tRational Construction of Triazole/Urea Based Peptidomimetic Macrocycles as Pseudocyclo-β-peptides and Studies on Their Chirality Controlled Self-Assembly

Abhijit Ghorai, Samanth Reddy K, Basudeb Achari, Partha Chattopadhyay*

Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India E-mail: <u>partha@iicb.res.in</u>

Supporting Information

Ta	ble of Contents	Page
Ge	neral experimental information:	S-3
1.	TEM imaging, FT-IR, AFM sample preparation.	S-3
2.	Synthesis of activated cis-furanoid-β-azido succinimidyl	
	carbamate ester	S-4
3.	Preparation and characterisation of peptidomimetic	
	macrocycles 16a and 16b.	S-5
4.	Structure determination of 16a and 16b by multi-	
	dimensional NMR study.	S-10
5.	Molecular Modelling studies.	S-13
6.	¹ H and ¹³ C spectra of peptidomimetic macrocycle 16a in	
	CDCl ₃ (15 mM) at 298 K at 600 and 150 MHz respectively.	S-16
7.	FT-IR spectrum of peptidomimetic macrocycle	
	16a in CDCl ₃ (15 mM).	S-17
8.	¹ H- ¹ H DQF-COSY spectrum of compound 16a	
	in CDCl ₃ (20 mM) at 298 K at 600 MHz.	S-19
9.	¹ H- ¹ H ROESY spectrum of compound 16a in	
	CDCl ₃ (20 mM) at 298 K at 600 MHz.	S-20
10.	Selected Region for ¹ H- ¹ H ROESY of macrocycle	
	16a in 2:3 CDCl ₃ :CCl ₄ .	S-22
11.	Concentration dependence of the chemical shifts	
	of the NH proton of compound 16a in CDCl ₃ at 233 K.	S-23
12.	Concentration dependence of the chemical shifts of the	
	NH proton of compound 16a in CDCl ₃ at 223 K.	S-24
13.	¹ H and ¹³ C spectra of 16b in CD ₃ CN (10 mM) at 298 K	
	at 600 and 150 MHz respectively.	S-25,26
14.	Partial ¹ H- ¹ H DQF-COSY spectrum of compound 16b in	
	CD ₃ CN (2% H ₂ O) (2 mM) at 298 K at 600 MHz.	S-27
15.	Partial ¹ H- ¹ H ROESY spectrum of 16b in CD ₃ CN (2% H ₂ O)	
	at 298 K at 600 MHz.	S-28

16.	Energy minimized structures of compounds 16a and 16b and	
	typical side views of self-assembly images by molecular modelling.	S-31
17.	TEM and AFM images of compound 16a and 16b in	
	CH ₃ CN:H ₂ O(4:1) and (2:3) CDCl ₃ :CCl ₄ .	S-32
18.	Coordinates of compounds 16a and 16b	
	from molecular modelling studies.	S-34

General Experimental Information:

Solvents were dried over standard drying agents and freshly distilled prior to use. Melting points were determined in open capillaries and were not corrected. Optical rotations were measured in CHCl₃ solutions at room temperature using a cell of 1 dm length and λ = 589 nm. IR spectra between 400 and 4000 cm⁻¹ were recorded with an FT-IR spectrometer in CHCl₃ in NaCl cell. Mass spectra were obtained under high resolution (HRMS). ¹H and ¹³C NMR spectra were recorded in deuterated solvents on Bruker Avance-300 MHz and Varian Inova-600 MHz spectrometers. ¹H NMR multiplicity patterns are designated as singlet (s), doublet (d), triplet (t), or quartet (q); all first order splitting patterns are assigned. Splitting patterns that could not be interpreted or easily visualized are designated as multiplet (m) or broad (br). Column chromatographic separations were carried out on silica gel (60–120 mesh) and the cyclic peptides **16a,b** were purified by preparative HPLC on Inertsil ODS-3-V, 250×4.6 mm, 5 µm (C-18/AR/25) with Acetonitrile:water (45:55) as mobile phase. 1-[3-(Dimethylamino)propyl]-3-ethyl-carbodiimide.HCl (EDCI) and 1-hydroxybenzotriazole (HOBt) were purchased from Spectrochem. All other reagents and solvents were purchased from Aldrich or Merck.

TEM Imaging

TEM studies were performed with a JEOL-JEM 2010 electron microscope operating at 200 kV and equipped with a double tilt holder ($\pm 45^{\circ}$). Samples for electron microscopy were prepared by putting a drop of the suspension of **16b** in (4:1) CH₃CN:H₂O on Cu/carbon coated grids, drying overnight, and subjecting to negative staining with uranyl acetate.

FT-IR Studies

FT-IR Measurements were made on a JASCO FT/IR-400 Spectrophotometer using 20 mM solution in CHCl₃ of the compound placed in an NaCl cell.

AFM Sample Preparation and Imaging:

Aliquots (10 μ L) of the solutions of the samples **16a** and **16b** in (2:3) CDCl₃:CCl₄ and CH₃CN: H₂O (4:1) respectively were deposited onto freshly cleaved muscovite Ruby mica sheets (ASTM V1 Grade Ruby Mica from MICAFAB) and left for 15-30 min. After 15 min

the sample was dried using vacuum dryer. Sometimes the sample was gently washed with 0.5 ml Milli-Q water to remove the molecules that were not firmly attached to the mica and dried.

