Discovery and Optimization of 1,3,5-trisubstituted

Pyrazolines as Potent and Highly Selective

Allosteric Inhibitors of Protein Kinase Czeta (PKC ζ)

AUTHOR NAMES

Mohammad Abdel-Halim ${ }^{1,3}$, Britta Diesel ${ }^{2}$, Alexandra K. Kiemer ${ }^{2}$, Ashraf H. Abadi ${ }^{3}$, Rolf W. Hartmann ${ }^{l}$ and Matthias Engel ${ }^{1}$

AUTHOR ADDRESS
${ }^{1}$ Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123
Saarbrücken, Germany
${ }^{2}$ Pharmaceutical Biology, Saarland University, Campus C2.2, D-66123 Saarbrücken, Germany
${ }^{3}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt

Supporting Information

Contents:

1) Experimental procedures and Analytical data of compounds $\mathbf{1 b}-\mathbf{r}, \mathbf{t} \mathbf{- u}, \mathbf{2 a - l}$, 3a-q, 4a-e, 4g-j, 5a-n, 6a-n, 7a, 9, 10, 11 and E2-37.. $S 3$
2) Molecular modelling and docking.. 49
3) Table S1. Inhibition of recombinant $\mathrm{PKC} \zeta$ and the $\mathrm{NF}-\kappa \mathrm{B}$ pathway in cells by compounds (6a-6n)
page S50
4) Table S 2 . Hit compound 1a does not inhibit other potential target kinases in the NF-кB pathway nor PKC β II page S51
5) Table S3. Wilcoxon's signed rank test
page S52
6) Table S4. MTT toxicity assay using RAW 264.7 cells
page S53
7) Table S5. Selectivity profile of $\mathbf{4 f} v s$. the PKC family and further AGC kinases.page $S 54$
8) Figure $S 1$
page S55
9) Figure S 2
page S56
10) References
page S57

1) Experimental procedures and Analytical data

4-(3-(Tert-butyl)-1-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (1b). The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3one (E1) and 4-fluorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.4: 1\right)$; yellowish white solid; yield: $0.34 \mathrm{~g}(55 \%)$; mp 111-112 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.34(\mathrm{~s}, 1 \mathrm{H}), 7.08$ $-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{dd}, J=$ $11.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=17.4,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=17.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 159.18,156.48,155.41\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=233.8 \mathrm{~Hz}\right), 142.76,132.88$, $127.02,115.55,115.03\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.1 \mathrm{~Hz}\right), 113.86\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.4 \mathrm{~Hz}\right), 63.85,42.81,33.37$, 27.91; MS (ESI): $m / z=311.01(\mathrm{M}-1)^{+}$.

4-(1-(4-Bromophenyl)-3-(tert-butyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (1c). The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3one (E1) and 4-bromophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $\left.4: 1\right)$; off-white solid; yield: $0.45 \mathrm{~g}(61 \%)$; mp $125-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{dd}, J=11.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}$, $J=17.2,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=17.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.44,154.93,144.82,134.78,128.58,127.18,123.18,115.91,114.40,64.47,43.27$, 33.82, 28.21; MS (ESI): $m / z=372.71(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(4-(trifluoromethyl)phenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (1d).

The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-

1-en-3-one (E1) and 4-(trifluoromethyl)phenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $\left.4: 1\right)$; light brown solid; yield: $0.35 \mathrm{~g}(48 \%)$; mp 121-122 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.38$ (s, $1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.65(\mathrm{~m}, 2 \mathrm{H})$, $5.21(\mathrm{dd}, J=11.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=17.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=17.7,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.18 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 161.32,156.62,147.43,132.26,126.76,125.96$, $125.07\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=270.2 \mathrm{~Hz}\right), 116.96\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.8 \mathrm{~Hz}\right), 115.66,111.79,61.97,42.65,33.51$, 27.83; MS (ESI): $m / z=362.74(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(p-tolyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (1e). The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3-one (E1) and p-tolylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.4: 1\right)$; tan solid; yield: $0.24 \mathrm{~g}(40 \%) ; \mathrm{mp} 125.9{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.78-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.65(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=11.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=17.3,11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=17.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 158.34,156.36,143.76,133.24,128.97,126.97,126.25,115.45,112.95,63.55$, 42.59, 33.34, 27.96, 20.03; MS (ESI): $m / z=308.74(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(4-(isopropyl)phenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (1f). The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3-one (E1) and 4-isopropylphenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane 3:1); beige solid; yield: $0.19 \mathrm{~g}(28 \%) ; \mathrm{mp} 162-163{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.04$ $(\mathrm{m}, 2 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.67(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{dt}, J=22.8,11.4$
$\mathrm{Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=17.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=17.3,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 158.39, 156.40, 144.17, 137.77, 133.37, 126.98, 126.26, 115.49, 112.90, 63.75, 42.68, 33.34, 32.46, 27.96, 24.09, 24.06; MS (ESI): $m / z=337.08(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-5-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)benzoic acid (1g). The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3-one (E1) and 4-hydrazinobenzoicacid hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$; white solid; yield: $0.26 \mathrm{~g}(39 \%) ; \mathrm{mp} 259.1-261{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.14(\mathrm{~s}, 1 \mathrm{H}), 9.37(\mathrm{~s}, 1 \mathrm{H})$, $7.66(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.67(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{dd}$, $J=11.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=17.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=17.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 167.28,161.45,156.59,147.88,132.43,130.67,126.74$, 118.72, 115.63, 111.30, 61.80, 42.58, 33.53, 27.84; MS (ESI): $m / z=338.87(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(3-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (1h). The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3one (E1) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.4: 1\right)$; yellowish white solid; yield: $0.2 \mathrm{~g}(31 \%)$; mp 143.3-145.2 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.37(\mathrm{~s}, 1 \mathrm{H})$, $7.09-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.68(\mathrm{~m}, 3 \mathrm{H}), 6.63$ (ddd, $J=7.9,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=11.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=17.6,11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.67(\mathrm{dd}, J=17.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 160.34,156.57$, $146.53,133.29,132.54,130.20,126.85,116.88,115.64,111.85,110.91,62.55,42.67,33.46$, 27.86; $\mathrm{MS}(\mathrm{ESI}): m / z=328.86(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(3-fluorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (1i). The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3one (E1) and 3-fluoropheylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $\left.4: 1\right)$; light brown solid; yield: $0.21 \mathrm{~g}(35 \%) ; \mathrm{mp} 140.4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 7.12-6.96$ $(\mathrm{m}, 3 \mathrm{H}), 6.74-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.55(\mathrm{~m}, 2 \mathrm{H}), 6.44-6.34(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=11.6,6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=17.6,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=17.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 162.81\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=239.7 \mathrm{~Hz}\right), 160.10,156.56,147.11\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=\right.$ $11.1 \mathrm{~Hz}), 132.69,130.14\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10.1 \mathrm{~Hz}\right), 126.86,115.61,108.43,103.61\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.3\right.$ $\mathrm{Hz}), 99.14\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=26.5 \mathrm{~Hz}\right), 62.72,42.69,33.43,27.86 ; \mathrm{MS}(\mathrm{ESI}): m / z=312.10\left(\mathrm{M}^{+}\right)$.

4-(3-(Tert-butyl)-1-(3-(trifluoromethyl)phenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol
 (1j).

The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3-one (E1) and 3-(trifluoromethyl)pheylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $\left.4: 1\right)$; yellow solid; yield: $0.35 \mathrm{~g}(49 \%)$; mp $130.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.37(\mathrm{~s}, 1 \mathrm{H})$, $7.27(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-$ $6.89(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{dd}, J=11.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=17.6,11.6 \mathrm{~Hz}$, 1H), 2.71 (dd, $J=17.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 160.70, $156.60,145.54,132.33,129.89,129.49\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.2 \mathrm{~Hz}\right), 126.91,124.33\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.3 \mathrm{~Hz}\right)$, $115.66,115.45,113.37,108.38,62.53,42.69,33.48,27.84 ; \mathrm{MS}(\mathrm{ESI}): m / z=362.84(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(m-tolyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (1k). The title compound was prepared by reaction of $(E)-1-(4-($ tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3-one (E1) and m-tolylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The
product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.4: 1\right)$; yellowish white solid; yield: $0.25 \mathrm{~g}(41 \%)$; mp 119.3-121.2 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$) $\delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.89$ $(\mathrm{m}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.71-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.46-6.42(\mathrm{~m}, 1 \mathrm{H})$, $5.00(\mathrm{dd}, J=11.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=17.4,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=17.4,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.15(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 158.59,156.36,145.66,137.50$, $133.34,128.39,126.87,118.52,115.49,113.36,109.84,63.01,42.56,33.36,27.96,21.42 ; \mathrm{MS}$ (ESI): $m / z=308.94(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(2-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (11). The title

 compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3one (E1) and 2-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.4: 1\right)$; light brown solid; yield: $0.33 \mathrm{~g}(51 \%) ; \mathrm{mp} 162-163{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.25(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J$ $=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.83(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{dd}, J=10.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-$ $3.35(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=17.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $161.25,156.47,143.68,131.40,129.72,127.51,126.94,123.63,123.28,122.66,114.94,65.06$, $41.50,33.60,27.93 ; \mathrm{MS}(\mathrm{ESI}): m / z=328.86(\mathrm{M}+\mathrm{H})^{+}$.4-(3-(Tert-butyl)-1-(2-fluorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (1m). The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3one (E1) and 2-fluorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.4: 1\right)$; light brown solid; yield: $0.25 \mathrm{~g}(41 \%)$; mp $147.3{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.26(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=$ $8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.88(\mathrm{~m}, 4 \mathrm{H}), 6.73(\mathrm{dddd}, J=8.1,7.3,4.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.54(\mathrm{~m}$,
$2 \mathrm{H}), 5.25(\mathrm{dt}, J=11.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=17.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=17.2,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 160.50,156.45,150.79\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=242.7\right.$ $\mathrm{Hz}), 134.19\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=9.3 \mathrm{~Hz}\right), 132.21,127.12,124.21,120.73,119.22,115.60\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=20.0\right.$ $\mathrm{Hz}), 115.06,65.18,41.91,33.51,27.86$; MS (ESI): $m / z=312.93(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (1n). The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3-one (E1) and 2,4-dichlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.3: 1\right)$; offwhite solid; yield: $0.38 \mathrm{~g}(52 \%)$; mp 137.1-138.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.29(\mathrm{~s}$, $1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{dt}, J=4.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.56-6.52(\mathrm{~m}$, $2 \mathrm{H}), 5.49(\mathrm{dd}, J=10.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=17.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=17.3,4.2 \mathrm{~Hz}$, 1H), 1.22 ($\mathrm{s}, 9 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 162.08,156.59,142.94,131.18,128.96$, $127.46,127.03,125.92,123.86,123.59,115.04,64.93,41.59,33.64,27.88 ; \operatorname{MS}(E S I): m / z=$ $362.82(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(2,4-difluorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (10), The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3one (E1) and 2,4-difluorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $\left.4: 1\right)$; yellowish white solid; yield: $0.22 \mathrm{~g}(33 \%) ; \mathrm{mp} 163-164{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 7.29$ $(\mathrm{td}, J=9.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{ddd}, J=12.0,9.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.82$ $(\mathrm{m}, 1 \mathrm{H}), 6.59-6.54(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{ddd}, J=10.8,4.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=17.1,10.9 \mathrm{~Hz}$, 1H), $2.81(\mathrm{dd}, J=17.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ 161.06, $156.55,156.21\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=239.3,{ }^{3} J_{\mathrm{C}-\mathrm{F}}=11.2 \mathrm{~Hz}\right), 150.95\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246.7,{ }^{3} J_{\mathrm{C}-\mathrm{F}}=12.2 \mathrm{~Hz}\right)$,
$131.65,131.32\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=9.7,{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right), 127.34,120.21\left(\mathrm{dd},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.0,4.9 \mathrm{~Hz}\right), 115.07$, $110.71\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.5,{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 104.02\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=26.4,24.4 \mathrm{~Hz}\right), 65.70,41.80,33.53$, 27.85; MS (ESI): $m / z=330.80(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(2,4-dimethylphenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (1p). The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3-one (E1) and 2,4-dimethylphenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.4: 1\right)$; light brown solid; yield: $0.26 \mathrm{~g}(41 \%) ; \mathrm{mp} 77-79{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.26(\mathrm{~s}, 1 \mathrm{H})$, $7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.63-6.59(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{t}, J=$ $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=16.5,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=16.5,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$, $2.13(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d ${ }_{6}$) δ 159.41, 156.44, 142.97, 131.32, 131.18, 130.79, 128.84, 127.91, 126.04, 118.81, 115.02, 66.78, 41.49, 33.46, 27.97, 20.20, 19.56; $\mathrm{MS}(\mathrm{ESI}): m / z=323.02(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(2,6-dichlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (1q). The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3-one (E1) and 2,6-dichlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.3: 1\right)$; offwhite solid; yield: $0.24 \mathrm{~g}(33 \%)$; mp 172-173 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.30(\mathrm{~s}, 1 \mathrm{H})$, $7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.57(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{t}, J=$ $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=17.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=17.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 159.02,156.83,139.82,134.06,130.41,129.34,128.87,127.86$, 114.77, 67.20, 40.73, 33.43, 27.87; MS (ESI): $m / z=362.79(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(3-chloro-4-fluorophenyl)-4,5-dihydro-1 H-pyrazol-5-yl)phenol

The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3-one (E1) and 3-chloro-4-fluorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $\left.4: 1\right)$; brown solid; yield: $0.23 \mathrm{~g}(34 \%)$; mp $94.2{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO) $\delta 9.38(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{dd}, J=6.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.67(\mathrm{~m}, 3 \mathrm{H}), 5.06(\mathrm{dd}, J$ $=11.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=17.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=17.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 160.44,156.61,150.08\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=236.4 \mathrm{~Hz}\right), 142.99(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{C}-\mathrm{F}}=1.8 \mathrm{~Hz}\right), 132.31,126.98,119.21\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=18.3 \mathrm{~Hz}\right), 116.75\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.6 \mathrm{~Hz}\right), 115.65$, $113.30,112.21\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6.3 \mathrm{~Hz}\right), 63.13,42.84,33.44,27.85 ; \mathrm{MS}(\mathrm{ESI}): m / z=346.91(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(2,3,4-trifluorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (1t). The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3-one (E1) and 2,3,4-trifluorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $\left.3: 1\right)$; yellow solid; yield: $0.22 \mathrm{~g}(32 \%) ; \operatorname{mp} 159-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.34(\mathrm{~s}$, $1 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.63-6.58(\mathrm{~m}, 2 \mathrm{H}), 5.24-5.18(\mathrm{~m}, 1 \mathrm{H}), 3.42$ (dd, $J=17.3,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=17.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}): m / z=348.99$ $(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-phenyl-4,5-dihydro-1H-pyrazol-5-yl)phenol (1u) . The title compound was prepared by reaction of (E)-1-(4-(tert-butoxy)phenyl)-4,4-dimethylpent-1-en-3-one (E1) and phenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ hexane 4:1); yellowish white solid; yield: $0.23 \mathrm{~g}(39 \%)$; mp 175-176 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 7.11-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.80$
$(\mathrm{m}, 2 \mathrm{H}), 6.73-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=11.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (dd, $J=17.4,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=17.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 158.83,156.42,145.70,133.21,128.55,126.91,117.64,115.52,112.66,63.13$, 42.63, 33.38, 27.94; MS (ESI): $m / z=294.91(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(4-Chlorophenyl)-3-phenyl-4,5-dihydro-1 \boldsymbol{H}-pyrazol-5-yl)phenol (2a). The title compound was prepared by reaction of (E)-3-(4-(tert-butoxy)phenyl)-1-phenylprop-2-en-1-one (E2) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane 4 :1); yellow solid; yield: $0.19 \mathrm{~g}(28 \%) ; \mathrm{mp} 164-165{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{dt}, J=8.3$, $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 2 \mathrm{H})$, $6.75-6.67(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{dd}, J=12.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=17.5,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J$ $=17.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 156.70, 147.99, 143.07, 132.19, 132.15, $128.81,128.63,128.55,127.03,125.74,121.98,115.69,114.37,62.73,43.12 ; \operatorname{MS}(\mathrm{ESI}): m / z=$ $348.71(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(3-Chlorophenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-5-yl)phenol (2b). The title compound was prepared by reaction of (E)-3-(4-(tert-butoxy)phenyl)-1-phenylprop-2-en-1-one (E2) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $\left.4: 1\right)$; yield: light brown solid; $0.23 \mathrm{~g}(33 \%) ; \mathrm{mp} 161.2-163.3{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 7.78-$ $7.74(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{ddd}, J=8.4$, $2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.66(\mathrm{~m}, 3 \mathrm{H}), 5.40(\mathrm{dd}, J=12.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=17.5,12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=17.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 156.73, 148.56,
$145.39,133.48,132.12,132.01,130.37,128.98,128.65,127.01,125.88,117.75,115.73,112.32$, 111.35, 62.51, 43.10; MS (ESI): $m / z=348.74(\mathrm{M}+\mathrm{H})^{+}$.

