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1 TG experiment as a QPT

The basic idea of carrying out QPT using information from eight different TG spectra collected in

the experiment has been intuitively explained in the main text. Here we elaborate on the formal

details.

The three pulses interacting with the sample have carrier (center) frequencies ω1,ω2,ω3 which

are close to the transition energies ωIg = ωII,I = ωIO,O or ωOg = ωOO,O = ωIO,I . We label the first,

second, and third pulses as p,q,r = I,O, respectively, depending on whether they are centered close

to ωIg or ωOg. The pulses generate a third order time-dependent polarization which is detected by

the reference pulse (fourth pulse) which, for our purposes, is ideally broadband, covering all the

transitions of interest. Under this condition, the complex-valued frequency-resolved TG spectrum

as a function of waiting time T and frequency ω can be immediately related to the half-sided

Fourier transform of the complex-valued TG polarization Ppqr
ks

(τ = 0,T, t)1 via,

[ST G]
pqr(ω,T ) =

ˆ
∞

0
dteiωtPpqr

ks
(τ = 0,T, t). (S1)

Here, τ (coherence time) and T (waiting time) correspond to the time intervals between the first

and the second, and the second and the third pulses, respectively2. The free-induction decay time

of the TG polarization is associated with t (sometimes known as echo-time). Since the half-sided

Fourier transform in Eq. S1 is associated with this time interval, the set of emission frequencies

in the TG spectrum [ST G]
pqr(T,ω) corresponds to this free-induction decay. These frequencies

are associated with the optical coherences between |g〉 and the SEM, or between the SEM and the

DEM, and they correlate with the detection of different populations and coherences by the end of

the waiting time. Consider the scenario where dissipative processes of these optical coherences

are not spectrally broader than the separation between the different peaks in the TG spectra, which

1More precisely, the scalar Ppqr
ks

is the projection of the TG polarization on the reference field, which is parallel to
the axes of the nanotubes (as are the other pulses). Note the dual use of the word polarization. Here, it refers to the
electric dipole density in the material, but we also use it to denote the direction of the electric field of the pulses.

2When τ 6= 0, the TG experiment generalizes to the photon-echo configuration, which for our QPT purposes is not
necessary.
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is what happens in our case. Then, for purposes of QPT, one can properly define the integrated

amplitude of the spectra across a specific spectral window of width 2σ4≡ 330cm−1 about the peak

centered at a particular frequency ω4
3,

[S̄T G]
pqr(ω4,T ) ≡

ˆ
ω4+σ4

ω4−σ4

dω[ST G]
pqr(ω,T )

=

ˆ
∞

−∞

dt Θ(t)σ4sincσ4teiω4t︸ ︷︷ ︸
≡E∗4 (t)

Ppqr
ks

(τ = 0,T, t), (S2)

where we have used the step function Θ(t). The interpretation of Eq. S2 is quite intuitive and

reads as follows: Integrating the broadband frequency-resolved complex amplitude [ST G]
pqr(T,ω)

across a spectral window ω ∈ [ω4−σ4,ω4 +σ4] is equivalent to collecting the total TG photon-

count signal arising from the overlap between an effectively narrowband reference pulse E4(t)

(with carrier frequency ω4 and time-width ∼ σ
−1
4 ) centered at the end of the waiting time (at the

same time as the third pulse r, at t = 0) and the t dependent TG polarization Ppqr
ks

undergoing

free-induction decay. ω4 is chosen to be resonant with one of the emission frequencies. E4 is short

in time (impulsive, broadband), meaning that σ4 is wide enough to cover the dynamic broadening

of a given optical transition. Yet, it is long in time (narrowband) enough to only be selective with

respect to the different transitions. In previous articles, we have shown that a TG signal with

four “impulsive-yet-selective” pulses prepares and detects populations and coherences in the SEM

via the first two and the last two pulses in such a way that the TG experiment may be regarded

as a QPT experiment. Hence, from Eq. S2, we conclude that QPT can also be achieved via the

frequency-resolved TG spectra in this article.1–3

Fig. 3 in main text shows that the possible emission frequencies, and hence values of ω4, in the

different TG spectra are dictated by the third pulse r. If r = O, the induced TG optical coherence

and therefore ω4 take values close to ωIg = ωII,I = ωIO,O via SE and ESA, at ωOg = ωOO,O = ωIO,I

