Supporting Information for Langmuir

Preparation of Highly Anisotropic Cobalt Ferrite/Silica Microellipsoids Using an External Magnetic Field

Sébastien Abramson, Vincent Dupuis, Sophie Neveu, Patricia Beaunier, and David Montero

List of additional content

Figure S1: Magnetization-demagnetization curves of the nanoparticles (a) Magnetization-demagnetization curve of the CoFe₂O₄ nanoparticles. (b) Magnetization-demagnetization curve of the γ -Fe₂O₃ nanoparticles.

Figure S2: Photograph of the experimental setup used for the preparation of the microellipsoids.

Figure S3: High magnification TEM images of the microparticles. (a) H-CoFe₂O₄/SiO₂ microellipsoids. (b) CoFe₂O₄/SiO₂ sample. (c) H-γ-Fe₂O₃/SiO₂ sample. (d) γ-Fe₂O₃/SiO₂ sample.

Figure S4: Elemental mapping of the CoFe₂O₄ composite microparticles by SEM-EDS. (a1)-(a4) H-CoFe₂O₄/SiO₂ microellipsoid. (a1) SEM image in secondary electron mode. (a2) Oxygen elemental map. (a3) Silicon elemental map. (a4) Iron elemental map. (b1)-(b4) CoFe₂O₄/SiO₂ microsphere. (b1) SEM Image in secondary electron mode. (b2) Oxygen elemental map. (b3) Silicon elemental map. (b4) Iron elemental map. Note the anisotropic distribution of the iron element in the H-CoFe₂O₄/SiO₂ microellipsoid.

Figure S5: (a) Magnetization-demagnetization curves of the H- γ -Fe₂O₃/SiO₂ (red dots) and γ -Fe₂O₃/SiO₂ (orange dots) reference samples. In inset: magnification of the low-field part of the curves. (b) ZFC/FC curves (magnetization versus temperature) of the H- γ -Fe₂O₃/SiO₂ sample (Solid red dots: ZFC curve. Open red dots: FC curve) and γ -Fe₂O₃/SiO₂ sample (Solid orange dots: ZFC curve. Open orange dots: FC curve). All the values of magnetization are normalized to 1g of γ -Fe₂O₃.

Figure S6: ZFC/FC curves (magnetization versus temperature) of the H-CoFe₂O₄/SiO₂ microellipsoids (Solid black dots: ZFC curve. Open black dots: FC curve), CoFe₂O₄/SiO₂ microspheres (Solid green dots: ZFC curve. Open green dots: FC curve), and CoFe₂O₄ nanoparticles dipersed into silica gel at low concentration (Solid blue dots: ZFC curve. Open blue dots: FC curve). For the silica gel, the mass fraction in magnetic nanoparticles is w_{NP} = 0.7%, which is much lower than the mass fraction in the microellipsoids and microspheres (w_{NP} = 33.7 and 34.3 %, respectivelly). Note that for the diluted sample, the blocking temperature seems to be attained (T_b =390K). All the values of magnetization are normalized to 1g of CoFe₂O₄.

Movie S1: Monitoring by optical microscopy (magnification ×40) of the water dispersion of the H-CoFe₂O₄/SiO₂ microellipsoids in absence of magnetic field (duration : 6 min 40s)

microellipsoids H0.avi

Movie S2: Monitoring by optical microscopy (magnification ×40) of the water dispersion of the CoFe₂O₄/SiO₂ microspheres in absence of magnetic field (duration : 6 min 40s)

ferrite-silica microspheres H0.avi

Movie S3: Monitoring by optical microscopy (magnification $\times 40$) of the water dispersion of the γ -Fe₂O₃/SiO₂ microspheres in absence of magnetic field (duration : 6 min 40s)