2-(1-(4-Chlorophenyl)-5-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-3-yl)phenol (2c)

The title compound was prepared by reaction of (E)-3-(4-(tert-butoxy)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (E3) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 99:1); beige solid; yield: $0.27 \mathrm{~g}(38 \%) ; \mathrm{mp} 214.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.41(\mathrm{~s}$, $1 \mathrm{H}), 9.42(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.12-$ $7.08(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{ddd}, J=7.8,6.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.74-6.69(\mathrm{~m}, 2 \mathrm{H}), 5.35$ $(\mathrm{dd}, J=12.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=17.7,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=17.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 156.80,156.19,150.61,142.51,131.77,130.51,128.77,128.17$, $127.15,122.59,119.54,116.59,116.10,115.73,114.41,61.79,44.11 ; \mathrm{MS}(\mathrm{ESI}): m / z=364.34$ $(\mathrm{M})^{+}$.

4-(1-(4-Chlorophenyl)-3-(2-methoxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol

The title compound was prepared by reaction of (E)-3-(4-(tert-butoxy)phenyl)-1-(2-methoxylphenyl)prop-2-en-1-one (E4) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; tan solid; yield: $0.31 \mathrm{~g}(41 \%)$; $\mathrm{mp} 205-206{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.37(\mathrm{~s}, 1 \mathrm{H}), 7.87$ (dd, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{td}$, $J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{dd}, J=12.0,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92(\mathrm{dd}, J=18.1,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dd}, J=18.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 157.29,156.62,147.28,143.26,132.39,130.37,128.51,128.14,126.95$,
$121.76,121.08,120.64,115.65,114.31,112.31,62.69,55.61,46.50 ; \mathrm{MS}(\mathrm{ESI}): m / z=378.82$ $(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(4-Chlorophenyl)-3-(2-ethoxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (2e). The

 title compound was prepared by reaction of (E)-3-(4-(tert-butoxy)phenyl)-1-(2-ethoxylphenyl)prop-2-en-1-one (E5) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane 4:1); yellowish white solid; yield: $0.19 \mathrm{~g}(25 \%) ; \operatorname{mp} 194-196{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{dd}, J=14.2,7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{dd}, J=12.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{dd}, J=17.8,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=17.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 156.41,156.21,155.02,143.69,130.81,129.06,128.65$, $126.60,125.80,122.47,120.73,115.90,114.47,112.32,109.15,66.11,63.89,46.97,14.94 ; \mathrm{MS}$ (ESI): $m / z=393.11(\mathrm{M}+\mathrm{H})^{+}$.
4-(1-(4-Chlorophenyl)-3-(2-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (2f). The

 title compound was prepared by reaction of (E)-3-(4-(tert-butoxy)phenyl)-1-(2-chlorophenyl)prop-2-en-1-one (E6) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane 4:1); off-white solid; yield: $0.35 \mathrm{~g}(46 \%)$; mp $124-125{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $9.42(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H})$, $7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.66(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{dd}, J=12.1,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{dd}, J=17.5,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=17.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO$\left.d_{6}\right) \delta 156.77,146.30,142.89,131.86,130.99,130.86,130.74,130.16,129.90,128.60,127.30$, 127.07, 122.44, 115.70, 114.61, 62.78, 45.59; MS (ESI): $m / z=382.59(\mathrm{M}+\mathrm{H})^{+}$.4-(1-(4-Chlorophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (2g). The title compound was prepared by reaction of (E)-3-(4-(tert-butoxy)phenyl)-1-(thiophen-2-yl)prop-2-en-1-one (E7) and 4-chlrorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.3: 1\right)$; greenish yellow solid; yield: $0.14 \mathrm{~g}(20 \%)$; $\mathrm{mp} 169.9{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 7.61$ (dd, $J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=3.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=5.1$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{dd}, J=12.0$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=17.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=17.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 156.74,144.42,142.85,135.51,131.91,128.58,127.82,127.70,127.61$, 127.01, 122.00, 115.71, 114.33, 62.81, 43.88; MS (ESI): $m / z=354.47\left(\mathrm{M}^{+}\right)$.

4-(1-(4-Bromophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (2h). The title compound was prepared by reaction of (E)-3-(4-(tert-butoxy)phenyl)-1-(thiophen-2-yl)prop-2-en-1-one (E7) and 4-bromophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.3: 1\right)$; greenish yellow solid; yield: $0.15 \mathrm{~g}(19 \%)$; mp $162-164{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.62$ $-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.85(\mathrm{~m}$, $2 \mathrm{H}), 6.74-6.69(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=17.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (dd, $J=17.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 156.74,144.50,143.15,135.49$, 131.86, 131.41, 127.83, 127.75, 127.65, 126.99, 115.71, 114.82, 109.62, 62.70, 43.87; MS (ESI): $m / z=398.70(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Thiophen-2-yl)-1-(4-(trifluoromethyl)phenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol

(2i). The title compound was prepared by reaction of (E)-3-(4-(tert-butoxy)phenyl)-1-(thiophen-2-yl)prop-2-en-1-one (E7) and 4-(trifluoromethyl)phenylhydrazine hydrochloride according to
the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane 3:1); yellowish white solid; yield: $0.25 \mathrm{~g}(33 \%)$; mp 162-163.6 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right) \delta 9.43(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=9.0,0.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=3.6$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dt}, J=7.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.76-6.66(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{dd}, J$ $=11.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=17.4,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=17.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 156.82,146.28,145.86,135.16,131.60,128.39,128.16,127.90,126.91$, $126.14,124.96\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=270.3 \mathrm{~Hz}\right), 117.90\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.9 \mathrm{~Hz}\right), 115.78,112.34,62.19,43.86$; MS (ESI): $m / z=388.81(\mathrm{M}+1)^{+}$.

4-(1-(3-Chlorophenyl)-3-(pyridin-2-yl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (2j). The title compound was prepared by reaction of (E)-3-(4-(tert-butoxy)phenyl)-1-(pyridin-2-yl)prop-2-en-1-one (E8) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$; dark yellow solid; yield: $0.25 \mathrm{~g}(36 \%) ; \mathrm{mp} 245.9-247{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.42(\mathrm{~s}, 1 \mathrm{H}), 8.56$ (ddd, $J=4.9,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dt}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{ddd}, J=8.0,7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ (ddd, $J=7.5,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H})$, 6.91 (ddd, $J=8.4,2.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{ddd}, J=7.9,2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.69(\mathrm{~m}, 2 \mathrm{H})$, $5.47(\mathrm{dd}, J=12.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=18.1,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=18.1,5.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 156.75,151.05,149.54,149.25,144.92,136.45,133.54$, $131.92,130.44,126.97,123.39,120.40,118.34,115.76,112.63,111.63,62.65,42.91 ;$ MS (ESI): $m / z=349.78(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(3-Chlorophenyl)-3-(1H-pyrrol-2-yl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (2k). The title compound was prepared by reaction of (E)-3-(4-(tert-butoxy)phenyl)-1-(1H-pyrrol-2-yl)prop-2-en-1-one (E9) and 3-chlorophenylhydrazine hydrochloride according to the general
procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; grey solid; yield: $0.094 \mathrm{~g}(14 \%) ; \mathrm{mp} 174.6-176.4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $10.12(\mathrm{~s}, 1 \mathrm{H}), 9.39(\mathrm{~s}, 1 \mathrm{H}), \delta$ 7.78-7.71(m, 1H), $7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{ddd}$, $J=8.4,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=3.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{ddd}, J=7.9,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.68-6.60 (m, 1H), $6.57-6.49(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{dd}, J=11.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=17.4,11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=17.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 151.28, 148.15, $146.21,142.65,140.47,134.40,130.75,128.46,126.87,117.75,114.22,113.60,113.00,112.93$, $112.51,61.99,42.03 ; \mathrm{MS}(\mathrm{ESI}): m / z=337.76(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(4-Aminophenyl)-1-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (21). The title compound was prepared by reaction of (E)-1-(4-aminophenyl)-3-(4-(tert-butoxy)phenyl)prop-2-en-1-one (E10) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 98:2); yellow solid; yield: $0.33 \mathrm{~g}(46 \%)$; mp $181.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.36(\mathrm{~s}$, $1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 2 \mathrm{H})$, $6.74-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{t}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 5.21(\mathrm{dd}, J=11.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ $(\mathrm{dd}, J=17.2,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=17.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $156.55,149.91,149.04,143.69,132.56,128.41,127.19,126.98,120.94,119.43,115.61,113.90$, 113.47, 62.30, 43.52; MS (ESI): $m / z=363.85(\mathrm{M}+\mathrm{H})^{+}$.