AAC mode AFM was performed using a Pico plus 5500 ILM AFM (Agilent Technologies USA) with a piezo scanner with maximum range of 9 μ m. Micro fabricated silicon cantilevers 225 μ m in length with a nominal spring force constant of 21-98 N/m were obtained from Nano sensors, USA. Cantilever oscillation frequency was tuned into resonance frequency. The cantilever resonance frequency was 150-300 kHz. The images (256 by 256 pixels) were captured with a scan size of between 0.5 and 5 μ m at the scan speed rate of 0.5 lines/S. Images were processed by flattening using Picoview1.4 version software (Agilent Technologies, USA).

Synthesis of activated cis-furanoid- β -azido succinimidyl carbamate ester 5¹:

^{1.} a) Hennig, A.; Fischer, L; Guichard, G; Matile, S. J. Am. Chem. Soc. 2009, 131, 16889. b) Fischer, L; Decossas, M; Briand, J.-P.; Didierjean, C; Guichard, G. Angew. Chem., Int. Ed. 2009, 48, 1625 and references therein. c) Fischer, L; Guichard, G. Org. Biomol. Chem. 2010, 8, 3101.

^{2. (}a) Ghorai, A.; Padmanaban, E.; Mukhopadhyay, C.; Achari, B.; Chattopadhyay, P. *Chem. Commun.* **2012**, *48*, 11975. b) Ghorai, A.; Gayen, A.; Kulsi, G.; Padmanaban, E.; Laskar, A.; Achari, B.; Mukhopadhyay, C.; Chattopadhyay, P. *Org. Lett.* **2011**, *13*, 5512–5515.

^{3.} Jagannadh, B.; Reddy, M. S.; Lohitha Rao, C.; Prabhakar, A.; Jagadeesh, B.; Chandrasekhar, S. Chem. Commun. 2006, 4847

Synthesis of N-methylated chiral (*a*-benzyl propargyl) and achiral (propargyl) amines and peptidomimetic macrocycles (16a and b):

Preparation and Characterisation of Compounds:

(*R*) and (*S*)-tert-butyl (1-phenylbut-3-yn-2-yl)carbamate (9)⁴:

Commercially available Boc-D-phenyl alanine 6 (500 mg, 1.886 mmol), HOBt.H₂O (280 mg, 2.07 mmol), and N,O-dimethylhydroxylamine.HCl (201 mg, 2.072 mmol) were suspended in CH₂Cl₂ (20 mL). DIEA (0.7 mL, 12.04 mmol) was added and the solution cooled to 0 °C under argon. EDC.HCl (412 mg, 2.08 mmol) was added and the reaction was allowed to stir at rt over 2 h. The reaction mixture was then diluted with EtOAc and washed successively with 5% aq. KHSO₄ (2×), 5% aq. NaHCO₃ (2×), and brine (2×). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the Weinreb amide 7 as oil (441 mg) which was directly used in the next step. The amide was dissolved in THF (25 mL) and cooled to 0 °C under argon. LiAlH₄ (286 mg, 7.53 mmol) was added at once and the suspension was stirred for 30 min at 0 $^{\circ}$ C. The reaction was quenched by slow addition of 5% aq. KHSO₄. The mixture was diluted with EtOAc; the organic layer was separated and washed successively with 5% aq. KHSO₄ (2×), 5% aq. NaHCO₃ (3×) and brine (3×). It was then dried with anhydrous Na_2SO_4 and concentrated to yield the aldehyde as oil (321 mg) which was used directly in the next step. K₂CO₃ (600 mg, 4.34 mmol) and p-toluenesulfonyl azide (800 mg, 4.06 mmol) were suspended in anhydrous acetonitrile (15 mL) under argon. Dimethyl-(2-oxopropyl)-phosphonate (360 mg, 2.17 mmol) was added, and the reaction mixture was stirred for 2 h. The crude aldehyde was dissolved in MeOH (3 mL) and added to the reaction mixture of diazophosphonate ester. After stirring overnight, the solution was concentrated to a residue, diluted with EtOAc, and washed successively with water $(2\times)$ and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to yield the crude product which was purified by column chromatography using (15:1) PE:EA to yield 9 (196 mg, 38% yield over 3 steps) as white amorphous solid.

^{4. (}a) Ohira, S. Synth. Commun. 1989, 19, 561. (b) De Luca, L.; Giacomelli, G.; Taddei, M. J. Org. Chem. 2001, 66, 2534.

¹**H NMR (CDCl₃, 300 MHz, δ):** 7.28 (m, 5H), 4.68 (br, 2H), 2.99 (m, 2H), 2.27 (s, 1H), 1.42 (s, 9H).

¹³C NMR (CDCl₃, **75** MHz, δ): 154.5, 136.3, 129.8, 128.3, 126.9, 82.7, 80.0, 72.7, 43.1, 41.7, 29.7, 28.3.

HRMS $(M+Na)^{+}$ for C₁₅H₁₉NO₂Na: calculated 268.1416, found 268.1421.

(R)-tert-butyl methyl (1-phenylbut-3-yn-2-yl)carbamate (10):

NaH (15 mg, 0.6 mmol) was added to a stirred solution of compound **9** (100 mg, 0.4 mmol) in dry DMF. After 15 min, MeI (0.8 mmol, 0.05 mL) was added and the reaction mixture was allowed to stir overnight at 0 $^{\circ}$ C. The reaction was quenched by slow addition of 5% KHCO₃ and the mixture was then diluted with EtOAc. The organic layer was separated and washed successively with Na₂S₂O₃ and brine. Then it was dried over anhydrous Na₂SO₄ and concentrated to yield yellow oil. Compound **10** was eluted as a colourless liquid (197 mg, 95% yield) in (20:1) PE: EA eluates by column chromatography.

