Supporting Information For:

Chiral Phosphoric Acid-Catalyzed Asymmetric Transfer Hydrogenation of Quinolin-3-amines

Xian-Feng Cai, ${ }^{a, b}$ Ran-Ning Guo, ${ }^{b}$ Guang-Shou Feng, ${ }^{b}$ Bo Wu, ${ }^{b}$ Yong-Gui Zhou ${ }^{b, *}$
${ }^{a}$ Department of Chemistry, Dalian University of Technology, Dalian 116012, P. R. China
${ }^{b}$ State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics
Chinese Academy of Sciences, Dalian 116023, P. R. China;

Table of Contents

1. General...S1
2. Synthesis of 3-Nitroquinolines 6... 51
3. Synthesis of Quinolin-3-amines 1...S2
4. Synthesis of tert-butyl 2-phenylquinolin-3-ylcarbamate 7...S5
5. Asymmetric Transfer Hydrogenation of 7...S5
6. Asymmetric Transfer Hydrogenation of Quinolin-3-amines 1...S6
7. Removal of the Ts Group..S10
8. Isotopic Labeling Experiment...S11
9. Copy of NMR and HPLC for Racemic and Chiral Compounds......................................S12

1. General:

Commercially available reagents were used without further purification. Solvents were treated prior to use according to the standard methods. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at room temperature in CDCl_{3} or $\mathrm{DMSO}-\mathrm{d}_{6}$ on 400 MHz instrument with tetramethylsilane (TMS) as internal standard. Enantiomeric excess was determined by HPLC analysis, using chiral column described below in detail. Optical rotations were measured by polarimeter. Flash column chromatography was performed on silica gel (200-300 mesh).

2. Synthesis of 3-Nitroquinolines 6

3-Nitroquinoline derivatives can be conveniently synthesized according to the known literature procedure. ${ }^{1,2}$ The compounds 2-phenyl-3-nitroquinoline ($\mathbf{6 a}$), 2-m-tolyl-3-nitroquinoline ($\mathbf{6 b}$), 2-p-tolyl-3-nitroquinoline ($\mathbf{6 c}$), 2-(4-methoxyphenyl)-3-nitroquinoline ($\mathbf{6 e}$), 2-(4-chloro-phenyl)-3-nitroquinoline ($\mathbf{6 f}$), 2-(4-bromophenyl)-3-nitroquinoline ($\mathbf{6 g}$), 2-(4-fluorophenyl)-3-nitroquinoline ($\mathbf{6 h}$), 2-(4-trifluoromethylphenyl)-3-nitroquinoline ($\mathbf{6 i}$), 2-naphthyl-3-nitroquinoline (6j), 2-phenyl-6-fluoro-3-nitroquinoline ($\mathbf{6 k}$) are known compounds.

A mixture of 2-chloro-3-nitroquinoline ($50 \mathrm{mg}, 0.24 \mathrm{mmol}$), boronic acid (0.29 mmol), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(99 \mathrm{mg}, 0.72 \mathrm{mmol})$ in DME (dimethoxyethane, 6 mL) was stirred at reflux for 2 h , then cooled to rt , diluted with water $(15 \mathrm{~mL})$, then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 3)$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under the reduced pressure and the residue was purified by flash chromatography on silica gel to yield the corresponding products.

2-(4-tert-Butylphenyl)-3-nitroquinoline (6d): 97\% yield, light yellow solid, mp 134-136 ${ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.60$ (petroleum ether/EtOAc 10:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.63(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=$
 $8.5,1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.2,1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.3,7.2,1 \mathrm{H}), 7.66(\mathrm{t}, J=7.6,1 \mathrm{H})$, 7.63-7.57 (m, 2H), $7.51(\mathrm{~d}, J=8.3,2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=152.9,152.1,148.5,144.1,134.1,132.7,132.4,129.8,128.5$,
$128.3,127.9,125.8,125.5,34.8,31.3$; HRMS Calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$
$[\mathrm{M}+\mathrm{H}]^{+}$307.1447, found 307.1443.
2-(Pyridin-3-yl)-3-nitroquinoline (61): 97\% yield, yellowish-brown solid, mp 207-209 ${ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\mathrm{f}}=0.30$ (petroleum ether/EtOAc 1:1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.91(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H})$,
 $8.74(\mathrm{~d}, J=4.0,1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.5,1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.1,1 \mathrm{H}), 7.95(\mathrm{t}, J=$ $7.7,2 \mathrm{H}), 7.74(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.3,5.1,1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.4,149.4,149.1,148.6,143.4,135.6,133.4,133.4$, 133.3, 129.9, 129.0, 128.8, 125.8, 123.2; HRMS Calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$252.0773, found 252.0775.

[^0]
3. Synthesis of Quinolin-3-amines 1

To a solution of $\mathbf{6}(0.60 \mathrm{mmol})$ in a mixed solvent of ethanol and $\mathrm{H}_{2} \mathrm{O}$ with a ratio of $4 / 1$ (5 mL) was added iron powder ($134 \mathrm{mg}, 2.40 \mathrm{mmol}$) followed by $\mathrm{HCl}(0.1 \mathrm{M}, 0.3 \mathrm{~mL}, 0.03 \mathrm{mmol})$, and the resulting mixture was vigorously stirred at $85{ }^{\circ} \mathrm{C}$ for $0.5-1.5 \mathrm{~h}$. When the reduction reaction was complete (determined by TLC), saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added and the mixture was filtered through celite. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration, the solvent was removed under reduced pressure and the crude product was pure enough for further reaction.

In a 25 mL round-bottom flask, the crude product, 4 -methylbenzene-1-sulfonyl chloride ($\mathrm{TsCl}, 137 \mathrm{mg}, 0.72 \mathrm{mmol}$) and 4-dimethylaminopyridine (DMAP, $22 \mathrm{mg}, 0.18 \mathrm{mmol}, 30 \mathrm{~mol} \%$) were combined in pyridine (5 mL). The resulting mixture was refluxed for 18 h . The solvent was removed under reduced pressure, the residue was resolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with water (15 mL). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration, the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel to yield the product.

4-Methyl- N -(2-phenylquinolin-3-yl)benzenesulfonamide (1a): 79\% yield, white solid, mp 207-209 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.30$ (petroleum ether/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.45(\mathrm{~s}, 1 \mathrm{H})$,
 8.03 (d, $J=8.2,1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.65(\mathrm{t}, J=7.2,1 \mathrm{H}), 7.60-7.47(\mathrm{~m}$, $3 \mathrm{H}), 7.42(\mathrm{~d}, J=7.2,3 \mathrm{H}), 7.15(\mathrm{dd}, J=15.9,7.0,4 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=153.5,145.3,144.6,136.8,136.1$, 130.0, 129.5, 129.5, 129.4, 129.3, 128.6, 128.6, 127.9, 127.7, 127.5, 127.3, 126.6, 21.7; HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 375.1167$, found 375.1174.

4-Methyl- N-(2-m-tolylquinolin-3-yl)benzenesulfonamide (1b): 53% yield, white solid, mp $217-219{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.40$ (petroleum ether/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.47(\mathrm{~s}, 1 \mathrm{H})$,
 8.03 (d, $J=8.4,1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.66(\mathrm{dd}, J=11.2,4.1,1 \mathrm{H}), 7.56$ $(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.31(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.26(\mathrm{~d}, J=3.9$, $1 \mathrm{H}), 7.17$ (d, $J=8.1,2 \mathrm{H}), 6.92$ (d, $J=7.3,1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H})$, 2.37 (s, 3H), $2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=153.5,145.1$, 144.3, 139.2, 136.5, 136.0, 130.2, 129.8, 129.2, 129.2, 129.1, 129.0, 128.5, 127.7, 127.5, 127.3, 127.1, 126.3, 125.3, 21.5, 21.4; HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$389.1324, found 389.1332 .