3-(Tert-butyl)-1-(4-chlorophenyl)-5-(3-methoxyphenyl)-4,5-dihydro-1H-pyrazole (3a). The title compound was prepared by reaction of (E)-1-(3-methoxyphenyl)-4,4-dimethylpent-1-en-3one (E11) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; yellow solid; yield: $0.45 \mathrm{~g}(66 \%) ; \mathrm{MS}(\mathrm{ESI}): m / z=342.77(\mathrm{M}+\mathrm{H})^{+}$.

3-(Tert-butyl)-1,5-bis(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole (3b). The title compound was prepared by reaction of 1-(4-methoxyphenyl)-4,4-dimethylpent-1-en-3-one (E12) and 4methoxyphenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; grey solid; yield: $0.40 \mathrm{~g}(59 \%)$; $\mathrm{MS}(\mathrm{ESI}): m / z=338.82(\mathrm{M}+\mathrm{H})^{+}$.

3-(Tert-butyl)-5-(4-chlorophenyl)-1-(4-methoxyphenyl)-4,5-dihydro-1 \boldsymbol{H}-pyrazole (3c). The title compound was prepared by reaction of 1-(4-chlorophenyl)-4,4-dimethylpent-1-en-3-one (E13) and 4-methoxyphenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; brown solid; yield: $0.48 \mathrm{~g}(71 \%) ; \mathrm{MS}(\mathrm{ESI}): m / z=342.68(\mathrm{M}+\mathrm{H})^{+}$.

3-(Tert-butyl)-1-(4-chlorophenyl)-5-(3-fluoro-4-methoxyphenyl)-4,5-dihydro-1H-pyrazole

(3d). The title compound was prepared by reaction of (E)-1-(3-fluoro-4-methoxyphenyl)-4,4-dimethylpent-1-en-3-one (E14) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane 1:3); colorless oil; yield: $0.5 \mathrm{~g}(70 \%)$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.48-7.42(\mathrm{~m}, 2 \mathrm{H})$, $6.90-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=12.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.59(\mathrm{~m}, 2 \mathrm{H})$, $5.10(\mathrm{dd}, J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{dd}, J=17.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=17.8$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}): m / z=360.71(\mathrm{M}+\mathrm{H})^{+}$.

3-(Tert-butyl)-5-(3-chloro-4-methoxyphenyl)-1-(4-chlorophenyl)-4,5-dihydro-1H-pyrazole

(3e). The title compound was prepared by reaction of (E)-1-(3-chloro-4-methoxyphenyl)-4,4-dimethylpent-1-en-3-one (E15) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane

1:4); yellowish white solid; yield: 0.43 g (58%); mp $150-152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$) δ $7.18(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{dt}, J=6.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 1 \mathrm{H})$, $6.81-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{dd}, J=11.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dd}, J=17.6,11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.76(\mathrm{dt}, J=21.7,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z=376.78(\mathrm{M}+\mathrm{H})^{+}$.

3-(Tert-butyl)-1-(3-chlorophenyl)-5-(4-fluoro-3-methoxyphenyl)-4,5-dihydro-1H-pyrazole

(3f). The title compound was prepared by reaction of (E)-1-(4-fluoro-3-methoxy phenyl)-4,4-dimethylpent-1-en-3-one (E16) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; yellow oil; yield: $56 \%(0.4 \mathrm{~g})$; MS (ESI): $m / z=$ $360.74(\mathrm{M}+\mathrm{H})^{+}$.

1-(4-Chlorophenyl)-5-(3,4-dimethoxyphenyl)-3-(2-methoxyphenyl)-4,5-dihydro-1H-

pyrazole (3g). The title compound was prepared by reaction of 3-(3,4-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (E17) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; brown solid; yield: 0.54 g (64\%); MS (ESI): $m / z=422.81(\mathrm{M}+\mathrm{H})^{+}$.

1-(3-Chlorophenyl)-5-(3-fluoro-4-methoxyphenyl)-3-(2-methoxyphenyl)-4,5-dihydro-1H-

pyrazole (3h). The title compound was prepared by reaction of (E)-3-(3-fluoro-4-methoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (E18) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane 1:3); buff solid; yield: $0.43 \mathrm{~g}(53 \%)$; mp 182-184 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{dd}, J=16.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.31-$
$7.21(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=25.1,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{dd}, J=12.2,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{dd}, J=20.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=17.9,6.8 \mathrm{~Hz}, 1 \mathrm{H})$; MS (ESI): $m / z=410.76(\mathrm{M}+\mathrm{H})^{+}$.

1-(3-Chlorophenyl)-5-(4-ethoxy-3,5-difluorophenyl)-3-(2-methoxyphenyl)-4,5-dihydro-

1H-pyrazole (3i). The title compound was prepared by reaction of (E)-3-(4-ethoxy-3,5-difluorophenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (E19) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane 1:4); buff solid; yield: $0.55 \mathrm{~g}(63 \%) ; \mathrm{mp} 166-167{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{ddd}, J=6.0,3.4,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.73(\mathrm{~m}$, $1 \mathrm{H}), 5.07(\mathrm{dd}, J=12.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{dd}, J=20.1,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.22(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}): m / z=442.71(\mathrm{M}+\mathrm{H})^{+}$.

1-(3-Chlorophenyl)-5-(2,3-difluoro-4-methoxyphenyl)-3-(2-methoxyphenyl)-4,5-dihydro-

1H-pyrazole (3j). The title compound was prepared by reaction of (E)-3-(2,3-difluoro-4-methoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (E20) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane 1:4); yellowish white solid; yield: $0.62 \mathrm{~g}(73 \%)$; mp 209-210 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{ddd}, J=7.7,3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.27-$ $7.25(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{tt}, J=7.1,3.5$ Hz, 1H), 6.91 (dddd, $J=8.3,4.2,2.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ (ddd, $J=13.3,7.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.60$ (dd, $J=12.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dt}, J=16.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{dd}, J$ $=17.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}): m / z=429.26(\mathrm{M}+\mathrm{H})^{+}$.

1-(3-Chlorophenyl)-3-(2,4-dimethoxyphenyl)-5-(3-fluoro-4-methoxyphenyl)-4,5-dihydro-

 1H-pyrazole (3k). The title compound was prepared by reaction of (E)-3-(3-fluoro-4-methoxyphenyl)-1-(2,4-dimethoxyphenyl)prop-2-en-1-one (E21) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; yellowish white solid; $0.51 \mathrm{~g}(58 \%)$; MS (ESI): $m / z=440.69(\mathrm{M}+\mathrm{H})^{+}$.3-(Tert-butyl)-1-(4-chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazole (3I). The title compound was prepared by reaction of 1-(4-fluorophenyl)-4,4-dimethylpent-1-en-3-one (E22) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane 1:3); yellow solid; yield: $0.18 \mathrm{~g}(28 \%) ; \operatorname{mp} 71.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}$, $2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{dd}, J=11.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=$ $17.2,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=17.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.09\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246.0 \mathrm{~Hz}\right), 159.25,144.62,138.29\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right), 128.65,127.44\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}\right.$ $=8.1 \mathrm{~Hz}), 123.41,115.99\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.5 \mathrm{~Hz}\right), 114.35,64.26,43.24,33.82,28.20 ; \mathrm{MS}(\mathrm{ESI}): m / z$ $=331.18(\mathrm{M}+1)^{+}$.

3-(Tert-butyl)-1,5-bis(4-chlorophenyl)-4,5-dihydro-1H-pyrazole (3m). The title compound was prepared by reaction of 1-(4-chlorophenyl)-4,4-dimethylpent-1-en-3-one (E13) and 4chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.1: 5\right)$; white solid; yield: 0.34 g (49.5\%); mp 85.3-87 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}$, $2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{dd}, J=11.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=$ $17.2,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=17.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$159.25,144.53,141.07,133.26,129.29,128.68,127.24,123.48,114.33,64.28,43.14,33.82$, 28.20; $\mathrm{MS}(\mathrm{ESI}): m / z=347.16(\mathrm{M}+\mathrm{H})^{+}$.

5-(4-Bromophenyl)-3-(tert-butyl)-1-(4-chlorophenyl)-4,5-dihydro-1H-pyrazole (3n). The title compound was prepared by reaction of 1-(4-bromophenyl)-4,4-dimethylpent-1-en-3-one (E23) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane 1:5); off-white solid; yield: $0.4 \mathrm{~g}(52 \%) ; \mathrm{mp} 108.8{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.11$ $(\mathrm{m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{dd}, J=11.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dt}, J=$ $17.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=17.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.50,144.76,141.85,132.49,128.94,127.84,123.75,121.57,114.58,64.57,43.34,34.07$, 28.45; MS (ESI): $m / z=392.71(\mathrm{M}+\mathrm{H})^{+}$.
.4-(3-(Tert-butyl)-1-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)benzonitrile (30). The title compound was prepared by reaction of 4-(4,4-dimethyl-3-oxopent-1-en-1-yl)benzonitrile (E24) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane 1:1); buff solid; yield: $0.44 \mathrm{~g}(66 \%) ; \mathrm{mp} 109.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.83-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38$ $(\mathrm{m}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{dd}, J=11.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=$ $17.6,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=17.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO$\left.d_{6}\right) \delta 160.05,147.90,143.86,132.95,128.61,126.91,121.68,118.58,113.97,110.21,62.66$, 42.33, 33.45, 27.83; MS (ESI): $m / z=337.03\left(\mathrm{M}^{+}\right)$.