¹H NMR (CDCl₃, 300 MHz, δ): 7.26 (m, 5H), 5.06 (br, 1H), 2.93 (m, 5H), 2.35 (s, 1H), 1.36 (s, 9H).

¹³C NMR (CDCl₃, 75 MHz, δ): 154.1, 136.3, 129.2, 128.3, 126.6, 79.9, 73.0, 49.1, 40.2, 30.1, 29.6, 28.1.

HRMS $(M+Na)^{+}$ for C₁₅H₁₉NO₂Na: calculated 282.1572, found: 282.1566.

N-Methylated ureido-(azide/alkyne) precursor 14:

The sugar azido acid 3 (195 mg, 0.84 mmol) was dissolved in dry THF under Ar at 0 $^{\circ}$ C. After the addition of triethyl amine (95 mg, 0.41 mmol) and DPPA (257 mg, 0.93 mmol), the reaction mixture was allowed to stir for 40 min. Then it was diluted with DCM, washed with brine, dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure to yield the sugar acyl azide (85 mg) which was used without purification. Toluene was added under Ar, and the resulting solution was heated to 70 °C under stirring. After the gas evolution had stopped, N-hydroxysuccinimide (80 mg, 0.69 mmol) and pyridine (294 mg, 3.72 mmol) were added. The mixture was stirred at 70 °C for 30 min. Then solvent was removed under vacuum to get a dark red coloured semisolid which was directly used for the next step. In another R.B. flask the Boc protected amino alkyne 10 (47 mg, 0.183 mmol) was dissolved in 1:1 DCM:TFA under Ar and stirred for 30 min to remove Boc. The resulting TFA salt of the amine was neutralised with DIEA. The N-hydroxy succinimide sugar azidoester (62 mg, 0.18 mmol) was dissolved in dry DMF at rt and the amine was added as solution in dry DMF. The reaction was allowed to stir overnight at rt. Then it was diluted with EtOAc and washed successively with 5% KHSO₄, 5% NaHCO₃, and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under vacuum to get a red oily liquid. Purification was done by silica-gel column chromatography using (3:1) PE:EA as eluent to get 14 as a white amorphous solid (40 mg, 57% yield over two steps).

¹**H NMR (CDCl₃, 300 MHz, δ):** 7.26 (m, 5H), 6.04 (dd, *J*=3.3, 6.6 Hz, 1H), 5.84 (d, *J*=3.9 Hz, 1H), 5.37 (m, 2H), 4.64 (t, *J*=9.9 Hz, 1H), 4.02 (t, *J*=6.0 Hz, 1H), 2.99 (m, 2H), 2.89 (s, 3H), 2.32 (s, 1H), 1.57 (s, 3H), 1.33 (s, 3H).

¹³C NMR (CDCl₃, **75** MHz, δ): 154.9, 136.5, 129.3, 128.4, 126.8, 112.6, 102.3, 82.0, 81.8, 73.8, 65.9, 49.2, 40.1, 30.0, 26.8, 26.4.

HRMS $(M+Na)^{+}$ for C₁₉H₂₃N₅O₄Na: calculated 408.1750, found: 408.1744.

N-Methylated ureido-(azide/alkyne) precursor 15:

The sugar azido acid 3 (195 mg, 0.84 mmol) was dissolved in dry THF under Ar at 0 $^{\circ}$ C. After the addition of triethyl amine (0.1 mL, 0.41 mmol) and DPPA (257 mg, 0.93 mmol), the reaction mixture was allowed to stir for 40 min. Then it was diluted with DCM, washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to yield the sugar acyl azide (85 mg) which was used without purification. Toluene was added under Ar, and the resulting solution was heated to 70 °C under stirring. After the gas evolution had stopped N-hydroxysuccinimide (80 mg, 0.69 mmol) and pyridine (294 mg, 3.72 mmol) were added. The mixture was stirred at 70 °C for 30 min. Then solvent was removed under vacuum to get a dark red coloured semisolid which was directly used for the next step. In another R.B. flask the Boc protected amino alkyne 13 (28 mg, 0.181 mmol) was dissolved in (1:1) DCM:TFA under Ar and stirred for 30 min to remove Boc. The resulting TFA salt of the deprotected amine was neutralised with DIEA. N-hydroxy succinimidosugar azidocarbamate 5 was dissolved in dry DMF at RT and the amine was added by dissolving in dry DMF. The reaction was allowed to stir overnight at RT. Then it was diluted with EtOAc and washed with 5% KHSO₄, 5% NaHCO₃ and brine. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under vacuum to get a red coloured oil. Purification was done by silica-gel column chromatography using (2:1) PE:EA as eluent to get 15 as a colourless semisolid (33 mg, 62% yield over two steps).

¹**H NMR (CDCl₃, 300 MHz, δ):** 6.06 (dd, *J* =3.3, 9.9 Hz, 1H), 5.85 (d, *J*=3.6 Hz, 1H), 5.39 (d, *J*= 9.9 Hz, 1H), 4.66 (d, *J*=3.6 Hz, 1H), 4.57 (d, *J*=3.6 Hz, 1H), 4.12 (m, 2H), 3.08 (s, 3H), 2.32 (s, 1H), 1.55 (s, 3H), 1.34 (s, 3H).

¹³C NMR (CDCl₃, **75** MHz, δ): 155.6, 112.7, 102.4, 82.1, 81.9, 72.4, 66.0, 37.8, 33.7, 29.6, 26.8, 26.5.

HRMS $(M+Na)^+$ for C₁₂H₁₇N₅O₄Na: calculated 318.1281, found: 318.1286.