4-Methyl- N-(2-p-tolylquinolin-3-yl)benzenesulfonamide (1c): 55% yield, white solid, mp $281-283{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.40$ (petroleum ether/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.43(\mathrm{~s}, 1 \mathrm{H})$, $8.01(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.64(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.54(\mathrm{t}, J=$ $8.1,3 \mathrm{H}), 7.21$ (dd, $J=22.6,7.9,4 \mathrm{H}), 7.04(\mathrm{~d}, J=7.7,2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H})$, 2.42 (s, 3H), $2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=153.2,145.1$, $144.4,139.5,135.9,133.7,130.0,129.8,129.2,129.0,128.6,128.3,127.7$,
127.4, 127.2, 127.2, 125.6, 21.5, 21.3; HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$389.1324, found 389.1331 .
\boldsymbol{N}-(2-(4-tert-Butylphenyl)quinolin-3-yl)-4-methylbenzenesulfonamide (1d): 65\% yield, white solid, mp 193-195 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.40$ (petroleum ether/EtOAc $5: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 $\delta=8.42(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.1,1 \mathrm{H}), 7.68-7.61(\mathrm{~m}$, $1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1,2 \mathrm{H}), 7.12$ $(\mathrm{d}, J=8.2,2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=153.1,152.6,145.1,144.3,135.9,133.7,129.8,129.2$, $129.0,128.5,128.1,127.7,127.4,127.2,127.2,126.3,125.6,34.8,31.3,21.5$; HRMS Calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 431.1793$, found 431.1788 .
N-(2-(4-Methoxyphenyl)quinolin-3-yl)-4-methylbenzenesulfonamide (1e): 62% yield, white solid, $\mathrm{mp} 243-245{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.50$ (petroleum ether/EtOAc $2: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 DMSO-d $\left.\mathrm{d}_{6}\right) \delta=9.90(\mathrm{~s}, 1 \mathrm{H}), 8.09-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.80-7.67(\mathrm{~m}, 1 \mathrm{H})$, 7.53 (dd, $J=24.5,7.3,5 \mathrm{H}), 7.26(\mathrm{~d}, J=7.2,2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.8,2 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$) $\delta=160.1$, $156.6,146.0,143.5,137.8,133.1,131.2,131.1,130.2,130.0,129.0$, 128.7, 128.0, 127.3, 127.1, 127.1, 113.7, 55.7, 21.5; HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 405.1273, found 405.1269.
\boldsymbol{N}-(2-(4-Chlorophenyl)quinolin-3-yl)-4-methylbenzenesulfonamide (1f): 42% yield, white solid, mp 260-262 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.40$ (petroleum ether/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=$
 $10.02(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=18.3,8.2,2 \mathrm{H}), 7.76(\mathrm{t}, J=7.3$, $1 \mathrm{H}), 7.67-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{t}, J=6.9,4 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8,2 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta=156.0,146.0,143.7$, 137.6, $137.5,134.1,133.8,131.6,130.5,130.0,129.1,128.6,128.2,128.1,127.8$, 127.5, 127.0, 21.5; HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 409.0778$, found 409.0766 .
N-(2-(4-Bromophenyl)quinolin-3-yl)-4-methylbenzenesulfonamide (1g): 55\% yield, white solid, mp 281-283 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.15$ (petroleum ether/EtOAc 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $=10.02(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=16.1,8.2,2 \mathrm{H}), 7.76(\mathrm{t}, J=7.4$,
 $1 \mathrm{H}), 7.60(\mathrm{dd}, J=17.0,7.9,3 \mathrm{H}), 7.46(\mathrm{dd}, J=15.0,8.2,4 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $7.9,2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta=156.1,146.0$, 143.6, 137.9, 137.7, 134.0, 131.9, 131.2, 130.5, 130.0, 129.1, 128.7, 128.1, 127.8, 127.5, 127.0, 122.6, 21.5; HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 453.0272$, found 453.0267.
\boldsymbol{N}-(2-(4-Fluorophenyl)quinolin-3-yl)-4-methylbenzenesulfonamide (1h): 51% yield, white solid, mp 278-280 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.40$ (petroleum ether/EtOAc 10:1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$
 $8.44(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.1,1 \mathrm{H}), 7.67(\mathrm{dd}, J=11.2$, $4.1,1 \mathrm{H}), 7.62-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1,2 \mathrm{H}), 7.13(\mathrm{p}, J=8.8,4 \mathrm{H})$, $6.68(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta=162.8(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{FC}}=245.6 \mathrm{~Hz}\right), 156.2,146.0,143.6,137.7,135.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{FC}}=2.2 \mathrm{~Hz}\right)$,
133.9, $132.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=8.6 \mathrm{~Hz}\right), 130.4,130.0,129.1,128.6,128.1,127.7,127.4,127.0,115.1(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{FC}}=21.3 \mathrm{~Hz}\right), 21.4 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-111.2$; HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$393.1073, found 393.1065.

4-Methyl- N-(2-(4-(trifluoromethyl)phenyl)quinolin-3-yl)benzenesulfonamide (1i): 47\% yield, white solid, mp 252-254 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.15$ (petroleum ether/EtOAc 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta=8.46(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.1,1 \mathrm{H}), 7.65$ (tt, $J=15.0,7.4,4 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1,2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9,2 \mathrm{H}), 7.19(\mathrm{~d}$, $J=8.0,2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $152.1,145.4,144.6,140.5,136.0,131.6,131.2,130.9,129.9,129.6$, $129.3,129.1,128.2,128.0,127.9,127.8,127.6,127.1,126.1,126.1,126.0,126.0,125.2,122.4$, $21.5 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-62.9$; HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 443.1041 , found 443.1037 .

4-Methyl- \boldsymbol{N}-(2-(naphthalen-2-yl)quinolin-3-yl)benzenesulfonamide (1j): 52\% yield, white solid, mp 292-294 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.30$ (petroleum ether/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d $\left.\mathrm{d}_{6}\right) \delta=$
 $10.06(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=16.1,7.4,4 \mathrm{H}), 7.91(\mathrm{dd}, J=10.2$, $5.6,2 \mathrm{H}), 7.77(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.70-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1,2 \mathrm{H})$, $7.09(\mathrm{~d}, J=8.0,2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta=$ $156.8,146.0,143.5,137.7,136.1,133.3,133.2,133.0,130.3,129.9$, $129.1,129.1,129.0,128.8,128.1,127.9,127.6,127.6,127.6,127.5,127.1,126.9,126.6,21.4$; HRMS Calculated for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$425.1324, found 425.1317.
\boldsymbol{N}-(6-Fluoro-2-phenylquinolin-3-yl)-4-methylbenzenesulfonamide (1k): 60% yield, white solid, mp 216-218 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.15$ (petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 3$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$
 $8.36(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=8.0,5.2,1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.5,2 \mathrm{H}), 7.42(\mathrm{dd}, J=$ 21.4, 7.7, 5H), 7.18 (dd, $J=14.8,6.8,4 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=161.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{FC}}=249.3 \mathrm{~Hz}\right), 152.3\left(\mathrm{~d},{ }^{4} J_{\mathrm{FC}}=\right.$ $2.9 \mathrm{~Hz}), 144.6,142.1,136.3,135.9,131.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=9.4 \mathrm{~Hz}\right), 129.9,129.5$, $129.4,129.3,128.6,128.4,127.2,124.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=5.4 \mathrm{~Hz}\right), 119.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=25.9 \mathrm{~Hz}\right), 110.4(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{FC}}=22.2 \mathrm{~Hz}\right), 21.5 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-112.1$; HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$393.1073, found 393.1065.

4-Methyl- \boldsymbol{N}-(2-(pyridin-3-yl)quinolin-3-yl)benzenesulfonamide (11): 58% yield, white solid, mp 192-194 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.30$ (petroleum ether/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $8.62(\mathrm{~d}, J=4.5,1 \mathrm{H}), 8.43(\mathrm{~s}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.1,1 \mathrm{H})$,
 $7.70(\mathrm{t}, J=7.6,1 \mathrm{H}), 7.57(\mathrm{dd}, J=21.7,8.3,4 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=$ $7.5,5.0,1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0,2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=151.0,150.0,149.4,145.6,144.5,136.4,136.2,133.2,129.9,129.6$, $129.3,128.9,128.5,127.9,127.7,127.6,127.1,123.5,21.5$; HRMS Calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 376.1120$, found 376.1116.