1-(4-Chlorophenyl)-5-(4-methoxyphenyl)-3-phenyl-4,5-dihydro-1H-pyrazole (3p). The title compound was prepared by reaction of 3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (E25) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for
pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $\left.1: 3\right)$; yellow solid; yield: $0.43 \mathrm{~g}(59 \%) ; \operatorname{mp} 173-175{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62$ (ddd, $J=4.2,3.5,1.8 \mathrm{~Hz}$, $2 H), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.92-$ $6.88(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{dd}, J=12.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}$, 3 H), 3.03 (dd, $J=17.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.08,147.33,143.37$, $134.05,130.07,129.09,128.76,127.00,126.50,125.75,123.76,114.54,105.03,63.97,55.29$, 43.6 9; MS (ESI): $m / z=362.33\left(\mathrm{M}^{+}\right)$.

4-(1-(4-Chlorophenyl)-3-methyl-4,5-dihydro-1H-pyrazol-5-yl)phenol (3q) . The title compound was prepared by reaction of the commercially available 4-hydroxybenzylideneacetone and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; white solid; yield: $0.20 \mathrm{~g}(35 \%)$; mp 184$186{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d d_{6}) $\delta 9.35(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.01(\mathrm{~m}$, $2 \mathrm{H}), 6.82-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{dd}, J=11.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{ddd}, J=$ $17.7,11.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ (ddd, $J=17.8,6.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- $\left.d_{6}\right) \delta 156.52,150.03,144.28,132.66,128.37,126.96,121.06,115.58,113.84,62.71$, 47.40, 15.54; MS (ESI): $m / z=286.89(\mathrm{M}+\mathrm{H})^{+}$.

3-(3-(Tert-butyl)-1-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenol (4a). The title compound was prepared by demethylation of 3-(tert-butyl)-1-(4-chlorophenyl)-5-(3-methoxyphenyl)-4,5-dihydro-1H-pyrazole (3a) using BBr_{3} (3 equiv) according to the general procedure for ether dealkylation. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.4: 1\right)$; beige solid; yield: $0.21 \mathrm{~g}(64 \%) ; \mathrm{mp} 131-133{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 7.15$ $-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{ddd}, J=6.5,3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.59(\mathrm{~m}, 2 \mathrm{H})$, $5.06(\mathrm{dd}, J=11.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=17.6,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=17.6,6.6 \mathrm{~Hz}, 1 \mathrm{H})$,
1.17 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 159.84,157.81,144.23,144.05,129.96,128.43$, $121.18,116.28,114.34,113.83,112.10,63.14,42.65,33.42,27.89 . \operatorname{MS}(E S I): m / z=328.91$ $(\mathrm{M}+\mathrm{H})^{+}$.

4,4'-(3-(Tert-butyl)-4,5-dihydro-1H-pyrazole-1,5-diyl)diphenol (4b). The title compound was prepared by demethylation of 3-(tert-butyl)-1,5-bis(4-methoxyphenyl)-4,5-dihydro-1Hpyrazole (3b) using BBr_{3} (6 equiv) according to the general procedure for ether dealkylation. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$; grey solid; yield: 0.22 g (73\%); mp 104-106 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 9.32(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-$ $6.98(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{ddd}, J=11.4,7.7,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.55-6.50(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{dd}, J=11.0,9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=17.1,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=17.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 160.58,157.95,157,139.68,133.36,132.05,121.27,115.14$, 114.93, 65.25, 42.73, 31.77, 27.99; MS (ESI): $m / z=311.10(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-5-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)phenol (4c). The title compound was prepared by demethylation of 3-(tert-butyl)-5-(4-chlorophenyl)-1-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole (3c) using BBr_{3} (3 equiv) according to the general procedure for ether dealkylation. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $\left.4: 1\right)$; grey solid; yield: $0.14 \mathrm{~g}(44 \%)$; mp 142-143 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.68(\mathrm{~s}, 1 \mathrm{H}), 7.41$ $-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.59-6.50(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=$ $11.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=17.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=17.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 158.11, 150.35, 142.17, 139.24, 131.54, 128.69, 128.05, $115.29,114.87,64.66,42.51,33.32,27.96 ; \operatorname{MS}(E S I): m / z=328.71(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)-2-fluorophenol

The title compound was prepared by demethylation of 3-(tert-butyl)-1-(4-chlorophenyl)-5-(3-fluoro-4-methoxyphenyl)-4,5-dihydro-1 H-pyrazole (3d) using BBr_{3} (3 equiv) according to the general procedure for ether dealkylation. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.4: 1\right)$; off-white solid; yield: $0.15 \mathrm{~g}(44 \%) ; \mathrm{mp} 130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.80(\mathrm{~s}$, $1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{dd}, J=12.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}$, $3 \mathrm{H}), 5.09(\mathrm{dd}, J=11.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=17.5,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=17.5,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 159.94,150.94\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=241.5\right.$ $\mathrm{Hz}), 144.17,143.96\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=12.1 \mathrm{~Hz}\right), 133.71\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=5.0 \mathrm{~Hz}\right), 128.45,121.84\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.0\right.$ $\mathrm{Hz}), 121.35,118.17,114.03,113.52\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=18.7 \mathrm{~Hz}\right), 62.40,42.56,33.42,27.85 . ; \mathrm{MS}(\mathrm{ESI}):$ $m / z=347.37(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)-2-chlorophenol

The title compound was prepared by demethylation of 3-(tert-butyl)-5-(3-chloro-4-methoxyphenyl)-1-(4-chlorophenyl)-4,5-dihydro-1 H-pyrazole (3e) using BBr_{3} (3 equiv) according to the general procedure for ether dealkylation. The product was purified by CC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane 4:1); off-white solid; yield: $0.18 \mathrm{~g}(51 \%) ; \mathrm{mp} 134-136{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 10.14(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{dt}, J=6.7,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{dd}, J=11.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=$ $17.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=17.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO$\left.d_{6}\right) \delta 159.99,152.21,144.12,134.11,128.48,127.17,125.36,121.37,119.74,117.08,114.03$, 62.25, 42.58, 33.42, 27.85; MS (ESI): $m / z=362.65(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(4-Chlorophenyl)-3-(2-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl)benzene-1,2-diol

(4g). The title compound was prepared by demethylation of 1-(4-chlorophenyl)-5-(3,4-
dimethoxyphenyl)-3-(2-methoxyphenyl)-4,5-dihydro-1H-pyrazole (3g) using BBr_{3} (9 equiv) according to the general procedure for ether the dealkylation. The product was purified by CC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99: 1\right)$; beige solid; yield: 0.31 g (82%); mp163-164 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.20(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dt}, J=$ $16.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{dd}, J=8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.66(\mathrm{~m}, 3 \mathrm{H}), 6.46$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42-6.33(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{dd}, J=12.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=17.8,12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=17.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 156.17, 150.59, $145.72,144.85,142.48,132.49,130.50,128.76,128.16,122.51,119.56,116.91,116.58,116.09$, $115.87,114.30,112.69,61.85,44.08 ; \mathrm{MS}(\mathrm{ESI}): m / z=380.74(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(3-Chlorophenyl)-3-(2-hydroxyphenyl)-4,5-dihydro-1 H-pyrazol-5-yl)-2-fluorophenol