General procedure for Cu(I)-mediated tandem dimerization-macrocyclization⁵ of N-methylated ureido-(azido/alkyne) derivatives:

The azido-alkyne terminated peptide (1 eq) was dissolved in acetonitrile to a concentration of 1 mM. The solution was degassed by Ar bubbling for 20 min. Diisopropyl ethylamine (2 eq), TBTA (0.5 eq) and CuI (2 eq) were added sequentially. The reaction was stirred for 12 h at room temperature under Ar. After the completion of reaction the mixture was diluted with EtOAc, and washed with 9:1 aq.NH₄Cl:NH₃ (1×15 mL) and then brine (1×15 mL). The organic layer was dried over Na₂SO₄ and evaporated in a rotary to yield a yellow solid which was purified by RP-HPLC. The main product was the dimer (**16a/b**) which was eluted with (60:40) CH₃CN:H₂O. The higher oligomers were eluted subsequently in traces and were not analysed further.

Structural determination by multidimensional NMR:

NMR Spectra (1D and 2D) of the pseudo cyclic peptides **16a** and **16b** were recorded in a Bruker Avance-600 MHz instrument with TCI CYROPROBE in Acetonitrile-d₃, CDCl₃, or (2:3) CDCl₃:CCl₄ using tetramethyl silane as internal standard and chemical shifts are shown in ppm. All the two-dimensional NMR studies (DQF-COSY, ROESY) were carried out in phase-sensitive mode. The 2D spectra were acquired with 2×256 or 2×192 free induction

^{5.} Maarseveen, J ; Horne, W. S.; Ghadiri, M. R. Org. Lett. 2005, 7, 4503.

decays (FID) containing 16-32 scans with relaxation delays of 1.5 s. The ROESY experiments were performed with mixing time of 0.2 to 0.3 sec. and the TOCSY experiments were performed with mixing time of 0.02 s. The two dimensional data were processed with Gaussian apodization in both the dimensions. The spectra (One Dimensional, DQF COSY and ROESY) are given in the supporting information.

¹H-¹H ROESY cross peaks at 300 ms were assigned and integrated, and the respective volumes were converted to distance restraints. When symmetric pairs of cross peaks were present, the larger peak volume was converted to the distance restraint. Cross-peaks were categorized as strong, medium, weak, and very weak based on their intensities. Inter-proton distances (r) were derived from the ROE intensities (S) with the known relationship $r = c(S)^{-1/6}$, where c is a coefficient determined on the basis of ROE corresponding to a known distance. The distance constraints were determined from volume integrals of ROESY cross peaks using reference distance 2.40 Å for vicinal cis-sugar ring protons. The conservative upper distances were fixed respectively as 3.5, 4.0, 4.5 and 6.0 Å and the lower distance limit was fixed at 2.0 Å. Corrections of 0.1 Å were applied to the upper bound distances derived from NOEs to account for any spin diffusion effect. The dihedral angles (φ) were calculated from the ³*J*_{HN-CHa} coupling constants measured from the ¹H-¹H DQF-COSY spectra using the modified Karplus equation. The φ values thus obtained were used as dihedral angle constraints.

H_{δ}
5.94(d)
J _{δ,γ} =4.2

¹H NMR Chemical Shifts (ppm) (CDCl₃, 600 MHz, 300K) and coupling constants (Hz) of pseudo-cyclo-β-peptide 16a:

Other signals: 1.25, 1.39 (2×Me), 2.45 (N-Me), 7.36-7.08 m (aromatic protons)

¹³C NMR (CDCl₃, 150 MHz, δ) 154.9 , 144.9 , 137.3 , 129.1 , 128.8 , 128.5 , 126.5 , 124.7 , 113.0 , 103.8 , 86.1 , 83.0 , 65.4 , 49.5 , 36.9 , 28.4 , 27.0 , 26.6.

HRMS $(M+Na)^{+}$ for C₃₈H₄₆N₁₀O₈Na: calculated 793.0098, found: 793.0005.

¹H NMR Chemical Shifts (ppm) (CD₃CN, 600 MHz, 300K) and coupling constants (Hz) of pseudo-cyclo-β-peptide 16b:

Residue name	NH/Tr	H _α	$H_{\alpha'}$	H _β	$H_{\beta'}$	Η _γ	H_{δ}
S	6.12 (d,	6.04(b,s)		5.2(d,		5.12(b,s)	6.18 (d,
	J _{NH,CHα} =10.2			Ј _{СНα,СНβ} =3.6			$J_{CH\gamma,CH\delta}$ =3.0
	/ \						
Gly-	7.55 (s)	4.33 (m)	4.12 (m)				
moiety							

Other signals (Methyls): 1.57, 1.37, 2.64 (N-Me)

S12

¹³C NMR (CD₃CN, 150 MHz, δ): 157.6, 144.8, 125.9, 113.5, 104.8, 86.3, 83.8, 66.4, 44.1, 34.5, 27.3, 26.6.

HRMS $(M+Na)^{+}$ for C₂₄H₃₄N₁₀O₈Na: calculated 613.2561, found: 613.2568.

Molecular Modelling studies:

Construction of molecular models and structural analysis of different obtained conformations were achieved using Insight-II. The Discover software was used for molecular modelling calculation and also energy minimization. The CFF-91 MSI version with default parameter was used as a force field throughout the calculation, in chloroform and in vacuo respectively for **16a** and **16b**. Structure refinement was carried out by incorporating NMR derived distance and torsion angle constraints. Energy minimization of each structure was carried out by steepest descent method followed by conjugate gradient method, until an RMS deviation of 0.001 Kcal was arrived.