4. Synthesis of tert-butyl 2-phenylquinolin-3-ylcarbamate 7

Under an nitrogen atmosphere and at $0^{\circ} \mathrm{C}$, a solution of 2-phenylquinolin-3-amine (100 mg , 0.45 mol) in THF (5 mL) was charged with 1.0 M lithium bis(trimethylsilyl)amide in $\mathrm{THF} / \mathrm{PhEt}$ $(1.1 \mathrm{~mL}, 1.1 \mathrm{mmol})$, followed by di-tert-butyl dicarbonate ($\left.(\mathrm{Boc})_{2} \mathrm{O}, 119 \mathrm{mg}, 0.55 \mathrm{mmol}\right)$ in THF $(4 \mathrm{~mL})$. The cold bath was removed and the viscous mixture was allowed to stir for 5 h . The solvent was evaporated, dissolved in dichloromethane (10 mL) and washed with $0.05 \mathrm{M} \mathrm{HCl}(10$ $\mathrm{mL})$ and brine. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration, the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel to yield the product.
tert-Butyl 2-phenylquinolin-3-ylcarbamate (7): 71% yield, white solid, mp $144-146{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}$ $=0.70$ (petroleum ether/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.92(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0$, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.5,1 \mathrm{H}), 7.71-7.45(\mathrm{~m}, 7 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=152.9,151.6,144.3,137.7,130.2,129.5,129.4$, 129.3, 129.1, 128.3, 128.2, 127.5, 127.2, 123.3, 81.5, 28.5; HRMS Calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 321.1603$, found 321.1600

5. Asymmetric Transfer Hydrogenation of 7

A mixture of $7(0.125 \mathrm{mmol})$, Hantzsch ester 2a ($76 \mathrm{mg}, 0.30 \mathrm{mmol}, 2.4$ equiv), and chiral phosphoric acid (S)-3a (3.2 mg, $0.00625 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in 1,4-dioxane (3 mL) was stirred at 25 ${ }^{\circ} \mathrm{C}$ under nitrogen for 24 h . After the reaction was completed (determined by TLC), the solvent was removed under reduced pressure. Purification was performed by a silica gel column to give the desired product. The enantiomeric excesses were determined by chiral HPLC.
tert-Butyl 2-phenyl-1,2,3,4-tetrahydroquinolin-3-ylcarbamate (8): 70\% yield, $42 \% \mathrm{ee}$, white solid, $\mathrm{mp} 55-57{ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=-41.5\left(c \quad 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}=0.70$ (petroleum ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} /$
 EtOAc 10:10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{dd}$, $J=16.2,7.9,2 \mathrm{H}), 6.72(\mathrm{t}, J=7.3,1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.89(\mathrm{~d}, J=9.1$, $1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=4.9,1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=16.4,4.6$, $1 \mathrm{H}), 2.79(\mathrm{dd}, J=16.4, \quad 3.7,1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=155.3,143.9,140.6,130.4,128.5,127.8,127.3,126.9,118.4,118.4,114.3,79.1,58.3,47.9$, 33.7, 28.3; HRMS Calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$325.1916, found 325.1910; HPLC: Chirapak OJ-H column, $254 \mathrm{~nm}, 30{ }^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 7.5 min and 10.3 min (major).

6. Asymmetric Transfer Hydrogenation of Quinolin-3-amines 1

A mixture of quinolin-3-amine $\mathbf{1}(0.125 \mathrm{mmol})$, Hantzsch ester 2a $(76 \mathrm{mg}, 0.30 \mathrm{mmol}, 2.4$ equiv), and chiral phosphoric acid (S)-3f ($4.7 \mathrm{mg}, 0.00625 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in 1,4-dioxane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2: 1,3 \mathrm{~mL})$ was stirred at $25{ }^{\circ} \mathrm{C}$ under nitrogen for 24 h . After the reaction was completed (determined by TLC), the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to yield desire product. The enantiomeric excesses were determined by chiral HPLC.

4-Methyl- \boldsymbol{N}-((2S,3S)-2-phenyl-1,2,3,4-tetrahydroquinolin-3-yl)benzenesulfonamide (4a) ${ }^{2}$: 94% yield, 95% ee, white solid, mp $175-177{ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=+73.2\left(c 0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left[\mathrm{lit} .^{2}:[\alpha]^{18}{ }_{\mathrm{D}}=\right.$
 $+82.9\left(c \quad 0.14, \mathrm{CHCl}_{3}\right)$ for $>99 \%$ ee $\left.(2 S, 3 S)\right], \mathrm{R}_{\mathrm{f}}=0.40$ (petroleum ether/EtOAc 5:1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.35(\mathrm{~d}, J=8.2,2 \mathrm{H})$, $7.25-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{t}, J=8.8,3 \mathrm{H}), 6.93(\mathrm{~d}, J=7.4,1 \mathrm{H}), 6.72(\mathrm{t}, J=7.4$, $1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.84(\mathrm{~d}, J=8.7,1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H})$, $3.84(\mathrm{dd}, J=7.8,3.5,1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.2,3.9,1 \mathrm{H}), 2.89(\mathrm{dd}, J=16.5,4.2,1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=143.6,142.9,139.7,137.6,130.6,129.6,128.7,128.0,127.6$, 126.9, 126.8, 119.0, 118.2, 114.7, 58.4, 51.6, 34.4, 21.6; HPLC: Chirapak AD-H column, 254 nm , $30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 15.0 min (major) and 20.1 min.

4-Methyl- \boldsymbol{N}-((2S,3S)-2-m-tolyl-1,2,3,4-tetrahydroquinolin-3-yl)benzenesulfonamide (4b): 96% yield, 97% ee, white solid, $\mathrm{mp} 197-199{ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=+71.3\left(c 0.94, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}=0.45$
 (petroleum ether/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.31(\mathrm{~d}, J=$ $7.9,2 \mathrm{H}), 7.15-6.90(\mathrm{~m}, 8 \mathrm{H}), 6.72(\mathrm{t}, J=7.3,1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.86$ (d, $J=8.4,1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=4.1,1 \mathrm{H}), 3.11(\mathrm{dd}, J$ $=16.4,3.3,1 \mathrm{H}), 2.96(\mathrm{dd}, J=16.4,2.9,1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=143.5,142.5,139.5,138.2,137.5,130.5,129.3,128.6,128.5,127.4$, 127.3, 126.6, 123.6, 118.9, 118.2, 114.6, 58.1, 51.6, 34.6, 21.4, 21.4; HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 393.1637$, found 393.1632; HPLC: Chirapak AD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 12.8 min (major) and 16.3 min .