3The peaks are separated from one another by ∼330 cm−1 so windows of width 330 cm−1 are sufficiently narrow
to detect single peak contributions, and broad enough to contain all the relevant spectral diffusion.
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via GSB, SE, ESA, or GSR, or at ωOO,I via ESA. Similarly, if r = I, ω4 can take values close to

ωII,O via ESA, to ωIg = ωII,I = ωIO,O via GSB, SE ESA, or GSR, and ωOg = ωIO,I via SE or ESA.

Hence, for each of the eight frequency-resolved TG spectra [ST G]
pqr(ω,T ), there are three possible

“carrier frequencies” ω4 from which we can extract TG signals [S̄T G]
pqr(ω4,T ), yielding a total of

24 complex numbers as a function of T .

One can readily obtain explicit expressions for [S̄T G]
pqr(ω4,T ) by translating the double-sided

Feynman diagrams in Fig. 3 in main text in terms of the initial states prepared by the first two

pulses, and the final states detected by the last two pulses.2–5 If r = O, these are,

[S̄T G]
pqO(ω4,T ) = CpqO

initial state preparation︷ ︸︸ ︷
µpqµqg

×



final state detection︷ ︸︸ ︷
µOgµIg χIOqp(T )︸ ︷︷ ︸

SE

−µIO,IµIO,OχIOqp(T )︸ ︷︷ ︸
ESA

for ω4 = ωIg,

µ
2
Ogδqp︸ ︷︷ ︸
GSB

−µ
2
Ogχggqp(T )︸ ︷︷ ︸

GSR

+µ
2
OgχOOqp(T )︸ ︷︷ ︸

SE

−µ
2
OO,OχOOqp(T )︸ ︷︷ ︸

ESA

−µ
2
IO,IχIIqp(T )︸ ︷︷ ︸

ESA

for ω4 = ωOg,

−µOO,OµOO,IχOIqp(T )︸ ︷︷ ︸
ESA

for ω4 = ωOO,I,

(S3)

and the analogous expressions hold for [S̄T G]
pqI(ω4,T ) upon the substitutions O→ I and OO→ II.

Here, we have highlighted the dipole transitions µi j associated with the initial state preparation and

the final state detection in each case. We have also assumed that µi j = µ ji since the excitonic states

can be taken to be real due to time-reversal symmetry. For the ω4 = ωOg case, it is possible to

simplify the expression by assuming that the total exciton population during the waiting time is

distributed exclusively among |O〉, |I〉, and |g〉,

χOOqp(T )+χIIqp(T )+χggqp(T ) = δqp, (S4)
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so that it reads,

[S̄T G]
pqO(ω4,T ) =CpqOµpgµqg[(2µ

2
Og−µ

2
OO,O)χOOqp(T )+(µ2

Og−µ
2
IO,I)χIIqp(T )] for ω4 = ωOg.

(S5)

This approximation relies on two assumptions: (a) That there are no uphill transfers of population

to the DEM during the waiting time, which is very reasonable considering the large energy gap

between the SEM and the DEM, and (b) that the transfer to the dark states is also negligible.

CpqO indicates the joint transition probability amplitude to carry out the three different dipole

transitions via the three different pulses. Whereas in principle one can obtain explicit expressions

for this amplitude, in the present case, the narrowband pulses with imperfect Gaussian forms, the

pulse overlaps, as well as the broadening of the TG transitions due to dynamic disorder altogether

impede its precise determination. We shall write it as,

CpqO = fpqEp(ωpg)Eq(ωqg)EO(ωOg)

≈ fpqmax(Ep(ω))max(Eq(ω))max(EO(ω)). (S6)

Here, we have used the fact that the pulses are narrowband and centered about the relevant tran-

sitions (Ep(ωpq) ≈ max(Ep(ω)) and so on), and we extract the respective amplitudes from the

power spectra of the pulses, Ei(ω) =
√
|Ei(ω)|2 (assuming Ei(ω) has no chirp and its global

phase is already considered in the phasing procedure with respect to the other pulses). We hide

all the complexity of CpqO in the complex-valued factor fpq which takes into account the overlap

between pulses p and q. Finally, from the absorption spectrum, we can get a good estimate of

