
Supporting Information 

Lightweight and flexible reduced graphene oxide/ water-borne 

polyurethane composites with high electrical conductivity and 

excellent electromagnetic interference shielding performance 

 

Sheng-Tsung Hsiao
a
, Chen-Chi M Ma*

a
, Wei-Hao Liao

a
, Yu-Sheng Wang

a
, 

Shin-Ming Li
a
, Yu-Chin Huang

a
, Ruey-Bin Yang

b
 and Wen-Fan Liang

c
 

 

a
Department of Chemical Engineerin, National Tsing-Hua University, Hsin-Chu 30013, Taiwan, ROC.  

b
Department of Aerospace and Systems Engineering, Feng Chia University, Taichung, Taiwan, ROC 

c
Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan, ROC 

 

 

Contents: 

Zeta potential characterization 

Figure S1 the Raman spectra of GO/WPU and r-GO/WPU composites.  

Figure S2 The XRD result of WPU and r-GO/WPU composites. 

Figure S3 The TGA analysis of r-GO/WPU15 composites under N2 gas flow with 

various ramping rate 

Figure S4 The electrical conductivity (σ) of GO/WPU composites measured at room 

temperature as a function of cycles of L-b-L assembly. 

Figure S5 The electrical conductivity (σ) of r-GO/WPU-20 composites measured at 

room temperature as a function of immersion time in HI. 

Table S1 Comparison of EMI SE with different GNS composites 



Zeta potential characterization 

The zeta potential characterization were performed at room temperature using a 

Malvern Zetasizer Nano-ZS system with irradiation from a 632.8 nm He-Ne laser. 

The samples were filled in folded capillary cells, and the electrophoretic mobility was 

measured using a combination of electrophoresis and laser Doppler velocimetry 

techniques. Herein, the Smoluchowski approximation
1
 was used for the measurement 

of zeta potential. The Smoluchowski approximation for plate-like materials
2
 is shown 

as ζ = ημ/ε, where ζ is the zeta potential, η is the solution viscousity, μ is the 

electrophoretic mobility and ε is the permittivity of the solution. The approximation 

for zeta potential measurement of graphene-based material was conducted by the 

previous studies
3-4

. As a result, this Smoluchowski approximation was widely used by 

several groups for the zeta potential analysis of graphene-based materials
5-8
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Figure S1 The Raman spectra of GO/WPU and r-GO/WPU composites.  

 



 

Figure S2 The XRD results of WPU and r-GO/WPU composites. 



 

Figure S3 The TGA analysis of r-GO/WPU15 composites under N2 gas flow with 

various ramping rate 

 

 

Figure S4 The electrical conductivity (σ) of GO/WPU composites measured at room 

temperature as a function of cycles of L-b-L assembly. 



 

Figure S5 The electrical conductivity (σ) of r-GO/WPU-20 composites measured at 

room temperature as a function of immersion time in HI. 

 

 

 

 

 

 

 

 

 



Table S1 Comparison of EMI SE of different graphene-based polymer composites. 

 

Sample EMI SE/ thickness 

of sample 

Reference 

Graphene/PDMS foam 

composites 

20 dB/ 1 mm Adv. Mater. 2013, 25, 1296–

1300
9
 

R-GO/paraffin wax 

composites 

29.68 dB/ 2 mm Nanoscale, 2014,6, 

5754-5761
10
 

Graphene/Epoxy 

composites 

21 dB/ > 2 mm CARBON 47 (2009) 922–

925
11
 

Graphene/PMMA 

composites 

30 dB/ 3.4 mm CARBON 50 (2012) 5117 –

5125
12
 

Graphene/PEI foam 

composite 

44 dB/ 2.3 mm ACS Appl. Mater. Interfaces 

2013, 5, 2677−2684
13
 

Graphene/PS composite 29 dB/ 2.5 mm J. Mater. Chem., 2012, 22, 

18772
14
 

R-GO/WPU composite 32 dB/ 2 mm CARBON 60 (2013) 57–66
15
 

R-GO/WPU composite 34 dB/ 1 mm This study 
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