4-Methyl- \boldsymbol{N}-((2S,3S)-2-p-tolyl-1,2,3,4-tetrahydroquinolin-3-yl)benzenesulfonamide (4c): 98% yield, 91% ee, white solid, mp 240-242 ${ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=+59.5\left(c 0.92, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}=0.45$
 (petroleum ether/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.35(\mathrm{~d}, J=$ $8.2,2 \mathrm{H}), 7.11-6.96(\mathrm{~m}, 7 \mathrm{H}), 6.93(\mathrm{~d}, J=7.5,1 \mathrm{H}), 6.71(\mathrm{t}, J=7.4,1 \mathrm{H}), 6.58$ $(\mathrm{d}, J=7.9,1 \mathrm{H}), 4.82(\mathrm{~d}, J=8.3,1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{td}, J$ $=7.0,4.0,1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.4,4.0,1 \mathrm{H}), 2.89(\mathrm{dd}, J=16.5,4.1,1 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=143.5,142.5,137.6,136.5,130.4$, $129.2,129.2,127.4,126.7,126.5,118.8,118.1,114.5,57.9,51.5,34.3,21.5,21.1$; HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 393.1637$, found 393.1635; HPLC: Chirapak AD-H column,
$254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, n$-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 14.1 min (major) and 21.2 min .
\boldsymbol{N}-((2S,3S)-2-(4-tert-Butylphenyl)-1,2,3,4-tetrahydroquinolin-3-yl)-4-methylbenzenesulfo namide (4d): 93% yield, 94% ee, white solid, $m p 201-203{ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=+28.7\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}$
 $=0.30$ (petroleum ether/EtOAc 10:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 7.42 (d, $J=8.2,2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.11-7.00$ $(\mathrm{m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=7.4,1 \mathrm{H}), 6.70(\mathrm{t}, J=7.4,1 \mathrm{H}), 6.56(\mathrm{~d}, J=7.9,1 \mathrm{H})$, $4.78(\mathrm{~d}, J=8.8,1 \mathrm{H}), 4.46(\mathrm{~d}, J=2.3,1 \mathrm{H}), 4.00(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{td}, J=8.1$, $4.6,1 \mathrm{H}), 3.01(\mathrm{dd}, J=16.4,4.1,1 \mathrm{H}), 2.88(\mathrm{dd}, J=16.5,5.0,1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=151.0,143.5,142.7,137.7,136.6,130.3,129.3,127.5,126.9,126.7$, $125.5,118.6,118.0,114.4,58.0,51.2,34.5,33.7,31.4,21.5$; HRMS Calculated for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$435.2106, found 435.2095; HPLC: Chirapak AD-H column, $254 \mathrm{~nm}, 30{ }^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 10.4 min (major) and 19.5 min .
\boldsymbol{N}-((2S,3S)-2-(4-methoxyphenyl)-1,2,3,4-tetrahydroquinolin-3-yl)-4-methylbenzenesulfo namide (4e): 96% yield, 99% ee, white solid, mp 195-197 ${ }^{\circ} \mathrm{C}$, $[\alpha]^{20}{ }_{\mathrm{D}}=+49.2\left(c 0.98, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}$
 $=0.15$ (petroleum ether/EtOAc 10:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.36(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.6,2 \mathrm{H}), 7.03(\mathrm{t}, J=6.7,3 \mathrm{H}), 6.93(\mathrm{~d}$, $J=7.5,1 \mathrm{H}), 6.71(\mathrm{t}, J=7.6,3 \mathrm{H}), 6.57(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.82(\mathrm{~d}, J=8.6$, $1 \mathrm{H}), 4.42(\mathrm{~d}, J=1.7,1 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=6.5,4 \mathrm{H}), 3.07(\mathrm{dd}, J$ $=16.4,4.0,1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.5,4.1,1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=159.4$, $143.5,142.7,137.6,131.5,130.4,129.3,127.7,127.4,126.7,118.8,118.0,114.5,113.9,57.6$, 55.2, 51.6, 34.3, 21.4; HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$409.1586, found 409.1573; HPLC: Chirapak AD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 17.8 min (major) and 30.1 min .
\boldsymbol{N}-((2S,3S)-2-(4-Chlorophenyl)-1,2,3,4-tetrahydroquinolin-3-yl)-4-methylbenzenesulfona mide (4f): 97% yield, 95% ee, white solid, mp 260-262 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}=+52.0\left(c 0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}=$
 0.20 (petroleum ether/EtOAc 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.33$ $(\mathrm{d}, J=8.2,2 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 7 \mathrm{H}), 6.99(\mathrm{~d}, J=7.4,1 \mathrm{H}), 6.76(\mathrm{t}, J=7.4$, $1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.1,1 \mathrm{H}), 4.87(\mathrm{~d}, J=8.9,1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H})$, $3.80(\mathrm{~d}, J=5.6,1 \mathrm{H}), 3.17(\mathrm{dd}, J=16.6,4.1,1 \mathrm{H}), 2.96(\mathrm{dd}, J=16.5,3.4$, $1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta=144.7,142.8,140.4,138.5,132.2,129.9$, $129.8,129.8,128.0,127.5,126.7,117.4,116.6,113.9,57.0,51.1,31.8,21.5$; HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 413.1091$, found 413.1076; HPLC: Chirapak AD-H column, 254 nm , $30{ }^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 12.4 min (major) and 23.1 min.
\boldsymbol{N}-((2S,3S)-2-(4-Bromophenyl)-1,2,3,4-tetrahydroquinolin-3-yl)-4-methylbenzenesulfona mide (4g): 99% yield, 96% ee, white solid, $\mathrm{mp} 264-266^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=+33.6\left(c 0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}=$
 0.20 (petroleum ether/EtOAc 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.33$ $(\mathrm{d}, J=8.3,2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.2,2 \mathrm{H}), 7.07(\mathrm{dd}, J=13.3,8.2,5 \mathrm{H}), 6.98(\mathrm{~d}$, $J=7.6,1 \mathrm{H}), 6.76(\mathrm{t}, J=7.0,1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.85(\mathrm{~d}, J=8.9$, $1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=8.5,3.3,1 \mathrm{H}), 3.15(\mathrm{dd}, J=$ 16.6, 4.0, 1H), $2.95(\mathrm{dd}, J=16.6,3.5,1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=$ $144.7,142.8,140.8,138.5,130.9,130.3,129.8,129.8,127.5,126.7,120.8,117.4,116.6,113.9$,
57.0, 51.1, 31.7, 21.5. HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 457.0585$, found 457.0579; HPLC: Chirapak AD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 13.1 min (major) and 24.8 min .
\boldsymbol{N}-((2S,3S)-2-(4-Fluorophenyl)-1,2,3,4-tetrahydroquinolin-3-yl)-4-methylbenzenesulfona mide (4h): 93% yield, 98% ee, white solid, $\mathrm{mp} 249-251^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}=+45.0\left(c 0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}=$
 0.40 (petroleum ether/EtOAc 7:1). ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.35(\mathrm{~d}$, $J=8.2,2 \mathrm{H}), 7.15(\mathrm{dd}, J=8.5,5.4,2 \mathrm{H}), 7.05(\mathrm{t}, J=8.5,3 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $7.5,1 \mathrm{H}), 6.83(\mathrm{t}, J=8.6,2 \mathrm{H}), 6.73(\mathrm{t}, J=7.4,1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.0,1 \mathrm{H})$, $4.84(\mathrm{~d}, J=8.9,1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=8.3,3.2,1 \mathrm{H})$, $3.11(\mathrm{dd}, J=16.5,4.0,1 \mathrm{H}), 2.88(\mathrm{dd}, J=16.5,3.7,1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=162.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{FC}}=246.4 \mathrm{~Hz}\right), 143.3,142.9,137.5,135.3\left(\mathrm{~d},{ }^{4} J_{\mathrm{FC}}=3.1 \mathrm{~Hz}\right), 130.5,129.4,128.3$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{FC}}=8.1 \mathrm{~Hz}\right), 127.5,126.6,119.1,117.8,115.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=21.4 \mathrm{~Hz}\right), 114.7,57.6,51.7,34.5$, 21.4; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-114.3$. HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 397.1386, found 397.1368 ; HPLC: Chirapak AD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=$ $70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 12.2 min (major) and 20.8 min .

4-Methyl- N-((2S,3S)-2-(4-(Trifluoromethyl)phenyl)-1,2,3,4-tetrahydroquinolin-3-yl)ben zenesulfonamide (4i): 99% yield, 98% ee, white solid, $214-216{ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=+65.9$ (c 0.94,
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), $\mathrm{R}_{\mathrm{f}}=0.20$ (petroleum ether/EtOAc 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.42(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{t}, J=7.6,1 \mathrm{H})$, $7.00(\mathrm{dd}, J=13.4,7.8,3 \mathrm{H}), 6.77(\mathrm{t}, J=7.4,1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0,1 \mathrm{H})$, $4.88(\mathrm{~d}, J=8.8,1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=3.2,1 \mathrm{H})$, $3.16(\mathrm{dd}, J=16.6,4.0,1 \mathrm{H}), 2.96(\mathrm{dd}, J=16.6,3.5,1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=143.6,143.1,143.0,137.2,130.6,130.2,129.9,129.3,127.6,127.1,126.6,125.3,125.3,125.3$, $125.2,122.6,119.5,117.8,114.9,58.0,51.5,34.6,21.3 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-62.4$. HRMS Calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 447.1354$, found 447.1344; HPLC: Chirapak AD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, n$-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 9.1 min (major) and 17.1 min .

4-Methyl- N -((2S,3S)-2-(Naphthalen-2-yl)-1,2,3,4-tetrahydroquinolin-3-yl)benzenesulfon amide (4j): 91% yield, 83% ee, white solid, $\mathrm{mp} 225-227^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=+27.2\left(c 0.98, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}=$
 0.20 (petroleum ether/EtOAc 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $7.79-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5,1 \mathrm{H})$, 7.52-7.46 (m, 2H), 7.15 (dd, $J=8.5,1.6,1 \mathrm{H}), 7.07(\mathrm{dd}, J=12.8,8.1,3 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.5,1 \mathrm{H}), 6.76(\mathrm{td}, J=7.5,0.8,1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.9,1 \mathrm{H})$, $6.50(\mathrm{~d}, J=8.1,2 \mathrm{H}), 5.00(\mathrm{~d}, J=8.4,1 \mathrm{H}), 4.58(\mathrm{~d}, J=1.2,1 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 1 \mathrm{H})$, $3.21(\mathrm{dd}, J=16.5,4.0,1 \mathrm{H}), 3.06(\mathrm{dd}, J=16.5,3.2,1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=143.4,142.3,136.9,136.8,133.2,133.1,130.6,128.8,128.3,128.0,127.5,127.4,126.3,126.3$, 126.1, 125.0, 124.5, 119.2, 118.3, 114.9, 58.1, 51.7, 35.2, 21.3; HRMS Calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 429.1637$, found 429.1625; HPLC: Chirapak AD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 17.5 min (major) and 22.8 min .

\boldsymbol{N}-((2S,3S)-6-Fluoro-2-phenyl-1,2,3,4-tetrahydroquinolin-3-yl)-4-methylbenzenesulfona

 mide (4k): 94% yield, 73% ee, white solid, $\mathrm{mp} 204-206^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=+66.7\left(c 0.92, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}=$ $0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ethe $\left.3: 1\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.33(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.22(\mathrm{dd}$, $J=7.4,2.6,5 \mathrm{H}), 7.03(\mathrm{~d}, J=8.1,2 \mathrm{H}), 6.78(\mathrm{td}, J=8.5,2.8,1 \mathrm{H}), 6.67(\mathrm{~d}, J=9.0,1 \mathrm{H}), 6.55(\mathrm{dd}, J$$=8.7,4.7,1 \mathrm{H}), 4.88(\mathrm{~d}, J=8.4,1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=7.3,3.6,1 \mathrm{H}), 3.10$
 (dd, $J=16.8,4.0,1 \mathrm{H}), 2.92(\mathrm{dd}, J=16.7,3.2,1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=154.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{FC}}=231.3 \mathrm{~Hz}\right), 142.7,141.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{FC}}\right.$ $=1.3 \mathrm{~Hz}), 138.6,129.9,128.2,128.2,127.4,126.7,118.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=7.2 \mathrm{~Hz}\right)$, $115.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=21.9 \mathrm{~Hz}\right), 114.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=7.5 \mathrm{~Hz}\right), 114.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=22.1\right.$ Hz), 57.7, 51.0, 31.5, 21.4; ${ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO- $_{6}$) $\delta=-129.3$. HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$397.1386, found 397.1373; HPLC: Chirapak AD-H column, $254 \mathrm{~nm}, 30$ ${ }^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=40 / 60$, flow $=0.2 \mathrm{~mL} / \mathrm{min}$, retention time 31.9 min (major) and 33.4 min.

