 1472, 1457, 1345, 769, $694 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 215.0615$, found 215.0617.

8-(trifluoromethyl)-11H-pyrido[2,1-b]quinazolin-11-one (2g)

Yellow solid, $40 \mathrm{mg}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.18$ (d, $J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.43$ (dd, $J=8.0 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.55-7.51 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.6,148.2,146.6,135.8,128.9$ (q, $J=1.9 \mathrm{~Hz}$), 127.7, 127.5, 127.3, $126.6(\mathrm{q}, J=6.1 \mathrm{~Hz}), 126.3,122.9(\mathrm{q}, J=269.8$ $\mathrm{Hz}), 116.5,116.3$; IR (KBr): 3551, 3468, 3413, 3103, 3047, 1809, 1712, 1662, 1610, 1580, 1556, 1462, 1335, 1262, 1116, 1058, 769, $675 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$265.0583, found 265.0584.

6 H -pyrimido $2,1-b]$ quinazolin-6-one (2 h$)^{5}$

Yellow solid, $16 \mathrm{mg}, 40 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.12$ (dd, $J=7.2 \mathrm{~Hz}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{dd}, J=7.6 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.94-7.87 (m, 2H), 7.55-7.52 (m, 1H), $6.89(\mathrm{dd}, J=7.2 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 161.5,159.3,149.0,147.3,135.8,135.7,128.0,127.3$, 126.2, 116.2, 108.9; IR (KBr): 3413, 2962, 2922, 2851, 1696, 1638, 1570, 1547, 1458, 1402, 1228, 1145, 775, $690 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 198.0662, found 198.0661.

2-methyl-11H-pyrido[2,1-b]quinazolin-11-one (2i) ${ }^{3}$

Yellow solid, $32 \mathrm{mg}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.86$ (dd, $J=7.2 \mathrm{~Hz}$, 1H), 8.23 (s, 1H), 7.71-7.65 (m, 2H), 7.49-7.46 (m, 2H), 6.85-6.81 (m, 1H), 2.51 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.9,147.2,146.7,136.9,135.4,133.5,126.7$, 126.6, 126.3, 126.2, 116.1, 112.3, 21.4; IR (KBr): 3413, 3052, 2920, 1697, 1642, 1545, 1526, 1481, 1257, 1140, 826, 765, 696, $569 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$211.0866, found 211.0867.

2-methoxy-11H-pyrido[2,1-b]quinazolin-11-one (2j) ${ }^{3,5}$

Pray white solid, $28 \mathrm{mg}, 62 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.87$ (d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 3 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 158.7,157.4,146.1,143.7,132.8,128.7,126.8,126.41$, 126.39, 116.9, 112.6, 105.1, 55.8; IR (KBr): 3478, 3037, 2923, 1731, 1692, 1599, 1546, 1432, 1375, 1142, 1022, $763 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}$ [$\mathrm{M}+\mathrm{H}]^{+} 227.0815$, found 227.0817.

2-tert-butyl-11H-pyrido[2,1-b]quinazolin-11-one (2k)

Pale yellow solid, $39 \mathrm{mg}, 77 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.87$ (dd, $J=7.6$ $\mathrm{Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.74 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1,148.7,147.3,146.6,133.6,126.7,126.6,126.3$, 122.5, 115.7, 112.4, 35.0, 31.2; IR (KBr): 3033, 3961, 2867, 2636, 1684, 1644, 1547, 1525, 1483, 1265, 1150, 1225, 834, 766, $601 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 253.1335$, found 253.1338.

2-fluoro-11H-pyrido[2,1-b]quinazolin-11-one (2l)

White solid, $30 \mathrm{mg}, 70 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 1 H), 8.06 (dd, $J=8.8 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.80 (dd, $J=8.8 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.62-7.57 (m, 1H), 7.52-7.51 (m, 2H), 6.91-6.87 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 159.7$ (d, $J=246.1 \mathrm{~Hz}$), 158.4 (d, $J=4.1 \mathrm{~Hz}$), 147.1, 145.4, 133.9, 129.5, (d, $J=8.1 \mathrm{~Hz}$), 126.5, 126.4, 124.5(d, $J=25 \mathrm{~Hz}), 117.0$ (d, $J=8.8 \mathrm{~Hz}$), 112.9, 111.2 (d, $J=23.3 \mathrm{~Hz}$); IR (KBr): 3550, 3476, 3413, 3234, 1694, 1649, 1546, 1549, 1482, 1440, 1364, 1133, 839, 796, $760 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 215.0615, found 215.0614.