maghemite-silica microspheres H0.avi

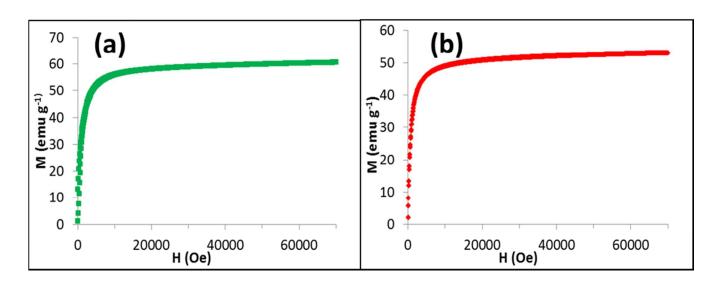
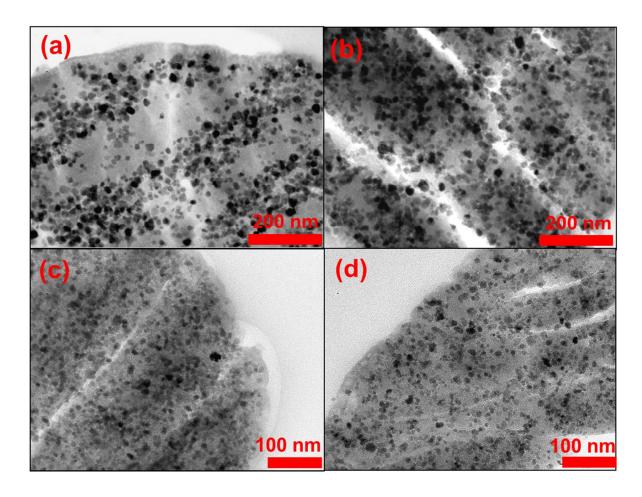
Movie S4: Monitoring by optical microscopy (magnification ×40) of the water dispersion of the H-CoFe₂O₄/SiO₂ microellipsoids after applying a magnetic field during 1 min (duration : 3 min 20s)

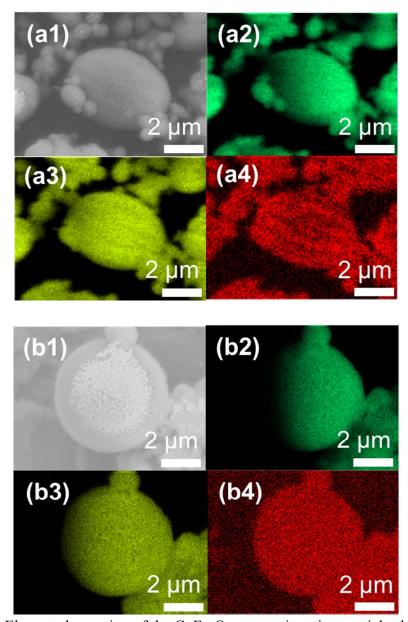
microellipsoids H.avi

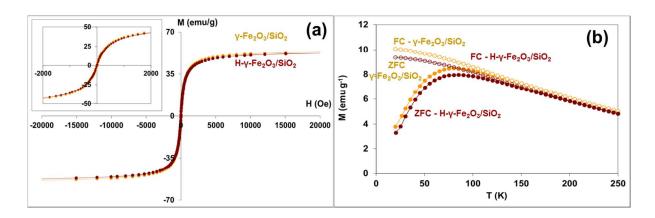
Movie S5: Monitoring by optical microscopy (magnification ×40) of the water dispersion of the CoFe₂O₄/SiO₂ microspheres after applying a magnetic field during 1 min (duration : 3 min 20s)

ferrite-silica microspheres H.avi

Movie S6: Monitoring by optical microscopy (magnification $\times 40$) of the water dispersion of the γ -Fe₂O₃/SiO₂ microspheres after applying a magnetic field during 1 min (duration : 3 min 20s) maghemite-silica microspheres H.avi


Figure S1: Magnetization-demagnetization curves of the nanoparticles (a) Magnetization-demagnetization curve of the $CoFe_2O_4$ nanoparticles. (b) Magnetization-demagnetization curve of the γ -Fe₂O₃ nanoparticles.