4-Methyl- \boldsymbol{N}-((2S,3S)-2-(Pyridin-3-yl)-1,2,3,4-tetrahydroquinolin-3-yl)benzenesulfonami de (4I): 70% yield, 97% ee, colorless oil, $[\alpha]^{20}{ }_{\mathrm{D}}=+65.0\left(c 0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}=0.40$ (pure EtOAc).
 ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.53-8.38(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.9,1 \mathrm{H})$, $7.44(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.17-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.93(\mathrm{~d}, J=7.4,1 \mathrm{H}), 6.74(\mathrm{t}, J=7.3$, $1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.0,1 \mathrm{H}), 5.14(\mathrm{~d}, J=7.7,1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H})$, 3.92-3.83 (m, 1H), $3.09(\mathrm{dd}, J=16.5,4.0,1 \mathrm{H}), 2.85-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=149.1,148.6,143.1,143.0,137.6,135.3,134.7,130.5$, 129.6, 127.7, 126.6, 123.3, 119.2, 117.4, 114.7, 56.6, 51.2, 33.9, 21.5; HRMS Calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 380.1433$, found 380.1420 ; HPLC: Chirapak AD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 18.9 min and 65.3 min (major).
N-(cis-2-Butyl-1,2,3,4-tetrahydroquinolin-3-yl)-4-methylbenzenesulfonamide (4ma) ${ }^{3}$: 13% yield, 60% ee, white solid, $\mathrm{mp} 164-166^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=+13.0\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, $\left[\mathrm{lit} .{ }^{3}:[\alpha]^{20}{ }_{\mathrm{D}}=\right.$
 -46.5 (c $0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) for $>99 \%$ ee $\left.(2 S, 3 S)\right], \mathrm{R}_{\mathrm{f}}=0.55$ (petroleum ether/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.72(\mathrm{~d}, J=8.2,2 \mathrm{H})$, $7.27(\mathrm{~d}, J=8.1,2 \mathrm{H}), 6.98(\mathrm{t}, J=7.5,1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.4,1 \mathrm{H}), 6.63(\mathrm{t}, J=$ $7.2,1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.87(\mathrm{~d}, J=9.2,1 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=$ $6.6,1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.6,3.9,1 \mathrm{H}), 2.57(\mathrm{dd}, J=16.6,2.1,1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.25(\mathrm{~m}, 2 \mathrm{H})$, 1.24-1.06 (m, 4H), $0.84(\mathrm{t}, J=6.9,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=143.5,143.2,138.8$, $130.5,129.6,127.3,127.0,118.5,117.8,114.2,54.8,48.4,34.3,31.7,27.7,22.6,21.5,13.9$. HPLC: Chirapak AD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=80 / 20$, flow $=0.9 \mathrm{~mL} / \mathrm{min}$, retention time 11.6 min and 13.2 min (major).
N-(trans-2-Butyl-1,2,3,4-tetrahydroquinolin-3-yl)-4-methylbenzenesulfonamide (4mb) ${ }^{3}$: 76% yield, 13% ee, colorless oil, $[\alpha]^{20}{ }_{\mathrm{D}}=-8.0\left(c 0.66, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}=0.50$ (petroleum ether/EtOAc

5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.72(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1$, $2 \mathrm{H}), 6.98(\mathrm{t}, J=7.5,1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.4,1 \mathrm{H}), 6.61(\mathrm{t}, J=7.3,1 \mathrm{H}), 6.47(\mathrm{~d}$, $J=8.0,1 \mathrm{H}), 4.91(\mathrm{~d}, J=9.3,1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{td}, J=7.9,3.7,1 \mathrm{H})$, 3.06-2.94 (m, 1H), $2.82(\mathrm{dd}, J=16.7,4.5,1 \mathrm{H}), 2.52-2.38(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.17(\mathrm{~m}, 6 \mathrm{H}), 0.84(\mathrm{t}, J=$ $6.9,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=143.3,142.0,138.6,130.3,129.7,127.5,126.9,117.7$, $116.5,114.3,55.0,49.0,33.8,29.7,27.7,22.4,21.5,13.9$. HPLC: Chirapak AD-H column, 254 $\mathrm{nm}, 30^{\circ} \mathrm{C}, n$-hexane $/ i$-propanol $=75 / 25$, flow $=0.8 \mathrm{~mL} / \mathrm{min}$, retention time 10.6 min (major) and 12.4 min .

[^1]
7. Removal of Ts Group

Naphthalene ($256 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added to a vigorously stirred suspension of sodium (46 $\mathrm{mg}, 2.0 \mathrm{mmol}$; washed free of oil in hexanes) in tetrahydrofuran (4 mL) under nitrogen at $25^{\circ} \mathrm{C}$. The resulting green suspension was stirred for 1 h at $25^{\circ} \mathrm{C}$, then was transferred to a solution of 4-methyl- N-(($2 S, 3 S$)-2-phenyl-1,2,3,4-tetrahydroquinolin-3-yl)benzenesulfonamide $\mathbf{4 a}$ ($38 \mathrm{mg}, 0.1$ mmol) in THF (4 mL) cooled at $-78{ }^{\circ} \mathrm{C}$; portion-wise addition of this suspension to the reaction solution was ceased upon formation of a persistent, dark-green reaction solution. The dark-green solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Water (1 mL) was added to the solution at $-78{ }^{\circ} \mathrm{C}$. The resulting suspension was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 min , then warm to ambient temperature. The organic layer was separated, and the aqueous later was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration, the solvent was removed under reduced pressure, the residue was purified by flash chromatography on silica gel to yield the product.
(2S,3S)-2-Phenyl-1,2,3,4-tetrahydroquinolin-3-amine (5): 98% yield, $>99 \%$ ee, white solid, mp 98-100 ${ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=+56.4\left(c 0.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.44-7.27(\mathrm{~m}$, $5 \mathrm{H}), 7.09-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.54(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H})$, $3.99(\mathrm{~s}, 1 \mathrm{H}), 3.36-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~d}, J=15.8,1 \mathrm{H}), 1.26(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=144.0,141.7,130.6,128.8,127.9,127.3,127.1,118.6$, 118.1, 114.2, 60.2, 49.5, 35.7; HRMS Calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 225.1392, found 225.1380; HPLC (corresponding N-4-toluenesulfonyl derivative): Chirapak AD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 14.7 min (single).

8. Isotopic Labeling Experiment

A mixture of $\mathbf{1 a}(47 \mathrm{mg}, 0.125 \mathrm{mmol})$, Hantzsch ester $\mathbf{2 a}(76 \mathrm{mg}, 0.30 \mathrm{mmol}, 2.4$ equiv), and chiral phosphoric acid (S)-3a ($3.2 \mathrm{mg}, 0.00625 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CD}_{3} \mathrm{OD}$ (3:1, 3 mL) was stirred at $30{ }^{\circ} \mathrm{C}$ under nitrogen for 24 h . The solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to give product $\mathbf{4 a}$.