2-chloro-11H-pyrido[2,1-b]quinazolin-11-one (2m)

Yellow solid, $35 \mathrm{mg}, 77 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.85$ (dd, $J=7.2 \mathrm{~Hz}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H})$, 6.92-6.88 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.1,147.8,147.1,135.6,134.4$, 130.7, 128.7, 126.7, 126.4, 126.3, 117.0, 113.0; IR (KBr): 3114, 3038, 1690, 1643, 1547, 1524, 1466, 1153, 1014, 886, 762, 732, $692 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$231.0320, found 231.0321.

4-methyl-11H-pyrido[2,1-b]quinazolin-11-one (2n)

Pale yellow solid, $34 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.86(\mathrm{~d}, \mathrm{~J}=7.2$ Hz, 1H), 8.31 (d, $J=8.0,1 \mathrm{H}$), 7.69 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4,147.5,146.7,135.4,135.1,133.4,126.9,126.6,124.9$, 124.8, 116.2, 112.4, 17.7; IR (KBr): 3474, 3453, 3423, 2946, 1692, 1640, 1605, 1578, 1544 , 1476, 1302, 1242, 1136, 761, $699 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}$
$[\mathrm{M}+\mathrm{H}]^{+}$211.0866, found 211.0866.

4-methoxy-11H-pyrido[2,1-b]quinazolin-11-one (2o)

Pale yellow solid, $30 \mathrm{mg}, 66 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.88$ (d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.03 (dd, $J=8.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.69 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53-7.49 (m, $1 \mathrm{H}), 7.41$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.87$ (m, 1H), 4.08 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.8,154.1,147.2,140.0,133.7,127.0,126.6,125.2$, $118.5,117.2,113.4,112.9,56.3$; IR (KBr): 3474, 3453, 3449, 3240, 2922, 2839, 1709, 1639, 1576, 1528, 1486, 1384, 1266, 1253, 1144, 1078, 757, $705 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$227.0815, found 227.0816.

4-fluoro-11H-pyrido[2,1-b]quinazolin-11-one (2p)

Brown solid, $33 \mathrm{mg}, 77 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.88$ (d, $J=7.2 \mathrm{~Hz}$ $1 \mathrm{H}), 8.23$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59-7.54 (m, 2H), 7.42-7.37 (m, 1H), 6.95-6.91 (m, 1H), 7.30; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.2$ (d, $J=3.4$ $\mathrm{Hz}), 156.7$ (d, $J=253.6 \mathrm{~Hz}$), 148.1, 138.8 (d, $J=12.1 \mathrm{~Hz}$), 134.7, 126.8, 126.7, 124.7 (d, $J=7.5 \mathrm{~Hz}$), 122.9 (d, $J=4.5 \mathrm{~Hz}$), 119.5 (d, $J=18.4 \mathrm{~Hz}$), 118.1, 113.1; $\operatorname{IR}(\mathrm{KBr}):$ 3551, 3474, 3414, 3043, 2924, 1689, 1644, 1617, 1545, 1531, 1251, 1099, 755, $675 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$215.0615, found 215.0616.

3-methyl-11H-pyrido[2,1-b]quinazolin-11-one (2q)

Gray white powder, $25 \mathrm{mg}, 59 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.86$ (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.33 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (s, 1H), 7.49-7.48 (m, 2H), $7.30(\mathrm{dd}, J=8.4$
$\mathrm{Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 158.8, 148.7, 147.9, 146.2, 134.0, 127.2, 127.1, 126.7, 126.3, 114.0, 112.3, 22.2; IR (KBr): 3411, 3076, 2917, 1709, 1680, 1644, 1616, 1545, 1459, 1348, 1210, 1225, 761, 654 cm^{-1}; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$211.0866, found 211.0866.