µOg

µIg
≈

√
A(ωOg)

A(ωIg)
, (S7)

where A(ω) is the absorption spectrum of the material. Note that the contributions corresponding
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to SE/GSB and ESA/GSR involve a net gain and loss of photons to the electric field in the ks

direction, respectively, and hence come with opposite signs. Also, GSB appears only if the first

two pulses are resonant with the same transitions and therefore create a population (rather than a

coherence) in the excited state, and hence, it is proportional to δpq. Since the GSB term monitors

(stationary) ground state population during the waiting time T , it is proportional to χgggg(T ) = 1

and shows up as a T -independent background4.

So far, we have 24 effective narrowband time (or frequency) integrated complex-valued TG

signals [S̄T G]
pqr(T,ω) which amount to 48 real-valued data points as a function of T . Note that in

general, these signals are linear combinations of different elements of χ(T ) and, in fact, accord-

ing to Eq. S3, several signals report on a single element of χ(T ) at a time. Let us now count the

number of elements of χ(T ) to invert for our two-level system composed of |I〉 and |O〉. Hermic-

ity of χ(T ) requires that χi jqp(T ) = χ∗jipq(T ). This amounts to the real-valued population terms

χOOOO(T ), χIIOO(T ), χIIII(T ), and χOOII(T ), and the complex-valued χIOIO(T ) = χ∗OIOI(T ),

together with the non-secular (not energy conserving, also complex-valued) terms χIOOO(T ) =

χ∗OIOO(T ), χIOII(T ) = χIOII(T ), χIOOI(T ) = χ∗OIIO(T ), χOOIO(T ) = χ∗OOOI(T ), and χIIIO(T ) =

χ∗IIOI(T ). Based on this symmetry, there are 16 real parameters of χ(T ) to extract 5 out of a

redundant set of 48 real-valued data points.

2 Energy level assignments

Energies of the SEM and DEM states addressed in our experiment have been self-consistently

assigned from the frequency-resolved TG spectra. As a first examination, from the linear ab-

sorption, peak maxima corresponding to |I〉 and |O〉 are located at ωIg = 16695cm−1 and ωOg =

16970cm−1, respectively. These peaks are broadened both by static and dynamic disorder of the

4This is not true if the pump pulses 1 and 2 prepare a nuclear wavepacket in |g〉 which is different from its initial
equilibrium configuration.6 This will not happen as long as the impulsive limit is satisfied and the Condon approxi-
mation is valid.

5Had the population stayed only in |I〉 and |O〉 (and not in |g〉 via GSR), the number of unknowns would have been
reduced to 12 real parameters.2,3
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ensemble. As shown in Fig. 2 in the main text, narrowband excitation in the experiment is effected

in such a way that the pulses are centered at the edge of each band, therefore selecting only a

subset of realizations of static disorder. Therefore, the average energies in the linear absorption

do not coincide with those probed in the TG experiment. Hence, it is more accurate to extract the

energy levels of interest from the TG spectra themselves, using the initial condition that no transfer

processes have occured at T = 0,

χi jqp(0) = δiqδ jp. (S8)

For instance, whereas the OOO spectrum can potentially contain three different emission frequen-

cies, at T = 0 it consists of a single peak6 with maximum amplitude at ω ∼ 17068cm−1. This

peak must correspond to (see Eq. S3); also Fig. 3 in main text, left top panel) χOOOO(0) = 1,

in a combination of SE, ESA, and GSB processes. Whereas SE/GSB is expected to show up at

∼3.5 cm−1 red-shifted from ESA at cryogenic temperatures,7 dynamic and some static disorder

at room temperature forbids an unambiguous discrimination as it broadens peaks up to a total

width of about 330 cm−1, as mentioned at the beginning of SI, Sec. 1. From here, we infer that

ωOg,ωOO,O ∼ 17068 cm−1. Analogously, from the III spectrum at T = 0 and χIIII(0) = 1, we

obtain ωIg,ωII,I ∼ 16635cm−1. Based on these observations, we use ωOg = ωOO,O = 17068cm−1

and ωIg = ωII,I = 16635cm−1.