9. Copy of NMR and HPLC for Racemic and Chiral Compounds

1 H NMR FC-6-48A in CDCI3 $/ / \mathrm{Yzc} / \mathrm{g}$ 噺 NMR 2013/1361/fid

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

13C NMR FC-6-48A in CDCl3
//Yzc/g/新 NMR 2013/1362/fid

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1H NMR FC-6-48C in CDCI3 $/ / \mathrm{Yzc} / \mathrm{g}$ 媇 NMR 2013/1363/fid

61
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

13C NMR FC-6-48C in CDCl3
//Yzc/g/新 NMR 2013/1364/fid

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	1	1	T	,	,	-	,	+	1	1	1	1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

俞
1

1H NMR FC-2-48A in CDCl 3

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N

13C NMR FC-2-48A in CDCl 3

	,		,		,	,	,	,	,	,	,	1	1	1	1	I	I	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1H NMR FC-6-27B in CDCl3


```
|
```

13C NMR FC-6-27B in CDCI3

	1	1	,	,	1	1	,	,	,	1	1	1	1	,	1	1	1	,	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10


```
\infty
```


1H NMR FC-6-27C in CDCl3 //Yzc/g噺 NMR 2013/1264/fid

	,	,	1	,	,	,		,	1	1	,	1	,	1	,	I	1	1	1	
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10


```
ovicosin
```

1H NMR FC-6-52A in CDCl3

$$
J / f / \iint f
$$

13C NMR FC-6-52A in CDCl 3

		,	,	,		,	,	,	1	I	,	,	I	,	1	1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1H NMR FC-6-67B in DMSO-d6 G:/新 NMR 2014/1875/fid


```
\infty<NNNN
```

\infty<NNNN
%

```

1H NMR FC-6-67A in DMSO-d6 G:/新 NMR 2014/1873/fid

13C NMR FC-6-67A in DMSO-d6 G:/新 NMR 2014/1874/fid


\({ }^{13} \mathrm{C}\) NMR ( 100 MHz , DMSO-d6)



1H NMR FC-6-41A in DMSO-d6


S28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline เ0 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline & & & & & & & & & & & ppm) & & & \% & 6 & & & & & 10 \\
\hline
\end{tabular}

1H NMR FC-6-41B in CDCl3 //Yzc/g/新 NMR 2013/1357/fid


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & 1 & 1 & 1 & , & 1 & , & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & I & I & , \\
\hline L0 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

19F NMR FC-6-41B in CDCl 3


1H NMR FC-6-41C in CDCl3


\({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & , & , & & & & & 1 & 1 & , & , & , & , & 1 & 1 & 1 & 1 & , & 1 & , \\
\hline 10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

19F NMR FC-6-41C in CDCl 3

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - 1 & 1 & 1 & 1 & & & 1 & 1 & 1 & & 1 & 1 \\
\hline 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -210 \\
\hline
\end{tabular}


1H NMR NG-5-21 in DMSO-d6
G:/新 NMR 2014/1871/fid

\({ }^{1}\) H NMR ( 400 MHz , DMSO-d6)


\section*{ \\ !}

13C NMR NG-5-21 in DMSO-d6 G:/新 NMR 2014/1872/fid




1H NMR FC-6-41D in CDCl3


13C NMR FC-6-41D in CDCl3


\({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & 18 & 170 & 16 & & & & 1 & 1 & , & 1 & , & , & , & , & 1 & 1 & 1 & \\
\hline 10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

19F NMR FC-6-41D in CDCl3

\({ }^{19} \mathrm{~F}\) NMR \(\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & + & 1 & 1 & & & & & & & & & & & & & & & & & & \\
\hline 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -210 \\
\hline
\end{tabular}
```

O

```


1H NMR FC-6-52B in CDCl3

\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



```



```

13C NMR FC-6-52B in CDCI3


\({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & T & T & 1 & 1 & + & 1 & I & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

1H NMR FC-2-48B in CDCl 3


\(\stackrel{\text { gi }}{\dot{\infty}}\)
商

13C NMR FC－2－48B in CDCl 3

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & 1 & 1 & 1 & 1 & T & ， & ， & － & ， & ＋ & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}


1H NMR FC-2-60B inCDCl3 G:/新 NMR 2014/2080/fid




13C NMR FC-2-60B inCDCl3 G:/新 NMR 2014/2081/fid


\({ }^{3} \mathrm{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\section*{ \\ \(\underbrace{N}\) \\ }

1H NMR FC-2-51A in CDCl3

\(\begin{array}{llll}8 & 8 & 8 \\ \underset{\sim}{\circ} & \stackrel{8}{\square} & \stackrel{8}{\square} & \stackrel{8}{\square}\end{array}\)

13C NMR FC-2-51A in CDCI3

\({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & , & , & 1 & 1 & , & , & , & 1 & 1 & 1 & 1 & , & 1 & 1 & 1 & , & 1 & 1 \\
\hline 10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

\section*{ \\  \\ }

1H NMR FC-6-33C in CDCl3



13C NMR FC-6-33C in CDCl 3

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & 1 & 1 & 1 & T & - & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

\section*{
}

\section*{ \\ V}

1H NMR FC-6-33E in CDCl3



13C NMR FC-6-33E in CDCI3

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}
 \(\stackrel{9}{9}\)

1H NMR FC-6-63C in CDCl3 G:/新 NMR 2014/1858/fid


13C NMR FC-6-63C in CDCl3 G:/新 NMR 2014/1859/fid

\({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & 1 & 1 & 1 & T & T & , & , & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}




1H NMR FC-6-70C in CDCl3 G:/新 NMR 2014/1867/fid


13C NMR FC-6-70C in CDCl3 G:/新 NMR 2014/1868/fid

\({ }^{13} \mathrm{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & 1 & 1 & 1 & T & 1 & T & , & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

1H NMR FC－6－70A CDCL3G：／旧 NMR 2014／新建文件夹／9132／fid


``` \丁
```

13C NMR FC-6-70A in DMSO-D6


	1	1	1	1	T	T	1	1	T	1	1	,	,	1	1	1	1	1	1	,
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1H NMR FC-6-70G in CDCl3 $/ / \mathrm{Yzc} / \mathrm{g}$ 新 NMR 2014/2126/fid


S59
13C NMR FC-6-70G in DMSO-d6 G:/新 NMR 2014/2167/fid

${ }^{13}$ C NMR ( 100 MHz , DMSO-d6)


$131 \quad \begin{array}{lcl}129 & 127\end{array}$
f1 (ppm)



##   

1H NMR FC-6-63A in CDCl 3 G:/新 NMR 2014/1936/fid


13C NMR FC-6-63A in CDCl3 G:/新 NMR 2014/1938/fid

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


	1	1	1	1	1	T	+	-	,	-	1	-	+	1	1	1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

19F NMR FC-6-63A in CDCl 3
G:/新 NMR 2014/1937/fid

		,	1	,	,	,	1	,	1	1	,	,		,			I	,	1	,		,
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

##  

1H NMR FC-6-68A inCDCl3 G:/新 NMR 2014/2086/fid

## 

13C NMR FC-6-68A inCDCl
G:/新 NMR 2014/2087/fid



19F NMR FC-6-68A in CDCl3 G:/新 NMR 2014/1863/fid

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1	1		1	1	,	,		1	1		,	1					1			1	1	1
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

##    

1H NMR FC-6-70E in CDCl3
G:/新 NMR 2014/1869/fid



13C NMR FC-6-70E in CDCI3 G:/新 NMR 2014/1870/fid


	1	1	1	1	1	1	T	,	,	-	,	+	1	1	1	1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

##  NiNNNon

1H NMR FC-6-63G inCDCl3 G:/新 NMR 2014/2078/fid


4k

Numes

19F NMR FC-6-63G in DMSO-D6 G:/新 NMR 2014/2014/fid

${ }^{19}$ F NMR (376 MHz, DMSO-d6)


## 

1H NMR FC-6-63I inCDCl3 G:/新 NMR 2014/2084/fid


##  

13C NMR FC-6-63I inCDCl3 G:/新 NMR 2014/2085/fid




	1	1	1	1	1	T	+	-	,	-	1	-	+	1	1	1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10





1H NMR FC-6-39A in CDCl3 G:/新 NMR 2014/2101/fid


