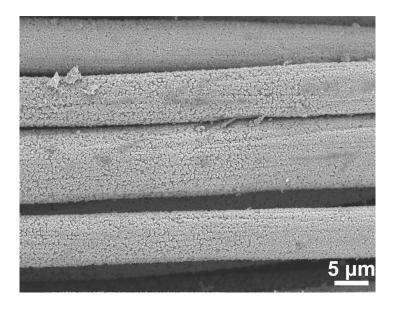
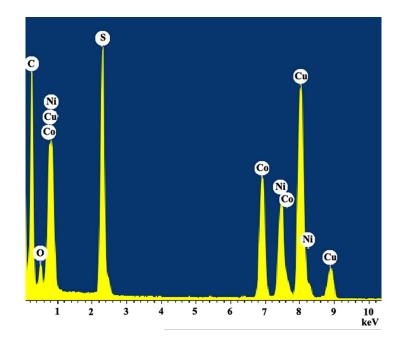
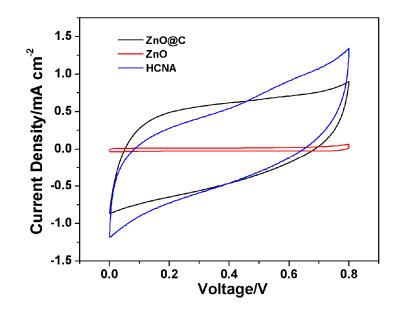

Supporting Information

Nanostructured (Co, Ni)-based Compounds Coated on a Highly Conductive Three Dimensional Hollow Carbon Nanorod Array (HCNA) Scaffold for High Performance Pseudocapacitors


Lian Wan, Junwu Xiao,* Fei Xiao, and Shuai Wang*

Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, PR China


E-mail: chjwxiao@hust.edu.cn, chmsamuel@hust.edu.cn


Figure S1. XRD patterns of the ZnO/C, $Co_xNi_{1-x}(OH)_2/HCNA$, $Co_xNi_{1-x}O/HCNA$, and $(Co_xNi_{1-x})_9S_8/HCNA$ electrodes. The peaks labeled by the specific characters are ascribed to ZnO (\approx), $Co_xNi_{1-x}(OH)_2$ (*), and $Co_xNi_{1-x}O$ (\bigcirc), respectively. The XRD pattern of $(Co_xNi_{1-x})_9S_8/HCNA$ electrode is accordance with the standard pattern of $(Co_xNi_{1-x})_9S_8$ (JCPDS 03-065-6801) and C.

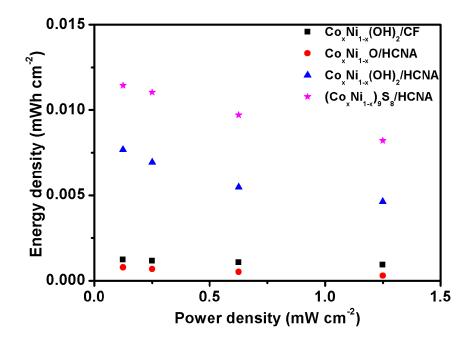

Figure S2. SEM images of $Co_x Ni_{1-x}(OH)_2$ directly deposited on the carbon fiber (CF) paper.

Figure S3. EDX spectrum of $(Co_xNi_{1-x})_9S_8/HCNA$. Cu element orginates from Cu grid. C element is from carbon film on the Cu grid, carbon fiber (CF) and hollow carbon nanorod scaffold (HCNA). O element come from some functional groups of CF and HCNA. Co, Ni and S elements can be ascirbed to $(Co_xNi_{1-x})_9S_8$.

Figure S4. CV curves of the ZnO, ZnO/C, and HCNA electrodes. The discharge areal capacitances of the ZnO, ZnO/C, and HCNA electrodes are estimated as 0.22, 4.60, and 4.71 mF cm⁻² (100 mV s⁻¹), respectively, which are calculated as according to the integrated area of CV curves.

Figure S5. Ragone plots of energy *vs.* power density of the Co_xNi_{1-x}(OH)₂/CF, Co_xNi_{1-x}(OH)₂/HCNA, Co_xNi_{1-x}O/HCNA, and (Co_xNi_{1-x})₉S₈/HCNA electrodes evaluated at different charge/discharge current densities. Energy density (*E*) and power density (*P*) are caluclated from the following equations: $E=1/2C\Delta V^2$, $C=1/4C_s$, $P=E/\Delta t$, where C_s is the discarge areal capacitance of electrode materials, ΔV is the operating voltage window, and Δt is the discharge time.

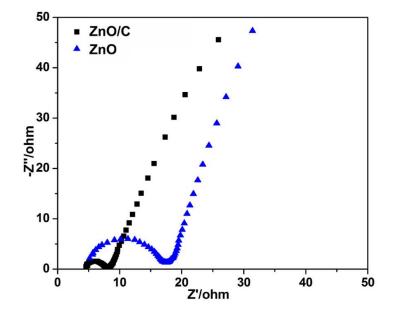


Figure S6. EIS Nyquist plots of the ZnO and ZnO/C nanorod array electrodes (Inset: Equivalent circuit diagram proposed for analysis of the EIS data) measured in 1.0 M Na₂SO₄ electrolyte. The charge transfer resistance R_{ct} is 10.1 Ω for the ZnO nanorod arrays and 2.8 Ω for the ZnO/C nanorod arrays.