3-phenyl-11H-pyrido[2,1-b]quinazolin-11-one (2r)

Pale yellow solid, $41 \mathrm{mg}, 75 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.88$ (d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.49 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.00 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.76-7.72 (m, 3H), 7.52-7.48 (m, 4H), 7.45-7.41 (m, 1H), 6.88-6.85 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 158.8,148.9,148.1,147.7,139.7,134.2,129.0,128.5,127.8,127.5,126.8$, 126.3, 124.63, 124.57, 115.0, 112.4; IR (KBr): 3551, 3413, 3114, 3030, 1692, 1642, 1614, 1546, 1530, 1464, 1210, 1160, 878, 768, 757, $688 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$273.1022, found 273.1023.

1,3-dimethyl-11H-pyrido[2,1-b]quinazolin-11-one (2s)

Yellow solid, $32 \mathrm{mg}, 72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.83$ (d, $J=7.6 \mathrm{~Hz}$, 1H), 7.48-7.40 (m, 3H), 7.05 (s, 1H), 6.81-6.77 (m, 1H), 2.93 (s, 3H), 2.47 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.9,150.3,147.8,145.2,141.2,134.0,129.5,126.6$, 126.0, 124.6, 112.9, 112.0, 23.5, 21.9; IR (KBr): 3551, 3479, 3413, 3109, 1732, 1689, 1641, 1616, 1548, 1529, 1293, 857, $621 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$225.1022, found 225.1021.

3-chloro-11H-pyrido[2,1-b]quinazolin-11-one (2t) ${ }^{3}$

Gray white powder, $20 \mathrm{mg}, 43 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.85$ (d, $J=7.2$
$\mathrm{Hz}, 1 \mathrm{H}), 8.35$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57-7.53 (m, 1H), 7.49 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): δ 158.8, 149.9, 149.0, 141.8, 135.0, 129.2, 127.2, 126.8, 126.6, 126.3, 115.1, 113.1; IR (KBr): 3412, 3064, 3033, 2924, 1990, 1690, 1642, 1598, 1544, 1526, 1453, 1147, 768, $687 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 231.0320, found 231.0321.

1-chloro-11H-pyrido[2,1-b]quinazolin-11-one (2t')

Pale yellow solid, $12 \mathrm{mg}, 27 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.89(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68-7.66$ (m, 2H), 7.58-7.54 (m, 1H), 7.48-7.46 (m, 2H), 6.91-6.88 (m, 1H);
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 156.9,150.9,148.1,135.0,134.4,134.1,127.6,126.8$, 126.2, 126.0, 113.5, 112.8; IR (KBr): 3779, 3574, 3216, 2957, 2924, 2854, 1698, 1643, 1597, 1560, 1517, 1462, 1378, 1279, 813, $687 \mathrm{~cm}^{-1}$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$231.0320, found 231.0318.

3. Diversification of $\mathbf{2 a}$

(2-(pyridin-2-ylamino)phenyl)methanol (3)

A solution of $2 \mathbf{2 a}(196 \mathrm{mg}, 1 \mathrm{mmol})$ in dry THF (2 mL) was added slowly to an ice-cold suspension of $\mathrm{LiAlH}_{4}(152 \mathrm{mg}, 4 \mathrm{mmol})$ in dry THF (5 mL). Then the solution was refluxed for 4 h , during which the conversion was complete. The reaction was then carefully quenched by ice. The citric acid $(1 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and 1 M of $\mathrm{HCl}(10 \mathrm{~mL})$ was added, and then extracted by EtOAc. 10% of NaOH was added to adjust the PH to 8 . The aqueous phase was extracted by EtOAc again. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The concentrated residue was purified by column chromatography over silica gel using petroleum ether/ethyl acetate as eluent to give the desired product $\mathbf{3}(98 \mathrm{mg})$
in 49% yield as a yellow liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11$ (d, $J=4.8 \mathrm{~Hz}$, 1H), 7.82 (br s, 1H), 7.59 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.73 (s, 2H), 3.97 (br s 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.0,147.7,139.8$, 137.9, 131.5, 129.5, 128.7, 122.9, 120.6, 114.9, 109.0, 63.6.