(4h). The title compound was prepared by demethylation of 1-(3-chlorophenyl)-5-(3-fluoro-4-methoxyphenyl)-3-(2-methoxyphenyl)-4,5-dihydro-1H-pyrazole (3h) using BBr_{3} (6 equiv) according to the general procedure for the ether dealkylation. The product was purified by CC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; beige solid; yield: $0.18 \mathrm{~g}(49 \%) ; \mathrm{mp} 165-167^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $10.32(\mathrm{~s}, 1 \mathrm{H}), 9.89(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{ddd}, J=8.3,7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{dd}, J=11.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.89(\mathrm{~m}, 5 \mathrm{H}), 6.85(\mathrm{ddd}, J=8.4,2.2$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{ddd}, J=7.9,2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=12.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=$ $17.9,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=17.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 156.21, $151.01\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=241.9 \mathrm{~Hz}\right), 150.98,144.79,144.28\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=12.0 \mathrm{~Hz}\right), 133.62,132.86\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}\right.$ $=5.0 \mathrm{~Hz}), 130.70\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6.3 \mathrm{~Hz}\right), 128.33,124,122.05\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 119.55,118.47$, $118.30,116.61,116.18,113.83\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=18.8 \mathrm{~Hz}\right), 112.28,111.47,61.12,44.12 ; \operatorname{MS}(\mathrm{ESI}):$ $m / z=382.67(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(3-Chlorophenyl)-3-(2-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl)-2,6-

difluorophenol (4i). The title compound was prepared by deprotection of 1-(3-chlorophenyl)-5-(4-ethoxy-3,5-difluorophenyl)-3-(2-methoxyphenyl)-4,5-dihydro-1 H-pyrazole (3i) using BBr_{3} (6 equiv) according to the general procedure for ether dealkylation. The product was purified by CC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; off-white solid; yield: $0.30 \mathrm{~g}(77 \%)$; mp 179-181 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.28(\mathrm{~s}, 1 \mathrm{H}), 10.24(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{ddt}, J=11.1,5.4,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 4 \mathrm{H}), 6.92$ (ddd, $J=7.8,7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (dddd, J $=15.3,7.9,2.1,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{dd}, J=12.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=17.9,12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.31(\mathrm{dd}, J=17.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 156.21,152.40\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ $\left.243.0,{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.1 \mathrm{~Hz}\right), 150.99,144.73,133.68,132.99\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=16.1 \mathrm{~Hz}\right), 132.31\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6.9\right.$ $\mathrm{Hz}), 130.78,130.74,128.37,119.53,118.65,116.60,116.21,112.36,111.46,109.47\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$ $16.1,{ }^{4} J_{\mathrm{C}-\mathrm{F}}=6.4 \mathrm{~Hz}$,), $60.89,44.03$; MS (ESI): $m / z=400.74(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(3-Chlorophenyl)-3-(2-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl)-2,3-

difluorophenol (4j). The title compound was prepared by demethylation of 1-(3-chlorophenyl)-5-(2,3-difluoro-4-methoxyphenyl)-3-(2-methoxyphenyl)-4,5-dihydro-1H-pyrazole (3j) using BBr_{3} (6 equiv) according to the general procedure for ether dealkylation. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; off-white solid; yield: $0.27 \mathrm{~g}(69 \%)$; mp $196-197{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 10.30(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=11.4,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.78(\mathrm{~m}, 3 \mathrm{H})$, $6.73(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=12.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=17.8,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (dd, $J=18.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 156.17,151.20$, $148.50\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}\right.$ $\left.=245.8,{ }^{2} J_{\mathrm{C}-\mathrm{F}}=10.8 \mathrm{~Hz}\right), 146.24,144.51,139.84\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=243.7,{ }^{2} J_{\mathrm{C}-\mathrm{F}}=13.6 \mathrm{~Hz}\right), 133.72$,
$130.78,128.35,121.67,119.55,119.46,119.38,118.56,116.51,116.19,113.11,112.13,111.22$, 56.11, 42.83. ; MS (ESI): $m / z=400.81(\mathrm{M}+\mathrm{H})^{+}$.

3-(Tert-butyl)-1-(4-chlorophenyl)-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (5a). The

 title compound was prepared by reaction of 4,4- dimethyl-1-(4-nitrophenyl)pent-1-en-3-one (E26) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane 1:2); orange solid; yield: $0.50 \mathrm{~g}(71 \%) ; \mathrm{mp} 146-147{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41$ $(\mathrm{m}, 2 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{dd}, J=11.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=$ $17.3,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=17.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.23,149.82,147.43,144.18,128.82,126.79,124.50,123.93,114.32,64.23,42.96,33.87$, 28.17; MS (ESI): $m / z=357.75\left(\mathrm{M}^{+}\right)$.3-(Tert-butyl)-1-(2,4-difluorophenyl)-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (5b). The title compound was prepared by reaction of 4,4-dimethyl-1-(4-nitrophenyl)pent-1-en-3-one (E26) and 2,4-difluorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $\left.1: 2\right)$; orange oil; yield: $0.34 \mathrm{~g}(48 \%) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{tt}, J=8.9,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.64$ (dddd, $J=9.1,7.9,2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.49(\mathrm{~m}, 1 \mathrm{H}), 5.26$ (ddd, J $=11.3,5.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=17.1,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=17.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.16$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 160.77,157.40\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=242.7,{ }^{3} J_{\mathrm{C}-\mathrm{F}}=11.1 \mathrm{~Hz}\right.$), $151.26\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246.9,{ }^{3} J_{\mathrm{C}-\mathrm{F}}=11.7 \mathrm{~Hz}\right), 149.24,147.29,130.66\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=9.7,{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.4\right.$ $\mathrm{Hz}), 127.07,123.92,120.47\left(\mathrm{dd},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.9,4.6 \mathrm{~Hz}\right), 111.09\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.6,{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}\right)$, $104.27\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=26.3,24.2 \mathrm{~Hz}\right), 66.25,42.48,33.93,28.13$; $\mathrm{MS}(\mathrm{ESI}): m / z=359.83(\mathrm{M}+\mathrm{H})^{+}$.

3-(Tert-butyl)-1-(3-chlorophenyl)-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (5c). The title compound was prepared by reaction of 4,4-dimethyl-1-(4-nitrophenyl)pent-1-en-3-one (E26) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; orange solid; yield: $0.44 \mathrm{~g}(62 \%) ; \mathrm{MS}(\mathrm{ESI}): m / z=357.92(\mathrm{M}+\mathrm{H})^{+}$.

3-(Tert-butyl)-1-(4-chlorophenyl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazole (5d). The

 title compound was prepared by reaction of 4,4-dimethyl-1-(3-nitrophenyl)pent-1-en-3-one (E27) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane 1:2); orange solid; yield: $0.40 \mathrm{~g}(57 \%) ; \operatorname{mp~} 115-116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.13$ (ddd, J $=8.0,2.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dt}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H})$, $6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{dd}, J=11.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=17.3,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J$ $=17.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.28,148.80,144.76$, $144.21,131.92,130.25,128.80,123.90,122.70,121.04,114.37,64.16,43.07,33.85,28.16 ; \mathrm{MS}$ (ESI): $m / z=357.80(\mathrm{M}+\mathrm{H})^{+}$.1-(3-Chlorophenyl)-3-cyclopropyl-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (5e). The title compound was prepared by reaction of 1-cyclopropyl-3-(4-nitrophenyl)prop-2-en-1-one (E28) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; orange solid; yield: $0.35 \mathrm{~g}(51 \%) ; \mathrm{MS}(\mathrm{ESI}): m / z=341.63(\mathrm{M}+\mathrm{H})^{+}$.

1-(3-Chlorophenyl)-3-(1-methylcyclopropyl)-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole

(5f). The title compound was prepared by reaction of (E)-1-(1-methylcyclopropyl)-3-(4-
nitrophenyl)prop-2-en-1-one (E29) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; orange solid; yield: $0.57 \mathrm{~g}(81 \%) ; \mathrm{MS}(\mathrm{ESI}): m / z=$ $355.75(\mathrm{M}+\mathrm{H})^{+}$.

1-(4-Chlorophenyl)-3-cyclohexyl-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (5g). The title compound was prepared by reaction of (E)-1-cyclohexyl-3-(4-nitrophenyl)prop-2-en-1-one (E30) and 4-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane 1:2); orange solid; yield: $0.49 \mathrm{~g}(64 \%) ; \mathrm{mp} 112-113{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.39$ $(\mathrm{m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.74(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{dd}, J=11.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{ddd}, J=$ $17.4,12.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, J=17.4,7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87$ $(\mathrm{m}, 2 \mathrm{H}), 1.80(\mathrm{dd}, J=9.0,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.17(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.25,149.81,147.38,144.06,128.82,126.79,124.48$, $123.85,114.22,63.55,44.17,39.04,30.57,30.54,25.91,25.74 ; \mathrm{MS}$ (ESI): $m / z=383.83$ $(\mathrm{M}+\mathrm{H})^{+}$.

1-(3-Chlorophenyl)-5-(4-nitrophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole

The title compound was prepared by reaction of 3-(4-nitrophenyl)-1-(thiophen-2-yl)prop-2-en-1-one (E31) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; orange solid; yield: $0.44 \mathrm{~g}(58 \%) ; \mathrm{MS}(\mathrm{ESI}): m / z=383.71(\mathrm{M}+\mathrm{H})^{+}$.