PC-Ag-43-mpu 1H in CDC13

Fig. 1: ¹H NMR of 14 in CDCl₃ at 298K

Fig. 2: ¹³C NMR of **14** in CDCl₃ at 298K

Fig. 4: 13 C NMR of **15** in CDCl₃ at 298K

Fig. 6: ¹³C NMR of pseudo cyclic-β-peptide 16a (20 mM) in CDCl₃ at 298K at 150 MHz.

Fig. 7: FT-IR spectrum of pseudo-cyclo-β-peptide 16a in CDCl₃ (20 mM)

Fig. 9: ESI-Mass spectrum of HPLC pure cyclo-dimer 16b.

Fig. 10: ${}^{1}\text{H}$ - ${}^{1}\text{H}$ DQF-COSY spectrum of pseudo cyclic- β -peptide 16a (20 mM) in CDCl₃ at 298K at 600 MHz

Fig. 11: ¹H-¹H ROESY spectrum of pseudo cyclic-β-peptide **16a** in CDCl₃ (20 mM) at 298K at 600 MHz

Fig. 12a: Summary of representative NOE connectivities observed for compound 16a in CDCl₃ at 298K.

Fig. 12b: NMR analysis (DQF-COSY as well as ROESY) of compound **16a** (20 mM) in CDCl₃ at 298K (600 MHz) depicting a ring conformation in solution phase

a) The weak cross peak in ROESY spectrum between triazole-CH and ^αCH of phenyl alanine residue is indicative of an antiperiplanar arrangement between these protons. The ureido amide proton exhibits a small coupling constant (4.6 Hz) as evidenced by weak cross coupling in DQF-COSY spectrum.

b)Part of ROESY spectrum showing strong NOE correlations of NMe with $^{\alpha}$ CH proton of phenylalanine residue as well as NH protons. A summary of NOE connectivity is shown in **Fig. 12a**.

Fig.13: Selected region of the ROESY spectrum of self-assembled macrocycle **16a**, showing dimer formation by cross-peaks of N-Me with *S*-CH_{α} as well as *S*-CH_{β} (600 MHz, 298K, 2:3 CDCl₃:CCl₄).

Fig. 14: Concentration dependence of chemical shifts of ureido-NH proton of 16a in CDCl₃ at 223 K (300 MHz).

Fig. 15: Concentration dependence of chemical shifts of ureido-NH proton of 16a in CDCl₃ at 233 K (300 MHz).

Fig. 16: 1 H NMR of pseudo-cyclo- β -peptide 16b (2 mM) in CD₃CN at 298 K and 600 MHz.

Fig. 17: ¹³C NMR of pseudo-cyclo-β-peptide 16b (2 mM) in CD₃CN at 298K and 600 MHz.

Fig. 18: 1H-1H DQF-COSY spectrum of 16b (2 mM) in CD₃CN (2% H₂O) at 298K.

Fig. 19: ¹H-¹H ROESY spectrum of **16b** (2 mM) in CD₃CN (2% H₂O) at 298K.

Fig. 20: Partial 1 H- 1 H DQF-COSY spectrum of pseudo-cyclo- β -peptide 16b (2 mM) in CD₃CN (2% H₂O) at 298K in 600 MHz.

Fig. 21: Triazole/urea β -conformation of 16b and their parallel stacking via (β , β) H-bonding detected by Roesy spectrum (see Fig. 22)

(2% H₂O) at 298 K and 600 MHz

Fig. 23: ¹H NMR spectrum of **16b** (15 mM) in CDCl₃ at 298K showing significant broadening of all protons due to intermolecular hydrogen bonding arising due to several supramolecular species existing in exchange on NMR time scale.

Fig. 24: Possible conformers of macrocyles derived from D-phenyl alanine (conformer 2), and L-amino acid based product (conformer 1); the latter is disfavoured due to axial orientation of the side chain.

Fig. 25: Energy minimized structure of **16a** and typical side view (excluding isopropylidene moiety) of dimer formation by molecular modelling.

Fig. 26: Energy minimized conformation of **16b** and typical side view (excluding isopropylidene moiety) of dimer formation by molecular modelling.

Fig. 27: AFM images in (2:3) $CDCl_3:CCl_4$ for 16a (a and b) and (4:1) $CH_3CN:H_2O$ for 16b (c and d).

Fig. 28: TEM images of peptidomimetic macrocycle 16b in CH₃CN:H₂O (4:1)

Coordinates of compound 16a derived by molecular modelling:

ATOM C	1	С9	CPEN	1C	4.539	3.572	-10.219	1.00	0.00
ATOM C	2	C92	CPEN	1C	5.442	2.368	-9.872	1.00	0.00
ATOM N	3	N91	CPEN	1C	3.074	3.289	-10.032	1.00	0.00
ATOM	4	1CN9	CPEN	1C	2.175	3.359	-11.221	1.00	0.00
ATOM	5	2C91	CPEN	1C	2.531	3.042	-8.738	1.00	0.00
C ATOM	6	2N91	CPEN	1C	1.140	2.871	-8.650	1.00	0.00
N ATOM	7	2091	CPEN	1C	3.239	2.985	-7.751	1.00	0.00
ATOM	8	Н9	CPEN	1C	4.684	3.718	-11.306	1.00	0.00
л АТОМ н	9	1H92	CPEN	1C	5.416	2.149	-8.794	1.00	0.00
ATOM	10	2H92	CPEN	1C	5.049	1.459	-10.360	1.00	0.00
ATOM	11	Н912	CPEN	1C	0.644	2.861	-9.511	1.00	0.00
л АТОМ Ч	12	1HN9	CPEN	1C	1.617	2.417	-11.343	1.00	0.00
л АТОМ	13	1HN9	CPEN	1C	1.452	4.183	-11.112	1.00	0.00
л АТОМ Ч	14	1HN9	CPEN	1C	2.731	3.532	-12.157	1.00	0.00
ATOM	15	C2	PYRO	1B	1.002	9.015	-7.509	1.00	0.00
ATOM	16	C22	PYRO	1B	0.488	9.645	-6.196	1.00	0.00
ATOM	17	N3	PYRO	1B	2.444	9.332	-7.796	1.00	0.00
ATOM	18	С3	PYRO	1B	2.774	10.100	-9.032	1.00	0.00
ATOM	19	C32	PYRO	1B	3.487	8.843	-6.958	1.00	0.00
ATOM N	20	N32	PYRO	1B	4.807	9.119	-7.350	1.00	0.00
ATOM	21	2032	PYRO	1B	3.247	8.209	-5.948	1.00	0.00
ATOM	22	H2	PYRO	1B	0.417	9.518	-8.302	1.00	0.00
л АТОМ	23	1H22	PYRO	1B	0.776	10.710	-6.161	1.00	0.00
л АТОМ	24	2H22	PYRO	1B	0.973	9.188	-5.320	1.00	0.00
н АТОМ	25	HN32	PYRO	1B	4.914	9.702	-8.148	1.00	0.00
н АТОМ ч	26	1H3	PYRO	1B	1.873	10.436	-9.570	1.00	0.00
17									

АТОМ Н	27	2H3	PYRO	1B	3.361	10.999	-8.787	1.00	0.00
АТОМ Н	28	3Н3	PYRO	1B	3.360	9.479	-9.729	1.00	0.00
ATOM C	29	C1	CPEN	1D	6.023	8.566	-6.700	1.00	0.00
ATOM	30	02	CPEN	1D	6.014	8.904	-5.306	1.00	0.00
ATOM C	31	C3	CPEN	1D	6.061	7.667	-4.578	1.00	0.00
ATOM C	32	C13	CPEN	1D	6.295	6.984	-6.861	1.00	0.00
ATOM C	33	C33	CPEN	1D	5.777	6.477	-5.488	1.00	0.00
АТОМ Н	34	H1	CPEN	1D	6.877	9.112	-7.131	1.00	0.00
АТОМ Н	35	НЗ	CPEN	1D	5.390	7.776	-3.710	1.00	0.00
АТОМ Н	36	H13	CPEN	1D	7.388	6.836	-6.856	1.00	0.00
ATOM H	37	Н33	CPEN	1D	4.723	6.167	-5.548	1.00	0.00
ATOM O	38	01	CPEN	1E	6.494	5.389	-4.896	1.00	0.00
ATOM	39	C13	CPEN	1E	7.416	5.987	-3.979	1.00	0.00
ATOM C	40	1C13	CPEN	1E	8.839	5.494	-4.293	1.00	0.00
ATOM C	41	C1	CPEN	1E	7.050	5.586	-2.533	1.00	0.00
ATOM	42	033	CPEN	1E	7.393	7.409	-4.142	1.00	0.00
ATOM H	43	1H13	CPEN	1E	9.570	5.948	-3.604	1.00	0.00
ATOM H	44	Н	CPEN	1E	8.907	4.398	-4.198	1.00	0.00
ATOM H	45	1H	CPEN	1E	9.127	5.764	-5.321	1.00	0.00
АТОМ Н	46	1H1	CPEN	1E	7.743	6.049	-1.814	1.00	0.00
ATOM H	47	2H1	CPEN	1E	6.027	5.902	-2.274	1.00	0.00
ATOM H	48	3H1	CPEN	1E	7.104	4.491	-2.416	1.00	0.00
ATOM N	49	N1	PYRO	1G	0.361	5.415	-7.114	1.00	0.00
ATOM	50	C2	PYRO	1G	0.768	6.576	-6.529	1.00	0.00
ATOM C	51	С3	PYRO	1G	0.668	7.543	-7.594	1.00	0.00
ATOM N	52	N4	PYRO	1G	0.208	6.940	-8.754	1.00	0.00
ATOM N	53	N5	PYRO	1G	0.057	5.681	-8.376	1.00	0.00
ATOM H	54	H2	PYRO	1G	1.101	6.657	-5.503	1.00	0.00