```
&~NA
```



13C NMR FC-6-39A in CDCl3 G:/新 NMR 2014/2102/fid

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


	1	1		,	,	1		,	,	1	1	1	1	1	1	1	1	,	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10





1H NMR FC-6-39B in CDCl3
G:/新 NMR 2014/1934/fid


13C NMR FC-6-39B in CDCl3 G:/新 NMR 2014/1935/fid

${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


เ0	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10



1 H NMR FC-3-41 in CDCl 3



13C NMR FC－3－41 in CDCl3F：／蔡先锋／实验测试数据／NMR／FC－3／41 1767／fid

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）


	，	1	1	1	1	1	1	，	1	1	，	1	1	1	1	1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	$110$	$100$	90	80	70	60	50	40	30	20	10

Data File e: $\backslash \mathrm{FC}-3$ CPAYYZNOO1625.D
Sample Name: FC-2-53E
Acc. operator :
${ }_{\text {Acq. }}$ Anstrument : Intrument 1



Sample Info : : (modified after loading) $\mathrm{H} / \mathrm{i}-\mathrm{ProH}=70 / 30,0.7 \mathrm{~mL} / \mathrm{min}, 30 \circ \mathrm{C}, 254 \mathrm{~nm}$

$\qquad$ area Percent Report

Sorted By
Multiplier
Sicmal
$\begin{array}{lc}\text { Multiplier: } & \vdots \\ \text { Dilution: } & 1.0000 \\ \text { USe Multiplier \& }\end{array}$
Signal 1: YTD 1 A , wavelength $=254 \mathrm{~nm}$


Totals : $\quad 4344.76807 \quad 189.07974$

*** End of Report ***

$( \pm)-8$

Data File C: 1 YC-3 CPAlyzo05727.D
Sample Name: $\mathrm{FC}-6-67 \mathrm{C}$








Acq. Instrument: Tnstrument
Iniection Date : 3/18/2014 11:05:24 AM Location: Vial

Last changed : $\begin{gathered}3 / 18 / 2014 \\ \text { (midified after } 10: 58: 3 \mathrm{AM} \text { hy } z \\ \text { And }\end{gathered}$

(modified after 10 adin

$========================================$


Si gnal 1: VID 1 A , wavelength $=254 \mathrm{~m}$

$\begin{array}{rrrr}\begin{array}{rl}1 & 14.889 \\ 2 & 19.987 \\ \mathrm{~EB}\end{array} & \begin{array}{l}0.3137 \\ 0.4328 \\ 127071.76526\end{array} & 62.68732 \\ \text { Totals : } & & 2542.38599 & 108.12000\end{array}$


Data File C: $\backslash \mathrm{FC}-3$ CPA 1 Yzoos269.D
Sample Name:
FC-6-23D






cis-(+)-4a


Data File C:\FC-3 CPAYYZ005324.D
Sample Name: FC-6-33D
Acc. 0

In iection Date : 11/25/2013 11:27:43 AM Location: Vial


Last changed : | $11 / 25 / 201310: 46: 57 \mathrm{AM}$ by zHOU |
| :---: |
| (inodified after loading) |


last changed : $\begin{gathered}3 / 18 / 2014 ~ 1: 57: 05 \mathrm{PM} \text { by } \\ \text { (modified after loadio }\end{gathered}$


Area Percent Report
$\begin{array}{ll}\text { Sorted by } \\ \text { Sultiplier } & : \quad \text { Siomal }\end{array}$
$\begin{array}{lc:c}\text { Multiplier: } & \vdots & 1.0000 \\ \text { Dilution: } \\ \text { Use Multiplier }\end{array} \quad$ Dilution Factor with ISTDs
Signal 1: YWD 1 A , wavelength $=254 \mathrm{nim}$

Totals : $\quad 809.99200 \quad 40.99675$
$==========================================$

Data File C: $:$ YC- 3 CPA CYZ005325.D
Sample Name:




Sigmal 1: vid 1 A , wavelength=254 nil

Totals: $\quad 1952.25787 \quad 109.12861$


Data File C: $\backslash \mathrm{FC}-3$ CPA\Yzoos326.D
Sample Name: FC-6-33F
Acc. Oner

In iection Date : $11 / 25 / 2013$ 12:11:46 pM Location : Vial



tast changed $\quad 3 / 18 / 20142: 02: 19 \mathrm{PM}$ by
(modified after 1oadi

$==========-===========================$

Sorted By
Multiplier:
fien
Simal
1.000

$\xrightarrow{\text { Dilution: }}$ Use Multiplier \& Dilution Factor with isTDs
Si gnal 1: VWD 1 A , Wavelength= 254 mm

$\begin{array}{lll}\text { Totals : } & 3777.06396 & 159.76515\end{array}$


Data File C: $:$ YC- -3 CPAiyzoos340.D
Sample Name:




Sigmal 1: vid 1 A , wavelength=254 nil

Totals :
$1959.14294 \quad 101.93118$


$\begin{array}{ll}\text { Acc. } \\ \text { Acc. } \\ \text { Inerator } \\ \text { Instrument } & \text { ZHOU } \\ \text { Ins. }\end{array}$
$\begin{array}{ll}\text { Act. Instrument } & \text { Instrument } 1 \\ \text { Iniection Date } & 1 / 22 / 2014 \\ 7: 45: 32 \mathrm{AM} & \text { Location : Vial }\end{array}$
Acq. Hoth
Last changed
Later
$\vdots$


Last changed $\begin{gathered}: 3 / 18 / 2014 ~ 2: 06: 37 \mathrm{pu} \text { by } \\ \text { (inodified after loadin }\end{gathered}$


Area Percent Report


Data File C: $:$ YC- 3 CPA MYZ005478.D
Sample Name:
Acc. operator : zHou




Last changed : $3 / 18 / 20142: 06: 37 \mathrm{Mm}$ by





Data File C:\MC-3 CPA\Yzoos541.D
Sample Name: FC-6-70D
Acc. Op
$\begin{aligned} & \text { Acc. } \\ & \text { Act. } \\ & \text { Instrument } \\ & \text { Iniecter }\end{aligned}: \begin{aligned} & \text { ZHoU } \\ & \text { Instrument }\end{aligned}$
$\begin{array}{lll} \\ \text { Acc. Instrument } & \text { Instrument } 1 \\ \text { Iniection Date } & 1 / 14 / 2014 & 2: 58: 17 \mathrm{AM} \quad \text { Location : Vial }\end{array}$



Last changed $: \begin{gathered}3 / 18 / 2014 ~ 2: 27: 15 \mathrm{pu} \text { by } \\ \text { (inodified after loadi }\end{gathered}$




Data File C: $\backslash \mathrm{FC}$-3 CPA Mzoos548.D
Sample Name: FC-6-70C
Acc. Ope
Acq. Instrument: $:$ ZHou




Last changed : $3 / 18 / 20142: 29: 16 \mathrm{MM}$ by
Sample Info : : $\mathrm{AD} \mathrm{D}-\mathrm{H}, \mathrm{H} / \mathrm{i}-\mathrm{ProH}=70 / 30,0.7 \mathrm{~mL} / \mathrm{min}, 30$ oc, 254 nm

$===============================================================$


Data File C:\MC-3 CPA\Yzoos540.D
Sample Name: FC-6-70B

Acq. Instrument : Instrument 1
Iniection Date $: 1 / 14 / 2014$ 2:31:35 AM Location : Vial



Last changed $: \begin{gathered}: 3 / 18 / 2014 ~ 2: 21: 07 \mathrm{pu} \text { by } \\ \text { (inodified after loadi }\end{gathered}$




*** End of Report ***

ca. Ope
$\begin{array}{lll}\text { Acq. } \\ \text { Anstrument }\end{array}: \begin{aligned} & \text { ZHOU } \\ & \text { Instrument } 11\end{aligned} \quad$ Location : Vial 1



Last changed : | $1 / 14 / 2014$ 5:40:24 Ah by |
| :---: |
| (inodified after 1oading) |
| HoU |


Last changed : $3 / 18 / 20142: 21: 07 \mathrm{MMbY} 2$
Sample Info : : $\mathrm{ADOdifified} \mathrm{after} \mathrm{H} / \mathrm{i}-\mathrm{PrOH}=70 / 30,0.7 \mathrm{~mL} / \mathrm{min}, 30 \circ \mathrm{C}, 254 \mathrm{~nm}$



Data File C: ©FC-3 CPAMYz005596.D
Sample Name: FC-6-70H








Area Percent Report


Data File C: $\backslash \mathrm{FC}$-3 CPA Mzoos593.D
Sample Name: FC-6-70G




Sigmal 1: vid 1 A , wavelength=254 nim

Totals : $\quad 414.18924 \quad 22.19296$

*** Fnd of Report ***


$\begin{array}{lll} & \text { Location: Vial } \\ \text { Iniection Date }\end{array}$

Last changed : $\begin{aligned} & 1 / 22 / 2014 \text { 6:19:21 AM bV } \\ & \text { (inodified after 10ading) }\end{aligned}$



$==================$
Area Percent Report
$\begin{array}{ll}\text { Sorted by } \\ \text { luitiplier }\end{array} \quad: \quad$ Siomal
$\begin{array}{lcc} & \vdots \\ \text { Multiplier: } & \vdots & 1.0000 \\ \text { Dilutiont } \\ \text { Use Multiplier }\end{array}$