1-(3-Chlorophenyl)-3-(furan-2-yl)-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (5i). The title compound was prepared by reaction of 1-(furan-2-yl)-3-(4-nitrophenyl)prop-2-en-1-one
(E32) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; orange solid; yield: $0.44 \mathrm{~g}(61 \%) ; \mathrm{MS}(\mathrm{ESI}): m / z=367.66(\mathrm{M}+\mathrm{H})^{+}$.

3-(2-Chlorophenyl)-1-(3-chlorophenyl)-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole
 (5j).

The title compound was prepared by reaction of 1-(2-chlorophenyl)-3-(4-nitrophenyl)prop-2-en-1-one (E33) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; orange solid; yield: $0.42 \mathrm{~g}(51 \%) ; \mathrm{MS}(\mathrm{ESI}): m / z=411.73(\mathrm{M}+\mathrm{H})^{+}$.

1-(3-Chlorophenyl)-5-(4-nitrophenyl)-3-(2-(trifluoromethyl)phenyl)-4,5-dihydro-1 H -

pyrazole (5k). The title compound was prepared by reaction of (E)-3-(4-nitrophenyl)-1-(2-(trifluoromethyl)phenyl)prop-2-en-1-one (E34) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; orange solid; yield: $0.47 \mathrm{~g}(53 \%)$; MS (ESI): $m / z=445.67(\mathrm{M}+\mathrm{H})^{+}$.

1-(3-Chlorophenyl)-5-(4-nitrophenyl)-3-(o-tolyl)-4,5-dihydro-1H-pyrazole (5I). The title compound was prepared by reaction of (E)-3-(4-nitrophenyl)-1-(o-tolyl)prop-2-en-1-one (E35) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; orange solid; yield: $0.37 \mathrm{~g}(47.5 \%)$; $\mathrm{MS}(\mathrm{ESI}): m / z=391.87(\mathrm{M}+\mathrm{H})^{+}$.

1-(3-Chlorophenyl)-3-(2-methoxyphenyl)-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole

$\mathbf{(5 m)}$. The title compound was prepared by reaction of 1-(2-methoxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (E36) and 3-chlorophenylhydrazine hydrochloride according to the
general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; orange solid; yield: $0.34 \mathrm{~g}(42 \%)$; MS (ESI): $m / z=$ $408.02(\mathrm{M}+\mathrm{H}) .{ }^{+}$

3-(Benzo[d][1,3]dioxol-5-yl)-1-(3-chlorophenyl)-5-(4-nitrophenyl)-4,5-dihydro-1H-

pyrazole (5n). The title compound was prepared by reaction of 1-(benzo[d][1,3]dioxol-5-yl)-3-(4-nitrophenyl)prop-2-en-1-one (E37) and 3-chlorophenylhydrazine hydrochloride according to the general procedure for pyrazoline synthesis. The residue obtained after solvent removal was used for the next step without further purification; yield: orange solid; 0.51 g (61\%); MS (ESI): $m / z=421.71(\mathrm{M}+\mathrm{H})^{+}$.

General reduction procedure. A suspension of the nitro derivative (1 mmol) and $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(5 \mathrm{mmol}, 1.12 \mathrm{~g})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$ was heated to reflux for 2 h under argon atmosphere. ThenMeOH was evaporated under reduced pressure and the residue was dissolved in EtOAc $(100 \mathrm{~mL})$ and alkalinized with 100 mL aqueous NaHCO_{3} solution. The resulting mixture was filtered under vacuum followed by separation of organic and water layers. The aqueous layer was extracted with two 20 mL -portions of EtOAc, the organic fractions were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was purified using column chromatography.

4-(3-(Tert-butyl)-1-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)aniline (6a). The title compound was prepared by reduction of 3-(tert-butyl)-1-(4-chlorophenyl)-5-(4-nitrophenyl)-4,5-dihydro- $1 H$-pyrazole according to the general reduction procedure. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; buff solid; yield: $0.28 \mathrm{~g}(87 \%)$; mp131-132 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.d_{6}\right) \delta$ $7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.51-6.46(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H})$, $4.95(\mathrm{dd}, J=11.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=17.5,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=17.5,6.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$1.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 159.73,147.86,144.42,129.27,128.28,126.43$, $120.94,114.14,113.97,63.16,42.73,33.42,27.90$; MS (ESI): $m / z=327.77(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(2,4-difluorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)aniline (6b). The title compound was prepared by reduction of 3-(tert-butyl)-1-(2,4-difluorophenyl)-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (5b) according to the general reduction procedure. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; buff solid; yield: $0.24 \mathrm{~g}(75 \%)$; $\mathrm{mp} 139-140{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.28(\mathrm{td}, J=9.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{ddd}, J=12.1,9.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ $(\mathrm{tdd}, J=9.2,2.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.38-6.33(\mathrm{~m}, 2 \mathrm{H}), 5.10-5.04(\mathrm{~m}, 1 \mathrm{H})$, $4.93(\mathrm{~s}, 2 \mathrm{H}), 3.37-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=17.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $\left.d_{6}\right) \delta 160.98,156.17\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=239.0,{ }^{3} J_{\mathrm{C}-\mathrm{F}}=11.2 \mathrm{~Hz}\right), 150.99\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ $\left.246.7,{ }^{3} J_{\mathrm{C}-\mathrm{F}}=12.0 \mathrm{~Hz}\right), 147.88,131.45\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=9.8,{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right), 128.28,126.90,120.26$ $\left(\mathrm{dd},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.1,5.0 \mathrm{~Hz}\right), 113.60,110.62\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.4,{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}\right), 103.94\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$ 26.4, 24.5 Hz), 65.95, 41.67, 33.53, 27.87.; MS (ESI): $m / z=329.89(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Tert-butyl)-1-(3-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)aniline (6c) . The title compound was prepared by reduction of 3-(tert-butyl)-1-(3-chlorophenyl)-5-(4-nitrophenyl)-4,5-dihydro- $1 H$-pyrazole according to the general reduction procedure (5c). The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; tan solid; yield: $0.20 \mathrm{~g}(62 \%)$; mp $136.4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\left.d_{6}\right) \delta 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{ddd}, J=8.4,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (ddd, $J=7.9,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.47(\mathrm{~m}, 2 \mathrm{H}), 5.02-4.97(\mathrm{~m}, 3 \mathrm{H}), 3.45(\mathrm{dd}, J=17.6,11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=17.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 160.30$, $147.90,146.64,133.22,130.12,129.18,126.40,116.71,114.17,111.81,110.94,62.85,42.68$, , 33.46, 27.88.; $\mathrm{MS}(\mathrm{ESI}): m / z=328.06(\mathrm{M}+\mathrm{H})^{+}$.

3-(3-(Tert-butyl)-1-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)aniline (6d). The title compound was prepared by reduction of 3-(tert-butyl)-1-(4-chlorophenyl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazole (5d) according to the general reduction procedure. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; yellow solid; yield: $0.24 \mathrm{~g}(74 \%)$; mp 104-106 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.44-6.36(\mathrm{~m}, 3 \mathrm{H})$, $5.08(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{dd}, J=11.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=17.6,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=17.6$, 7.2 Hz, 1H), 1.17 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 159.79, 149.26, 144.49, 143.42, $128.38,125.11,121.11,115.82,113.82,112.99,110.33,63.71,42.78,33.42,27.93 ;$ MS (ESI): $m / z=327.87(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(3-Chlorophenyl)-3-cyclopropyl-4,5-dihydro-1H-pyrazol-5-yl)aniline (6e). The title compound was prepared by reduction of 1-(3-chlorophenyl)-3-cyclopropyl-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (5e) according to the general reduction procedure. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; beige solid; yield: $0.24 \mathrm{~g}(77 \%) ; \mathrm{mp} 90.5-92.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{ddd}, J=8.4,2.2,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.61$ (ddd, $J=7.9,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.47(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=11.6$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=17.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=17.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{tt}, J=8.3$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.87-0.81(\mathrm{~m}, 2 \mathrm{H}), 0.81-0.69(\mathrm{~m}, 2 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 155.22$, $147.92,146.49,133.24,130.12,129.01,126.45,116.60,114.16,111.72,110.80,62.36,43.16$, $11.28,5.84,5.53 ; \mathrm{MS}(\mathrm{ESI}): m / z=311.91(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(3-Chlorophenyl)-3-(1-methylcyclopropyl)-4,5-dihydro-1H-pyrazol-5-yl)aniline (6f).