ATOM N	55	N1	PYRO	1H	5.775	6.296	-8.079	1.00	0.00
ATOM	56	C2	PYRO	1H	5.479	4.971	-8.188	1.00	0.00
ATOM	57	С3	PYRO	1H	5.012	4.840	-9.546	1.00	0.00
ATOM	58	N4	PYRO	1H	5.048	6.067	-10.190	1.00	0.00
ATOM	59	N5	PYRO	1H	5.510	6.868	-9.244	1.00	0.00
ATOM	60	H2	PYRO	1H	5.576	4.256	-7.382	1.00	0.00
ATOM	61	C1	CPEN	1F	0.281	4.079	-6.455	1.00	0.00
ATOM	62	C2	CPEN	1F	1.368	3.745	-5.399	1.00	0.00
ATOM	63	C3	CPEN	1F	1.311	2.223	-5.346	1.00	0.00
ATOM	64	C13	CPEN	1F	0.373	2.760	-7.382	1.00	0.00
ATOM	65	033	CPEN	1F	0.892	1.672	-6.604	1.00	0.00
ATOM	66	H2	CPEN	1F	2.343	4.173	-5.679	1.00	0.00
ATOM	67	HЗ	CPEN	1F	2.251	1.717	-5.068	1.00	0.00
ATOM	68	H1	CPEN	1F	-0.688	4.042	-5.928	1.00	0.00
ATOM	69	H13	CPEN	1F	-0.648	2.461	-7.664	1.00	0.00
ATOM	70	02	CPEN	1	1.105	4.165	-4.056	1.00	0.00
ATOM	71	С3	CPEN	1	0.554	3.021	-3.394	1.00	0.00
ATOM	72	C31	CPEN	1	1.519	2.541	-2.288	1.00	0.00
ATOM	73	C1	CPEN	1	-0.793	3.402	-2.756	1.00	0.00
ATOM	74	033	CPEN	1	0.314	1.988	-4.356	1.00	0.00
ATOM	75	1H31	CPEN	1	1.114	1.653	-1.778	1.00	0.00
ATOM H	76	2H31	CPEN	1	2.506	2.278	-2.701	1.00	0.00
ATOM H	77	3H31	CPEN	1	1.668	3.336	-1.541	1.00	0.00
ATOM H	78	1H1	CPEN	1	-1.242	2.534	-2.247	1.00	0.00
ATOM H	79	2H1	CPEN	1	-0.665	4.210	-2.018	1.00	0.00
ATOM H	80	3H1	CPEN	1	-1.502	3.753	-3.523	1.00	0.00
ATOM	81	C1	BENZ	1J	-3.829	9.324	-5.864	1.00	0.00
ATOM C	82	C2	BENZ	1J	-2.998	8.472	-5.127	1.00	0.00
~									

ATOM C	83	С3	BENZ	1J	-1.612	8.585	-5.236	1.00	0.00
ATOM C	84	C4	BENZ	1J	-1.022	9.533	-6.076	1.00	0.00
ATOM C	85	C5	BENZ	1J	-1.865	10.382	-6.799	1.00	0.00
ATOM C	86	C6	BENZ	1J	-3.253	10.285	-6.702	1.00	0.00
ATOM H	87	Н1	BENZ	1J	-4.910	9.241	-5.783	1.00	0.00
АТОМ Н	88	H2	BENZ	1J	-3.431	7.722	-4.469	1.00	0.00
АТОМ Н	89	НЗ	BENZ	1J	-0.977	7.920	-4.654	1.00	0.00
АТОМ Н	90	Н5	BENZ	1J	-1.427	11.136	-7.450	1.00	0.00
АТОМ Н	91	НG	BENZ	1J	-3.888	10.957	-7.276	1.00	0.00
ATOM C	92	C1	BENZ	11	9.191	3.155	-9.820	1.00	0.00
ATOM C	93	C2	BENZ	11	9.533	3.026	-11.170	1.00	0.00
ATOM C	94	C3	BENZ	11	8.544	2.674	-12.097	1.00	0.00
ATOM C	95	C4	BENZ	11	7.233	2.462	-11.669	1.00	0.00
ATOM C	96	C5	BENZ	11	6.874	2.596	-10.324	1.00	0.00
ATOM C	97	C6	BENZ	11	7.875	2.937	-9.410	1.00	0.00
АТОМ Н	98	Н1	BENZ	11	9.949	3.423	-9.088	1.00	0.00
АТОМ Н	99	H2	BENZ	11	10.557	3.193	-11.496	1.00	0.00
АТОМ Н	100	НЗ	BENZ	11	8.798	2.566	-13.149	1.00	0.00
АТОМ Н	101	H4	BENZ	11	6.473	2.185	-12.395	1.00	0.00
АТОМ Н	102	НG	BENZ	11	7.623	3.036	-8.356	1.00	0.00

Coordinates of compound 16b derived by molecular modelling:

ATOM C	1	С9	CPEN	1C	5.321	4.504	-8.368	1.00	0.00
С АТОМ Н	2	1H9	CPEN	1C	6.216	3.887	-8.183	1.00	0.00
ATOM H	3	2H9	CPEN	1C	4.874	4.076	-9.283	1.00	0.00
ATOM C	4	С	CPEN	1D	7.229	10.406	-7.897	1.00	0.00
ATOM N	5	Ν	CPEN	1D	5.950	10.590	-7.174	1.00	0.00
ATOM C	6	C1	CPEN	1D	4.706	10.536	-7.812	1.00	0.00

ATOM N	7	N1	CPEN	1D	3.549	10.671	-6.998	1.00	0.00
ATOM C	8	C2	CPEN	1D	3.658	10.854	-5.523	1.00	0.00
ATOM C	9	С3	CPEN	1D	2.190	10.524	-7.607	1.00	0.00
ATOM	10	0	CPEN	1D	4.623	10.379	-9.017	1.00	0.00
ATOM	11	01	CPEN	1D	8.196	11.200	-7.194	1.00	0.00
ATOM	12	C4	CPEN	1D	8.921	10.292	-6.353	1.00	0.00
ATOM	13	C5	CPEN	1D	7.802	8.917	-7.948	1.00	0.00
ATOM	14	C6	CPEN	1D	8.386	8.874	-6.512	1.00	0.00
ATOM	15	HC	CPEN	1D	7.148	10.849	-8.902	1.00	0.00
ATOM	16	HN	CPEN	1D	5.961	10.789	-6.201	1.00	0.00
ATOM	17	1H2	CPEN	1D	2.668	10.951	-5.049	1.00	0.00
ATOM	18	2H2	CPEN	1D	4.165	9.992	-5.061	1.00	0.00
ATOM	19	3H2	CPEN	1D	4.230	11.765	-5.285	1.00	0.00
ATOM	20	1H3	CPEN	1D	1.469	11.136	-7.041	1.00	0.00
ATOM	21	2H3	CPEN	1D	2.193	10.965	-8.619	1.00	0.00
ATOM	22	H4	CPEN	1D	8.915	10.699	-5.328	1.00	0.00
ATOM	23	Н5	CPEN	1D	8.651	8.910	-8.653	1.00	0.00
ATOM	24	НG	CPEN	1D	7.600	8.591	-5.793	1.00	0.00
ATOM	25	01	CPEN	1E	9.509	8.029	-6.259	1.00	0.00
ATOM	26	C13	CPEN	1E	10.663	8.870	-6.388	1.00	0.00
ATOM	27	1C13	CPEN	1E	11.611	8.282	-7.448	1.00	0.00
ATOM	28	C1	CPEN	1E	11.402	8.949	-5.035	1.00	0.00
ATOM	29	033	CPEN	1E	10.259	10.172	-6.826	1.00	0.00
ATOM	30	1H13	CPEN	1E	12.501	8.920	-7.570	1.00	0.00
ATOM	31	Н	CPEN	1E	11.944	7.271	-7.164	1.00	0.00
ATOM	32	1H	CPEN	1E	11.107	8.211	-8.426	1.00	0.00
ATOM	33	1H1	CPEN	1E	12.287	9.599	-5.115	1.00	0.00
ATOM H	34	2H1	CPEN	1E	10.751	9.354	-4.245	1.00	0.00