Figure S2: Photograph of the experimental setup used for the preparation of the microellipsoids.

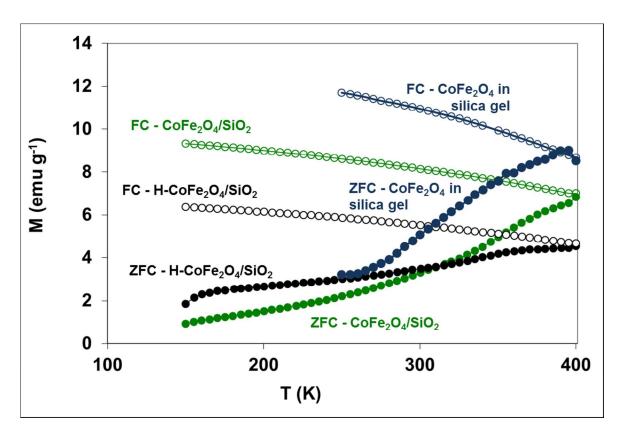

Figure S3: High magnification TEM images of the microparticles. (a) H-CoFe₂O₄/SiO₂ microellipsoids. (b) CoFe₂O₄/SiO₂ sample. (c) H-γ-Fe₂O₃/SiO₂ sample. (d) γ-Fe₂O₃/SiO₂ sample.

Figure S4: Elemental mapping of the CoFe₂O₄ composite microparticles by SEM-EDS (accelerating voltage = 10 kV). (a1)-(a4) H-CoFe₂O₄/SiO₂ microellipsoid. (a1) SEM image in secondary electron mode. (a2) Oxygen elemental map (K_{α} line, 525 eV). (a3) Silicon elemental map (K_{α} line, 1.74 keV). (a4) Iron elemental map, (K_{α} line, 6.40 keV). (b1)-(b4) CoFe₂O₄/SiO₂ microsphere. (b1) SEM image in secondary electron mode. (b2) Oxygen elemental map (K_{α} line, 525 eV). (b3) Silicon elemental map (K_{α} line, 1.74 keV). (b4) Iron elemental map (K_{α} line, 6.40 keV). Note the anisotropic distribution of the iron element in the H-CoFe₂O₄/SiO₂ microellipsoid.

Figure S5: (a) Magnetization-demagnetization curves of the H- γ -Fe₂O₃/SiO₂ (red dots) and γ -Fe₂O₃/SiO₂ (orange dots) reference samples. In inset: magnification of the low-field part of the curves. (b) ZFC/FC curves (magnetization versus temperature) of the H- γ -Fe₂O₃/SiO₂ sample (Solid red dots: ZFC curve. Open red dots: FC curve) and γ -Fe₂O₃/SiO₂ sample (Solid orange dots: ZFC curve. Open orange dots: FC curve). All the values of magnetization are normalized to 1g of γ -Fe₂O₃.

Figure S6: ZFC/FC curves (magnetization versus temperature) of the H-CoFe₂O₄/SiO₂ microellipsoids (Solid black dots: ZFC curve. Open black dots: FC curve), CoFe₂O₄/SiO₂ microspheres (Solid green dots: ZFC curve. Open green dots: FC curve), and CoFe₂O₄ nanoparticles dipersed into silica gel at low concentration (Solid blue dots: ZFC curve. Open blue dots: FC curve). For the silica gel, the mass fraction in magnetic nanoparticles is w_{NP} = 0.7%, which is much lower than the mass fraction in the microellipsoids and microspheres (w_{NP} = 33.7 and 34.3 %, respectivelly). Note that for the diluted sample, the blocking temperature seems to be attained (T_b =390K). All the values of magnetization are normalized to 1g of CoFe₂O₄.