3-(2-(pyridin-2-ylamino)phenyl)pentan-3-ol (4)

A solution of 2a ($392 \mathrm{mg}, 2 \mathrm{mmol}$) in dry THF (10 mL) was cooled to $0{ }^{\circ} \mathrm{C}$, after a dropwise addition of $\mathrm{EtMgBr}(1.0 \mathrm{M}$ in THF, 4 mL) to this stirring solution, the resulting reaction mixture was stirred for 12 h at $25^{\circ} \mathrm{C}$. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, EtOAc (20 mL) was added. The aqueous phase was extracted by EtOAc (20 mL) again. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The concentrated residue was purified by column chromatography over silica gel using petroleum ether/ethyl acetate as eluent to give the desired product $4(344 \mathrm{mg})$ in 67% yield as yellow liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.03(\mathrm{~s}, 1 \mathrm{H})$, 8.08 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.13 (br s, 1H), 1.96 (q, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 0.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 156.5,147.8,140.4,137.6,133.7,127.8,127.3,122.0,121.7,114.4$, 108.6,79.4, 32.2, 8.3.

benzo[4,5]imidazo[1,2-a]pyridin-6-ylmethanol (5)

To a solution of 3 (0.20 mmol , 1 equiv) in $\operatorname{HFIP}(1.5 \mathrm{~mL})$ was added $\operatorname{PhI}(\mathrm{OAc})_{2}(0.22$ mmol, 1.1 equiv) at $25{ }^{\circ} \mathrm{C}$ under air. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 1.5 h. The reaction was monitored by TLC until the starting material was completely consumed. The reaction mixture was diluted with EtOAc (10 mL) and washed with
brine (10 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was purified by column chromatography to give 5 in 69% yield . ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 9.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.68 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (t , $J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}$), $5.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.05$ (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 147.8$, 141.8, 133.5, 130.3, 128.5, 127.4, 122.5, 120.8, 117.4, 110.7, 110.4, 59.5; IR (KBr): 3408, 2925, 1636, 1503, 1428, 1356, 1018, 757; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$199.0871, found 199.0864.

3-(benzo[4,5]imidazo[1,2-a]pyridin-6-yl)pentan-3-ol (6)

To a solution of 3 (0.20 mmol , 1 equiv) in $\operatorname{HFIP}(1.5 \mathrm{~mL})$ was added $\operatorname{PhI}(\mathrm{OAc})_{2}$ (0.22 mmol, 1.1 equiv) at $25{ }^{\circ} \mathrm{C}$ under air. The resulting mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 1.5 h. The reaction was monitored by TLC until the starting material was completely consumed. The reaction mixture was diluted with EtOAc (10 mL) and washed with brine (10 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was purified by column chromatography to give the 6 in 88% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 1H), 7.66 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-1.96(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{t}$, $7.6 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.7,143.0,136.6,129.4,128.7,125.1$, 122.4, 120.9, 117.9, 110.4, 108.4, 79.5, 34.7, 8.3; IR (KBr): 3301, 2961, 1639, 1509, 1415, 1359, 1288, 965, 760; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 255.1497, found 255.1494.

4. Mechanistic studies

4.1 Isotop Labeling Experiments

Synthesis and characterization of deuterated substrate 1a-D ${ }_{5}$

N -pencadeuteriumphenylpyridin-2-amine (1a- \mathbf{D}_{5})

Following the literature method for the synthesis of substrate 1, 2-bromopyridine and pentadeuteriumaniline were used. 1a-D \mathbf{D}_{5} was obtained in 85% yield as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): 8.21 (dd, $\left.J=4.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H})$, $6.87(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

H/D Exchange experiment

A mixture of $\mathbf{1 a -} \mathbf{D}_{5}(35 \mathrm{mg}, 0.2 \mathrm{mmol}$, the deuterium rate is over $95 \%), \mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}$, $5 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (162 mg , 3 equiv) in TFA was stirred at $70^{\circ} \mathrm{C}$ under balloon pressure of CO for 2 h . The mixture was diluted with EtOAc (20 mL), washed saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine (20 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The concentrated residue was purified by column chromatography to recover $\mathbf{1 a}-\mathbf{D}_{5}(\mathrm{D} \%$ was about 87%) in 15% yield.

Intermolecular competition reaction of a mixture of 1 a and $1 \mathrm{a}-\mathrm{D}_{5}$

A mixture of $\mathbf{1 a}\left(17 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.5\right.$ equiv), $\mathbf{1 a}^{\mathbf{a}} \mathbf{D}_{5}(19.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.5$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(162 \mathrm{mg}, 3$ equiv) in TFA (1 mL) was stirred at $70^{\circ} \mathrm{C}$ under balloon pressure of CO for 0.5 h . The mixture was diluted with $\mathrm{EtOAc}(20$ mL), washed Saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine (20 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The concentrated residue was purified by column chromatography to give a mixture of $\mathbf{2 a}$ and $\mathbf{2 a -} \mathbf{D}_{4}$ in a total yield of 38% in a ratio of $1.9: 1$ as determined by ${ }^{1} \mathrm{H}$ NMR.

