Upshift of Phase Transition Temperature in Nanostructured PbTiO₃ Thick Film for High Temperature Applications

Jungho Ryu¹, Guifang Han¹, Tae Kwon Song², Aaron Welsh³, Susan Trolier-McKinstry³, Hongsoo Choi⁴, Jong-Pil Lee⁵, Jong-Woo Kim¹, Woon-Ha Yoon¹, Jong-Jin Choi¹, Dong-Soo Park¹, Cheol-Woo Ahn¹, Shashank Priya⁶, Si-Young Choi^{7*} and Dae-Yong Jeong^{8*}

¹Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Changwon 641-831, Korea

²Department of Convergence Materials Science and Engineering, Changwon National University, Changwon 641-773, Korea

³Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA

⁴Bio-Micro Robot Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea

⁵Department of Materials Science and Engineering, Myongji University, Gyeonggi 449-728, Korea

⁶Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Virginia 24061, USA

⁷Advanced Characterization & Analysis Group, Korea Institute of Materials Science (KIMS), Changwon 641-831, Korea

⁸School of Materials Engineering, Inha University, Incheon 402-751, Korea

S1. Photo of pure PbTiO₃ ceramics sintered at 900 $^{\circ}$ C for 2 hours. Even though the sintered density is very low as ~ 80% of theoretical, large visible macro/micro cracks can be seen. The cracks formed due to a large volume change at the Tc.

Figure S1. Photo of pure PbTiO₃ ceramic sintered at 900 °C for 2 hours.

S2. Surface SEM images of PbTiO₃ film annealed at 700 °C for 1 hour. These can confirm the soundness of the film in terms of density, cracks, delaminations, and etc.

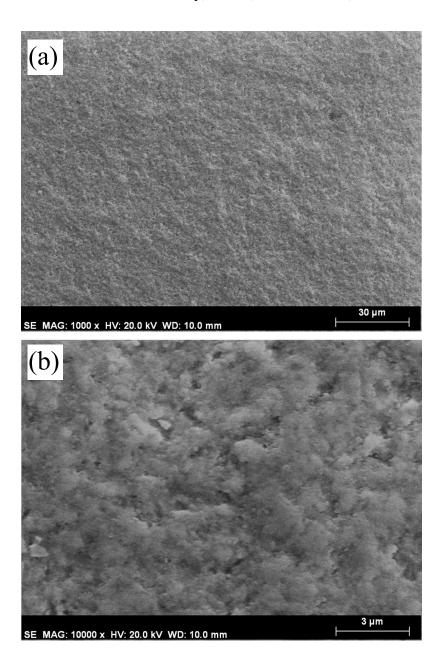


Figure S2. Surface SEM images of PbTiO₃ film annealed at 700 °C for 1 hour

S3. Photo and optical micrograph of $PbTiO_3$ film annealed at 700 °C for 1 hour. These also can confirm the soundness of the film in terms of density, cracks, delaminations, and etc.

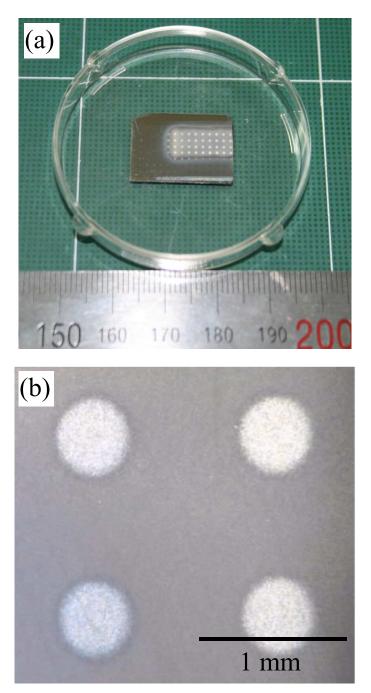


Figure S3. (a) Photo and (b) optical micrograph of PbTiO₃ film annealed at 700 °C for 1 hour.

S4. $d_{33,eff}$ measurement data from single beam LDV

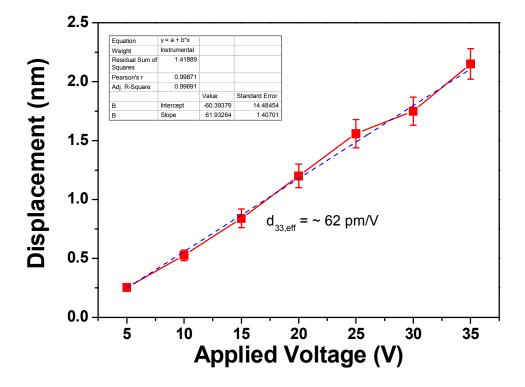


Figure S4. $d_{33,eff}$ measurement data from single beam LDV

S5. Animation of piezo-response deformation at 5.7, 11, and 17 V_{rms} . Below are captured images of animation at 5.7 V_{rms} .

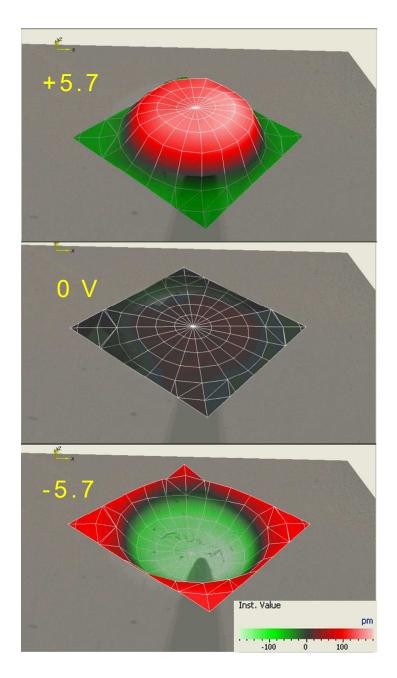


Figure S5. Captured images of piezo-response deformation monitored at 5.7 V_{rms}.

S6. Plot of inverse dielectric susceptibility as a function of temperature to confirm the phase transition temperature.

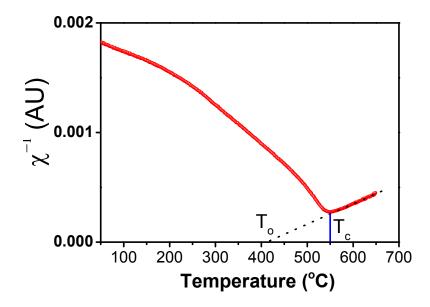


Figure S6. Inverse dielectric susceptibility of $PbTiO_3$ film annealed at 700 °C for 1 hour as a function of temperature