The presence of the SEM states |I〉 and |O〉 demand the consideration of an additional combina-

tion exciton |IO〉, which we treat as a doubly-excited state where the two excitons are present, one

in |I〉 and the other in |O〉, and its energy is the sum of the two SEM exciton energies, ωIO,O = ωIg

and ωIO,I = ωOg. This is a reasonable assumption considering that the interactions between the |I〉

and the |O〉 excitons will be weak across the 4 nm hydrophobic core separating them.

We confirm the extracted energies by analyzing the rest of the TG spectra at T = 0. First,

OOI and IIO spectra each contain a single peak at 16572 and 17025 cm−1, respectively. Due to

the frequencies of the pulses involved in these two experiments, only GSB and ESA processes

contribute at ω = ωIg = ωIO,O and ω = ωOg = ωIO,I , which is to a good approximation what we

6In fact, as we shall explain later, the two other potential peaks have negligible amplitudes even at T > 0.
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see. Second, spectra IOI and OIO show peaks at 17012 and 16635 cm−1, associated with SE and

ESA at ω = ωOg = ωIO,I and ω = ωIg = ωIO,O. Finally, IOO and OII spectra show peaks at 17452

and 16118 cm−1 corresponding to ESA at ω = ωOO,I and ω = ωII,O. These observations validate

the energy assignments in Fig. 2b in main text.

3 Data processing and error analysis

As explained in SI Sec. 1, Fig. 3 in the main text and Eq. S3 comprehensively enumerate the

possible processes within the SEM that can be detected from the eight different TG spectra. In

principle, these processes manifest as three spectrally well-separated peaks in each TG spectrum,

indicating general transfers amongst populations and coherences.

Figure 4 shows that the resulting set of signals is quite sparse, with signals at well-separated

frequencies. We characterize the intensity of each peak by integrating the complex experimen-

tal spectra (real parts shown in Fig. 4) around the expected peak frequency using Eq. S2 with

a half-width of σ4 = 165 cm−1. The TG emission bands are well separated by more than 330

cm−1. Table S1 characterizes the total strength of the various signals by presenting the normalized

contribution of ∑T
∣∣[S̄T G]

pqr(ω4,T )
∣∣2 for each frequency-resolved TG spectrum and choice of ω4.

Together with each entry, we have also indicated the elements of χ(T ) associated with that signal.

For instance, the peak centered at ωOg = ωOO,O in the IIO spectra reports on both χOOII(T ) and

χIIII(T ), whereas the peak at ωII,O in OII is directly proportional to χIOIO. To obtain a rough

idea of the experimental data, we have listed in bold the entries that contribute the most per TG

spectrum, and most of them account for over 97% of the total norm of the respective experiment,

which produces the sparse data set. The spectra such as IOO, where the dominant contribution

is only 85%, clearly have lower signal-to-noise ratios, as can be seen in Fig. 4. We discuss the

uncertainties resulting from this noise later in this section.
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TABLE S1. Normalized contribution of ∑T |[S̄T G]
pqr(ω4,T )|2

TG spectrum\ω4 [cm−1] ωIg = 16635cm−1 ωOg = ωOO,O = ωIO,I = 17068cm−1 ωOO,I = 17501cm−1

OOO 0.0001 (χIOOO) 0.9999 (χOOOO, χIIOO) 0.0000 (χOIOO)

IIO 0.0622 (χIOII) 0.9007 (χOOII , χIIII) 0.0371 (χOIII)

IOO 0.0320 (χIOOI) 0.1231 (χOOOI , χIIOI) 0.8449 (χOIOI)

OIO 0.9973 (χIOIO) 0.0018 (χOOIO, χIIIO) 0.0009 (χOIIO)

TG spectrum\ω4 [cm−1] ωII,O = 16202cm−1 ωIg = ωII,I = ωIO,O = 16635cm−1 ωOg = 17068cm−1