Parallel competition reactions of 1 a and $1 \mathrm{a}-\mathrm{D}_{5}$ in separate tubes ${ }^{6}$

1a

$1 a-D_{5}$
$\mathrm{Pd}(\mathrm{OAc})_{2} 5 \mathrm{~mol} \%$ $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8} 3$ equiv

TFA, $70^{\circ} \mathrm{C}$
CO
parallel experiment

Five identical reactions were set side-by-side. Each reaction tube was charged with 1a (17 $\mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.2 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ($81 \mathrm{mg}, 3$ equiv) in TFA (0.5 mL) was stirred at $70^{\circ} \mathrm{C}$ under balloon pressure of CO. The reactions were stopped in 6,12 , 18, 24 and 30 min , respectively. In a parallel experiment, the same five reactions were performed using $\mathbf{1 a -} \mathbf{D}_{5}(19.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ as a substrate under otherwise identical conditions. Each of the reaction was worked up following procedures mentioned above. The crude reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR using 4-iodoanisole as an internal standard. The yields of $\mathbf{2 a}$ and $\mathbf{2 a}-\mathbf{D}_{\mathbf{4}}$ of the 10 reactions were plotted against reaction time. The ratio of product formation was determined to be 2.5 by comparing the slopes.

4.2 Evidence of oxidation state of the palladium intermediate

In an oven-dried Schlenk tube equipped with a stirring bar, $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($45 \mathrm{mg}, 1$ equiv) and N-aryl-2-aminopyridines $\mathbf{1 a}$ ($35 \mathrm{mg}, 0.2 \mathrm{mmol}$) were combined. A balloon filled with CO was connected to the Schlenk tube by the side tube and purged three times. Then, TFA (1.0 mL) was added to the tube through a syringe. The Schlenk tube was
heated at $70{ }^{\circ} \mathrm{C}$ for 4 h under balloon pressure of CO . The reaction was cooled down to room temperature. EtOAc (20 mL) and saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ were added to the reaction mixture successively. The organic phase was separated, and the aqueous phase was further extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The concentrated residue was purified by column chromatography over silica gel using petroleum ether/ethyl acetate as eluent to give $\mathbf{2 a}$ in 48% yield. 45% of $\mathbf{1 a}$ was recovered. The result indicates that $\operatorname{Pd}(\mathrm{II})$ intermediate maybe involve in the course of reaction, instead of $\operatorname{Pd}(\mathrm{IV})$ $\left(\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right.$ often used as an oxidant to oxidize the $\mathrm{Pd}(\mathrm{II})$ intermediate to $\mathrm{Pd}(\mathrm{IV})$.

5. References

(1) (a) Grasa, G. A.; Viciu, M. S.; Huang, J.; Nolan, S. P. J. Org. Chem. 2001, 66, 7729. (b)Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. J. Am. Chem. Soc. 2010, 132, 13217.
(2) Maity, A.; Mondal, S.; Paira, R.; Hazra, A.; Naskar, S.; Sahu, K. B.; Saha, P.; Banerjee, S.; Mondal, N. B. Tetrahedron Lett. 2011, 52, 3033.
(3) Docampo, M. L.; Pellón, R. F. Synth. Commun. 2003, 33, 1777.
(4) Pellón, R. F.; Carrasco, R.; Rodés, L. Synth. Commun. 1996, 26, 3869
(5) Deetz, M. J.; Malerich, J. P.; Beatty, A. M.; Smith, B. D. Tetrahedron Lett. 2001, 42, 1851.
(6) Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 3066.

6. Copies of NMR Spectra

LDD1314


```
6 4 7 7
```


LDD-6487

LDD6487
Broner

rever

LDD6497
ref

ner

LDD6476
ref

NAME
EPPNO
PROCNO
3 C
6482
1

BRUKER

$\left.\begin{array}{lllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40\end{array}\right)$

6531-1

7957

-

LDD-H5