Signal 1: YWD 1 A , wavelength $=254 \mathrm{nim}$


Totals : $\quad 3455.20886 \quad 160.44374$

*** End of Report ***

---

$$
\begin{array}{ll}
\text { (inodified after } 10 \text { oding) } \\
\text { Sample Info } & : \mathrm{AD}-\mathrm{H}, \mathrm{H} / \mathrm{i}-\mathrm{ProH}=70 / 30,0.7 \mathrm{~mL} / \mathrm{min}, 30 \text { oc, } 254 \mathrm{~nm}
\end{array}
$$


$\qquad$

Sigmal 1: vid 1 A , wavelength=254 nil

$\begin{array}{lll}\text { Totals }: & 811.51760 & 48.43929\end{array}$

*** End of Report ***

$\begin{array}{ll}==================== \\ \text { AcG. } \\ \text { Operator } & \text { ZHOU }\end{array}$
Acq. Instrument : Tnstrument


Analvsis Method ( (modified aied after loading)

Sample Info : : AD-H, $\mathrm{H} / \mathrm{i} 1 \mathrm{ProH}==70 / 30,0.7 \mathrm{~mL} / \mathrm{min}, 30$ oc, 254 min

$========================================$
$\begin{array}{l:l}\text { Sorted By } \\ \text { Multiplier: }\end{array} \quad: \quad \stackrel{\text { Siomal }}{ } \quad \underset{1.000}{ }$
Dilution:
Use Multiplier \& Dilution Factor with isTDs
Signal 1: YWD 1 A , wavelength $=254 \mathrm{~nm}$

$\begin{array}{ccccc}{ }_{2} & 16.847 \mathrm{BB} & 0.3946 & 397.23495 & 15.67905 \\ \text { Totals : } & & 808.46310 & 47.57370\end{array}$
$==========================================$

ca. Op
Acq. Instrument $: \begin{aligned} & \text { Zhou } \\ & \text { Instrument } \\ & \text { In }\end{aligned}$
Acq. Tnstrument
Iniection Date
Instrument 1
$1 / 14 / 2014$
8:44:44 AM $\quad$ Location : Vial 1



Last changed : $3 / 18 / 20142: 115: 53 \mathrm{PM}$ by




Sigmal 1: vid 1 A , wavelength=254 nil

Totals :
$857.62184 \quad 66.39024$


Data File C: $\backslash \mathrm{FC}-3$ CPA\Yzoos542.D
Sample Name: FC-6-70F
Acc. Opertor : zHou
Acq. Instrument: Instrument 1 , ination: Vial
In iection Date $\quad 1 / 14 / 2014$ 6:03:40 AM



Last changed : $\begin{gathered}3 / 18 / 2014 \\ \text { (inodified after } 2: 30: 41 \mathrm{pu} \text { by } \\ \text { loadi }\end{gathered}$


Area Percent Report









Data File C: $\backslash \mathrm{FC}-3$ CPA\Yzoos519.D
Sample Name: FC-6-63H
Acc. Operator
Act. Instrument
Z
In iection Date : $1 / 11 / 2014$ 2:40:24 AM Location: Vial





$========================================$


$\begin{array}{lll}\text { Totals : } & 2040.61603 & 58.27337\end{array}$


Data File C: $\backslash \mathrm{FC}$-3 CPA Mzoos518.D
Sample Name: FC-6-63G




$\begin{aligned} & \text { Sorted By } \\ & \text { Multiplier: }\end{aligned}: \quad \stackrel{\text { Siomal }}{ } \quad \vdots \quad \vdots \quad 1.000$
Si gmal 1: VTDD 1 A , Wavelength $=254 \mathrm{~nm}$

Totals : $\quad 3217.62238 \quad 93.01413$

*** End of Report ***

Acc. Ope





: imodified after loadio


Area Percent Report
$\begin{aligned} & \text { Sorted By } \\ & \text { Multiplier: }\end{aligned} \quad: \quad \stackrel{\text { Siomal }}{:} \quad 1.0000$
$\underset{\substack{\text { Dilution: } \\ \text { Use Multiplier }}}{\substack{\text { dilution Factor } \\ \vdots \\ \text { with } \\ 1.0000 \\ \text { ISTD }}}$
Signal 1: YWD 1 A , wavelength $=254 \mathrm{~nm}$

$\begin{array}{llll}1 & 18.941 & \text { BB } & 0.5771 \\ 2 & 65.884 \mathrm{BB} & 1.99 .79399 & 5.12526 \\ & 1.4707 & 191.61284 & 1.58922 \\ \text { Totals : } & & 391.40683 & 6.71448\end{array}$



$$
\begin{aligned}
& ==================== \\
& \text { Acc. } \begin{array}{l}
\text { Oerator } \\
\text { Acq. } \\
\text { Anstrument }
\end{array} \text { Znion }
\end{aligned}
$$


$============================================================-=0$

Sigmal 1: vid 1 A , wavelength=254 nil



Data File C:\FC-3 CPAYYZ002464.D
Sample Name: FC-2-76E1





Last changed : $3 / 18 / 2014$ 2:55:05 PM by
Sample Info : $\begin{gathered}(\text { modifified after } 10 \text { ading }) \\ \mathrm{AD} / \mathrm{H} / \mathrm{i}-\mathrm{PrOH}=80 / 20,0.9 \mathrm{~mL} / \mathrm{min}, 30 \text { oc, } 254 \mathrm{~nm}\end{gathered}$




Si gnal 1: vidi in, wavelength $=254$ mii



**** Fnd of Report ***



$=============================================================$

Si mal 1: NTD 1 A , Wavelength $=254 \mathrm{nim}$


cis-(+)-4ma
$\qquad$
$=================$
$\pi \star$
$\pi=$
End

Data File C:\FC-3 CPAYYZ002493.D
Sample Name: FC-2-76E2

In 1ection Date $: 6 / 19 / 2012$ 9:47:14 AM $\quad$ Location: Vial
Acq. Method

Analvsis Method (HIodified after loading)




$\begin{array}{lll}\text { Sorted By } \\ \text { Multipliplier: } & \text { Siomal } & 1.000 \\ & \end{array}$
$\xrightarrow{\text { Dilution: }}$ Use Multiplier \& Dilution Factor with ISTDs
Signal 1: YWD 1 A , wavelength $=254 \mathrm{nim}$

Totals : $\quad 1701.23431 \quad 101.71587$


Data File C: $\backslash \mathrm{FC}-3$ CPAy YzNo04096.D
Sample Name:
FC-6- 39 B




## Sorted BV <br>  <br> Dilution: Use Multiplier \& Dilution Factor with ISTDs

Si gmal 1: vid 1 A , wavelength= 254 nm
** End of Report ***

Acc. Instrument : T
Anstrument
Cniectie
Iniection Date : 3/18/2014 11:05:24 AM Location: Vial

Last changed : $\begin{gathered}3 / 18 / 2014 \\ \text { (midified after } 10: 58: 3 \mathrm{AM} \text { hy } z \\ \text { And }\end{gathered}$




Area Percent Report


Totals : $\quad 2542.38599 \quad 108.12000$


Acc. Operator : zHou




Last changed : 3/18/2014 1:53:26 PM by




sigmal 1: Vrid 1 A, waveleng

$\begin{array}{lll}\text { Totals : } & 880.09540 & 44.30888\end{array}$
$===========================================$

$============$
Acc.
Operator
Acc. Instroument
Act
In
Instrument
Infection Date : 3/18/2014 11:05:24 AM Location: Vial

Last changed : $\begin{gathered}3 / 18 / 2014 \\ \text { (midified after } 10: 58: 3 \mathrm{AM} \text { hy } z \\ \text { And }\end{gathered}$

(Hodified after 10 adin



Sorted By
Multiplier
Area Percent Report
Multiplier: $\quad$ Sicmal 1.000

Signal 1: VWD 1 A , wavelength $=254 \mathrm{~nm}$


cis- $\pm$ )-4a


$$
\begin{aligned}
& \text { Acc. Operator } \\
& \text { Acq. } \left.\begin{array}{l}
\text { Instrument }
\end{array}: \begin{array}{l}
\text { ZHOU } \\
\text { Instrument } 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{l:l}
\text { Acq. Instrument } & \text { Instrument } 1 \\
\text { Injection Date } & 4 / 18 / 1014,43 \\
\text { Inection }
\end{array}
$$

$$
\begin{array}{l:l}
\text { Last changed } & 4 / 17 / 2141128: 44 \mathrm{AM} \text { by } \\
\text { (modified after loading) }
\end{array}
$$


$\qquad$
$\begin{aligned} & \text { Sorted Bv } \\ & \text { Multiplier: }\end{aligned} \quad: \quad \stackrel{\text { Siomal }}{\vdots}$

Si gmal 1: VWD 1 A , Wavelength $=254 \mathrm{~nm}$


cis-(+)-4a



[^0]:    1 Yan, M.-C.; Tu, Z.; Lin, C.; Ko, S.; Hsu, J.; Yao, C.-F. J. Org. Chem. 2004, 69, 1565.
    2 Cai, X.-F.; Chen, M.-W.; Ye, Z.-S.; Guo, R.-N.; Shi, L.; Li, Y.-Q.; Zhou, Y.-G. Chem. Asian J. 2013, 8, 1381

[^1]:    3 Cai, X.-F.; Guo, R.-N.; Chen, M.-W.; Shi, L.; Zhou, Y.-G. Chem. Eur. J. 2014, DOI: 10.1002/chem. 201402592.