OOI 0.0221 (χIOOO) 0.9779 (χOOOO, χIIOO) 0.0000 (χOIOO)

III 0.0050 (χIOII) 0.9947 (χOOII , χIIII) 0.0003 (χOIII)

IOI 0.0018 (χIOOI) 0.0689 (χIIOI , χOOOI) 0.9294 (χOIOI)

OII 0.9886 (χIOIO) 0.0061 (χIIIO, χOOIO) 0.0052 (χOIIO)

Note that the entries with small contributions correspond to nonsecular terms. This table serves

as an illustration to the rationale behind our frequency-selective TG procedure, but it is not suffi-

cient to extract χ(T ), as the signals are weighted by dipole moment and electric field terms. To

proceed in a more systematic fashion, we follow this procedure:

1. From each signal [S̄T G]
pqr(ω4,T ) in Eq. S3, construct the renormalized signal,

[s̄T G]
pqr(ω4,T ) =

[S̄T G]
pqr(ω4,T )
κpqr

, (S9)

where κpqr = max[Ep(ω)]max[Eq(ω)]max[Er(ω)]
µpgµgq

µ2
Ig

, with dipole ratios determined us-

ing Eq. S7.

2. Taking into account the initial condition Eq. S8 in Eqs. S9 and S5 as well as their analogues

upon the O→ I and OO→ II substitutions, yields the following coefficients,
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A ≡ [s̄T G]
OOO(ωOg,0) = fOO(2µ

2
Og−µ

2
OO,O),

B ≡ [s̄T G]
IIO(ωOg,0) = fII(µ

2
Og−µ

2
IO,I),

C ≡ [s̄T G]
OOI(ωIg,0) = fOO(µ

2
Ig−µ

2
IO,O),

D ≡ [s̄T G]
III(ωIg,0) = fII(2µ

2
Ig−µ

2
II,I),

E ≡ [s̄T G]
IOI(ωOg,0) = fIO(µIgµOg−µIO,IµIO,O),

F ≡ [s̄T G]
IOO(ωOO,I,0) = fIO(µOO,OµOO,I),

G ≡ [s̄T G]
OIO(ωIg,0) = fOI(µOgµIg−µIO,OµIO,I).

H ≡ [s̄T G]
OII(ωII,O,0) = fOI(µII,IµII,O). (S10)

These coefficients precisely constitute the set of dipole combinations required for the inver-

sion of χ(T ) from Eq. S3.

3. We arrange the coefficients from Eq. S10 into matrices,
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MOO =MII ≡



0 0 G −iG

A B 0 0

0 0 F iF

0 0 H −iH

C D 0 0

0 0 E iE


, MOI ≡



0 0 G 0 0 0 −iG 0

A B 0 0 −iA −iB 0 0

0 0 0 F 0 0 0 −iF

0 0 H 0 0 0 −iH 0

C D 0 0 −iC −iD 0 0

0 0 0 E 0 0 0 −iE

0 0 0 G 0 0 0 iG

A B 0 0 iA iB 0 0

0 0 F 0 0 0 iF 0

0 0 0 H 0 0 0 iH

C D 0 0 iC iD 0 0

0 0 E 0 0 0 iE 0



,

(S11)

and the signals into associated vectors,
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SOO(T )=



[s̄T G]
OOO(ωIg,T )

[s̄T G]
OOO(ωOg,T )

[s̄T G]
OOO(ωOO,I,T )

[s̄T G]
OOI(ωII,O,T )

[s̄T G]
OOI(ωIg,T )

[s̄T G]
OOI(ωOg,T )


, SII(T )=



[s̄T G]
IIO(ωIg,T )

[s̄T G]
IIO(ωOg,T )

[s̄T G]
IIO(ωOO,I,T )

[s̄T G]
III(ωII,O,T )

[s̄T G]
III(ωIg,T )

[s̄T G]
III(ωOg,T )


, SOI(T )=



[s̄T G]
OIO(ωIg,T )

[s̄T G]
OIO(ωOg,T )

[s̄T G]
OIO(ωOO,I,T )

[s̄T G]
OII(ωII,O,T )

[s̄T G]
OII(ωIg,T )

[s̄T G]
OII(ωOg,T )

[s̄T G]
IOO(ωIg,T )

[s̄T G]
IOO(ωOg,T )

[s̄T G]
IOO(ωOO,I,T )

[s̄T G]
IOI(ωII,O,T )

[s̄T G]
IOI(ωIg,T )

[s̄T G]
IOI(ωOg,T )



.