АТОМ Н	35	3H1	CPEN	1E	11.733	7.946	-4.721	1.00	0.00
ATOM N	36	N1	PYRO	1H	6.883	7.814	-8.358	1.00	0.00
ATOM C	37	C2	PYRO	1H	6.829	6.559	-7.826	1.00	0.00
ATOM C	38	С3	PYRO	1H	5.787	5.920	-8.594	1.00	0.00
ATOM N	39	N4	PYRO	1H	5.271	6.784	-9.540	1.00	0.00
ATOM	40	N5	PYRO	1H	5.978	7.884	-9.327	1.00	0.00
ATOM H	41	H2	PYRO	1H	7.458	6.206	-7.021	1.00	0.00
ATOM	42	С	CPEN	1F	0.131	6.099	-6.198	1.00	0.00
ATOM C	43	C1	CPEN	1F	0.235	6.122	-4.651	1.00	0.00
ATOM C	44	C2	CPEN	1F	-0.181	4.701	-4.291	1.00	0.00
ATOM	45	C3	CPEN	1F	0.664	4.611	-6.422	1.00	0.00
ATOM N	46	Ν	CPEN	1F	2.130	4.422	-6.335	1.00	0.00
ATOM	47	C4	CPEN	1F	2.969	4.487	-7.452	1.00	0.00
ATOM N	48	N5	CPEN	1F	4.365	4.346	-7.228	1.00	0.00
ATOM	49	C52	CPEN	1F	4.912	4.144	-5.857	1.00	0.00
ATOM O	50	0	CPEN	1F	2.516	4.660	-8.570	1.00	0.00
ATOM	51	01	CPEN	1F	0.100	3.806	-5.377	1.00	0.00
ATOM H	52	H1	CPEN	1F	1.257	6.398	-4.345	1.00	0.00
ATOM H	53	H2	CPEN	1F	0.272	4.281	-3.378	1.00	0.00
ATOM H	54	HN	CPEN	1F	2.546	4.210	-5.457	1.00	0.00
ATOM H	55	1H52	CPEN	1F	6.010	4.044	-5.866	1.00	0.00
ATOM H	56	2H52	CPEN	1F	4.662	4.999	-5.209	1.00	0.00
ATOM H	57	3H52	CPEN	1F	4.500	3.228	-5.404	1.00	0.00
ATOM H	58	HЗ	CPEN	1F	0.295	4.181	-7.366	1.00	0.00
ATOM H	59	HC	CPEN	1F	-0.942	6.112	-6.460	1.00	0.00
ATOM N	60	N1	PYRO	1	0.781	7.210	-6.955	1.00	0.00
ATOM	61	C2	PYRO	1	1.066	8.458	-6.484	1.00	0.00
ATOM C	62	С3	PYRO	1	1.668	9.109	-7.624	1.00	0.00

ATOM N	63	N4	PYRO	1	1.715	8.259	-8.710	1.00	0.00
ATOM N	64	N5	PYRO	1	1.170	7.154	-8.223	1.00	0.00
ATOM H	65	H2	PYRO	1	0.854	8.799	-5.481	1.00	0.00
ATOM C	66	С	CPEN	1B	-1.758	6.118	-3.543	1.00	0.00
ATOM C	67	C1	CPEN	1B	-3.073	6.717	-4.074	1.00	0.00
ATOM C	68	C2	CPEN	1B	-1.831	6.020	-2.004	1.00	0.00
ATOM O	69	0	CPEN	1B	-1.590	4.823	-4.130	1.00	0.00
ATOM	70	01	CPEN	1B	-0.662	6.960	-3.922	1.00	0.00
ATOM H	71	1H1	CPEN	1B	-3.245	7.723	-3.660	1.00	0.00
ATOM H	72	2H1	CPEN	1B	-3.048	6.801	-5.172	1.00	0.00
ATOM H	73	3H1	CPEN	1B	-3.928	6.078	-3.802	1.00	0.00
ATOM	74	1H2	CPEN	1B	-1.988	7.018	-1.564	1.00	0.00
ATOM	75	2H2	CPEN	1B	-2.663	5.368	-1.696	1.00	0.00
ATOM H	76	3H2	CPEN	1в	-0.900	5.607	-1.583	1.00	0.00