(S12)

The goal is to extract χ(T ), which is also written as a series of vectors,

XOO(T )≡



χOOOO(T )

χIIOO(T )

ℜ{χOIOO(T )}

ℑ{χOIOO(T )}


, XII(T )≡



χOOII(T )

χIIII(T )

ℜ{χOIII(T )}

ℑ{χOIII(T )}


, XOI(T ) =



ℜ{χOOOI}

ℜ{χIIOI}

ℜ{χOIOI}

ℜ{χIOOI}

ℑ{χOOOI}

ℑ{χIIOI}

ℑ{χOIOI}

ℑ{χIOOI}



,
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which fulfill,

MOOXOO(T ) = SOO(T ),

MIIXII(T ) = SII(T ),

MOIXOI(T ) = SOI(T ). (S13)

Clearly, Eq. S13 can be written as a single matrix equation MX(T ) = S(T ), where M =

MOO
⊕

MII
⊕

MOI is a 24×16 matrix with each of the original matrices along the diagonal

and zeros for the rest of the entries, i.e., it is of the block-diagonal form. X(T ) and S(T )

are the concatenations of the corresponding column vectors and have lengths 16 and 24,

respectively. The condition number of M is equal to 14.9, which indicates a well-behaved

inversion, associated with the sparsity of the matrix.7 A naive direct inversion of M genere-

ally yields unphysical values of the process matrix χ(T ). Using a semidefinite programming

routine built using the CVX software,8,9 we impose the positive-semidefinite constraint,

∑
i jqp

z∗iqχi jqp(T )z jp ≥ 0, (S14)

for any complex-valued matrix z. This condition guarantees that the inverted χ(T ) maps

positive density matrices to other positive density matrices, as required for any physical χ .

The result of this numerical procedure is given in Fig. 5 in main text, where most of the

elements of χ(T ) (namely, the nonsecular terms) result to be negligible.

Error analysis

We fit the dynamics encoded in χ(T ) to functional forms shown in Table 1 in the main text, yielding

the set of kinetic parameters τOO, βOO, 2π

ωOI
, τOI , βOI . Here we describe how the uncertainties in

the extraction of the coefficients X = {A . . .H} in Eq. S10 affect the extracted kinetic parameters.

7The smaller the condition number, the more stable the inversion; since some signals are directly proportional to
certain elements of χ(T ), the matrix is sparse and the inversion is stable.
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At T = 0, χ(T ) must satisfy the initial condition of Eq. S8. Hence, most of the signals

[s̄T G]
pqr(ω4,0) should vanish identically. This is not the case in practice, as there is always some

experimental noise (see for instance, the IOO and IIO spectra in Fig. 4). Let us re-express the ex-

perimental spectra as [s̄T G]
pqr(ω4,T ) = [s̄T G]

pqr
ideal(ω4,T )+ δ

pqr
real(ω4,T )+ iδ pqr

imag(ω4,T ), where

δ
pqr
real and δ

pqr
imag denote real-valued noise in the real and imaginary parts of the spectra. Recall from

Eq. S2 and S9 that [s̄T G]
pqr(ω4,T ) is the result of an integral of [ST G]

pqr(ω,T ) over a window cen-

tered at ω4. In practice, this operation is carried out as a discrete sum over N = 58 frequency

pixels ωi spanning a window of width 2σ4. We obtain the noise in [s̄T G]
pqr(ω4,T ) by assuming

that the noise in [ST G]
pqr(ω,T ) for each frequency pixel is drawn from a normal distribution with

zero mean and standard deviations σ
pqr
real and σ

pqr
imag, independent of ω ,T . We assume the noise

distribution depends on the pulses used (pqr) and phase of the signal but otherwise does not vary

in each experiment.

Since we assume that the noise has zero mean, for each dipole combination in the set X =

{A . . .H}, the best estimator of Xi is still the value given by Eq. S10. We can estimate the uncer-

tainties in those values by finding σ
pqr
real, σ

pqr
imag.

We estimate σ
pqr
real, σ

pqr
imag by looking at regions of the spectra where we know there should be

no signal. For example, due to Eq. S8, at T = 0, [ST G]
OOO
ideal(ω,0) must vanish for values of ωi in

[ω4−σ4,ω4 +σ4] for ω4 = ωIg,ωOO,I , so only the noise survives in those spectral regions. Our

best estimator of σ
pqr
real (which we will simply call σ

pqr
real ) is given by the mean-square fluctuations.

For example, for the OOO spectrum,

(
σ

OOO
real

)2
=

1
2N ∑

i

(
R[ST G]

OOO(ωi,0)
)2

,(
σ

OOO
imag

)2
=

1
2N ∑

i

(
I[ST G]

OOO(ωi,0)
)2

.

where the sum if over the 2N pixels contained in the two windows of frequencies centered at

ω4 = ωIg,ωOO,I .

These experimental uncertainties in each data point imply a normal distribution for each of
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the dipole combinations in the set X ; we expect that rerunning the experiment would give values

for X chosen from those distributions. Our best estimate of the mean of that distribution is the

value determined from Eq. S10. The best estimate of the standard deviation is, after collecting the

relevant prefactors due to the discretization of the integral in Eq. (S2) and the definition in Eq.

(S9), e.g., ΣA
real = ∆ω

√
NσOOO

real /κOOO, ΣA
imag = ∆ω

√
NσOOO

ωimag/κOOO, where ∆ω = 5.8cm−1 is the

size of a pixel in the TG spectra. The analogous procedure can be carried out for the rest of the

coefficients B to H, giving the result in Table S2.

TABLE S2. Estimated values and uncertainties of the coefficients A to H

X A B C D

value/A 1 0.003+0.021i −0.147+0.097i −0.100−0.094i

ΣX
real/|X | 0.0013 0.0777 0.0064 0.0244

ΣX
imag/|X | 0.0063 0.0128 0.1454 0.0041

X E F G H

value/A 0.036−0.056i 0.013−0.004i −0.035−0.108i 0.045−0.038i

ΣX
real/|X | 0.0214 0.0643 0.0104 0.0035

ΣX
imag/|X | 0.0292 0.1165 0.0190 0.0132

We propagate these uncertainties in the dipole combinations A . . .H to uncertainties in the ki-

netic parameters by creating empirical distributions for the kinetic parameters. We choose values

for X = {A . . .H} from the normal distributions described by Table S2. For each such set X , we

invert χ(T ) and extract the kinetic parameters by best fit. We repeat this process 1000 times to

create an implied distribution for the kinetic parameters, giving an estimate of their uncertainties

due to the experimental noise effects on the dipole parameters. The mean of these distributions is

the value determined using the parameters from Eq. S10, τOO = 212fs, βOO = 3.3fs, 2π

ω̄OI
= 70fs,

τOI = 155fs, βOI = 2.6. We take the standard deviations (e.g., ∆τOO) of these distributions as a mea-

sure of the uncertainty of the uncertainty in the kinetic parameters. The result is that the kinetic

parameters are best estimated to have uncertainties at 95% confidence interval due to the noise

in the spectra of 1.96Σ(τOO) = 5fs, 1.96Σ(βOO) = 0.2, 1.96Σ( 2π

ωOI
) = 0.1fs, 1.96Σ(τOI) = 4fs,

15



1.96Σ(βOI) = 0.2. In addition to these uncertainties are the curve-fitting uncertainties due to dis-

agreement between χ(T ) and the functional forms of the fits. Table 1 of the main text reports

two uncertainties for each parameter. The first is the curve-fitting uncertainty and the second is

the signal-to-noise uncertainty producing errors in the estimates of the dipoles A . . .H. The small

uncertainty values, together with the small condition number of M, indicate that the inversion of

X(T ), the extraction of kinetic parameters, and the entire QPT procedure are robust.
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