The title compound was prepared by reduction of 1-(3-chlorophenyl)-3-(1-methylcyclopropyl)-5-(4-nitrophenyl)-4,5-dihydro-1 H-pyrazole (5f) according to the general reduction procedure. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; beige solid; yield: $0.27 \mathrm{~g}(83 \%) ; \mathrm{mp} 106.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR
(500 MHz, DMSO- d_{6}) $\delta 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{ddd}, J=8.4,2.2,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.61(\mathrm{ddd}, J=7.9,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.46(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{dd}, J=$ $11.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=17.4,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=17.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$, $0.98-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.71-0.64(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 157.32, 147.93, $146.63,133.22,130.11,129.05,126.44,116.64,114.17,111.76,110.87,63.03,42.94,21.18$, 16.90, 13.71, 13.48; MS (ESI): $m / z=325.91(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(4-Chlorophenyl)-3-cyclohexyl-4,5-dihydro-1H-pyrazol-5-yl)aniline (6g). The title compound was prepared by reduction of 1-(4-chlorophenyl)-3-cyclohexyl-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (5g) according to the general reduction procedure. The product was purified by CC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; tan solid; yield: $0.31 \mathrm{~g}(88 \%)$; mp $145-146{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.51-6.46(\mathrm{~m}, 2 \mathrm{H})$, $5.00(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{dd}, J=11.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=17.8,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=16.1,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{dt}, J=7.0,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.40-1.13(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}): m / z=353.80(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(3-Chlorophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-5-yl)aniline (6h). The title compound was prepared by reduction of 1-(3-chlorophenyl)-5-(4-nitrophenyl)-3-(thiophen2 -yl)-4,5-dihydro-1 H-pyrazole (5h) according to the general reduction procedure. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; greenish yellow solid; yield: $0.19 \mathrm{~g}(53 \%)$; mp $154.4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.62(\mathrm{dt}, J=5.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=3.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J$ $=3.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H})$, $6.84(\mathrm{ddd}, J=8.4,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.53-6.48(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{dd}, J=11.9$, 6.0 Hz, 1H), $5.06(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{dd}, J=17.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=17.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 148.15,145.27,144.91,135.48,133.38,130.34,130.03,128.41$,
127.84, 127.72, 126.53, 117.65, 114.19, 112.20, 111.41, 62.93, 43.88; MS (ESI): $m / z=353.74$ $(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(3-Chlorophenyl)-3-(furan-2-yl)-4,5-dihydro-1H-pyrazol-5-yl)aniline (6i). The title compound was prepared by reduction of 1-(3-chlorophenyl)-3-(furan-2-yl)-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (5i) according to the general reduction procedure. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; tan solid; yield: $0.22 \mathrm{~g}(64 \%)$; mp 115.2-116.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 7.82(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-$ $6.88(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{ddd}, J=8.4,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=3.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{ddd}, J=$ $7.9,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{ddd}, J=7.5,3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.47(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{dd}, J=$ $11.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{dd}, J=17.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=17.3,5.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 148.14, 147.30, 145.35, 144.41, 140.46, 133.39, 130.32, 128.27, 126.51, 117.66, 114.18, 112.30, 112.00, 111.41, 111.21, 62.26, 43.03; MS (ESI): $m / z=$ $337.85(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(2-Chlorophenyl)-1-(3-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)aniline (6j). The title compound was prepared by reduction of 3-(2-chlorophenyl)-1-(3-chlorophenyl)-5-(4-nitrophenyl)-4,5-dihydro- $1 H$-pyrazole (5j) according to the general reduction procedure. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.4: 1\right)$; yellow solid; yield: $0.20 \mathrm{~g}(52 \%)$; mp. 170$171{ }^{\circ} \mathrm{C}$) ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.77-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{ddd}, J=5.4,2.9,1.7 \mathrm{~Hz}$, 2H), $7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{ddd}, J=8.4,2.2$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{ddd}, J=7.9,2.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.50(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.33(\mathrm{dd}, J=12.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{dd}, J=17.6,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=$ 17.5, 5.9 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 148.16, 146.86, 145.30, 140.11, 133.41,
$131.00,130.84,130.72,130.25,130.00,128.24,127.33,127.19,126.61,118.08,112.51,111.60$, 62.76, 46.44; MS (ESI): $m / z=381.72(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(3-Chlorophenyl)-3-(2-(trifluoromethyl)phenyl)-4,5-dihydro-1H-pyrazol-5-yl)aniline

$\mathbf{(6 k})$. The title compound was prepared by reduction of 1-(3-chlorophenyl)-5-(4-nitrophenyl)-3-(2-(trifluoromethyl)phenyl)-4,5-dihydro-1 H-pyrazole (5k) according to the general reduction procedure. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.4: 1\right)$; tan solid; yield: $0.083(20 \%)$; mp 159-160 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.d_{6}\right) \delta 7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 2 \mathrm{H})$, $7.63-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H})$, 6.86 (ddd, $J=8.4,2.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (ddd, $J=7.9,2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.49(\mathrm{~m}, 2 \mathrm{H})$, $5.34(\mathrm{dd}, J=12.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{dd}, J=17.5,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=17.5$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 148.18,146.15,145.35,133.39,132.56,131.31$, $130.37,128.97,128.33,127.04,126.57,126.53,125.97\left(\mathrm{q},{ }^{2} J_{C-F}=30.8 \mathrm{~Hz}\right), 124.10\left(\mathrm{q},{ }^{1} J_{C-F}=\right.$ $273.3 \mathrm{~Hz}), 118.10,114.19,112.48,111.47,62.81,45.70 ; \mathrm{MS}(\mathrm{ESI}): m / z=415.78(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(3-Chlorophenyl)-3-(o-tolyl)-4,5-dihydro-1H-pyrazol-5-yl)aniline (61). The title

 compound was prepared by reduction of 1 1-(3-chlorophenyl)-5-(4-nitrophenyl)-3-(o-tolyl)-4,5-dihydro- $1 H$-pyrazole (5I) according to the general reduction procedure. The product was purified by CC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; brown solid; yield: $0.21 \mathrm{~g}(59 \%)$; mp $122.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{ddd}, J=8.4,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.54$ - $6.48(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{dd}, J=11.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{dd}, J=17.3,12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.13 (dd, $J=17.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 149.35, 148.07, $145.62,136.48,133.39,131.45,130.66,130.35,128.75,128.51,128.18,126.59,126.00,117.56$, $114.21,112.20,111.42,61.87,45.24,23.42 ; \mathrm{MS}(\mathrm{ESI}): m / z=361.77(\mathrm{M}+\mathrm{H})^{+}$.
4-(1-(3-Chlorophenyl)-3-(2-methoxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl)aniline

(6m).
The title compound was prepared by reduction of 1-(3-chlorophenyl)-3-(2-methoxyphenyl)-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (5m) according to the general reduction procedure. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; tan solid; yield: $0.25 \mathrm{~g}(66 \%) ; \mathrm{mp} 122.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.89(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{ddd}, J=8.4,7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-$ $7.10(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.86$ (ddd, $J=8.4,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.67(\mathrm{~m}, 1 \mathrm{H}), 6.53-6.48(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{dd}, J=12.0,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 3.94-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dd}, J=18.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 157.35,148.02,147.82,145.68,133.37,130.44,130.26,128.95,128.22$, $126.48,121.06,120.67,117.41,114.20,112.30,112.24,111.33,62.78,55.60,46.52 ;$ MS (ESI): $m / z=377.72(\mathrm{M}+\mathrm{H})^{+}$.

4-(3-(Benzo[d][1,3]dioxol-5-yl)-1-(3-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)aniline

(6n). The title compound was prepared by reduction of 3-(benzo[d][1,3]dioxol-5-yl)-1-(3-chlorophenyl)-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole (5n) according to the general reduction procedure. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; brown solid; yield: 0.34 g (87\%); mp $140.4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.40-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.1$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}$, 2H), 6.87 (ddd, $J=8.4,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{ddd}, J=7.9,2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.47(\mathrm{~m}$, $2 \mathrm{H}), 6.07(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{dd}, J=12.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{dd}, J=17.5,12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.02 (dd, $J=17.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 148.41, 148.09, 148.07, $147.71,145.61,133.38,130.23,128.77,126.54,126.43,120.62,117.37,114.18,112.19,111.30$, 108.31, 105.42, 101.32, 62.85, 43.36; MS (ESI): $m / z=391.68(\mathrm{M}+\mathrm{H})^{+}$.

N-(4-(3-(Tert-butyl)-1-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)phenyl)acetamide

(7a). Acetylchloride ($0.14 \mathrm{~mL}, 2 \mathrm{mmol}$) was added gradually to a stirred solution of $\mathbf{6 a}(0.33 \mathrm{~g}$, $1 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.16 \mathrm{~g}, 1.5 \mathrm{mmol})$ in acetone $(40 \mathrm{~mL})$ under ice cooling. The mixture was stirred at room temperature under a nitrogen atmosphere for 2 h . After pouring to 100 mL of water ice mixture, the solid obtained was separated by filtration followed by CC purification $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$ to give the title compound as an off-white solid; yield: $0.30 \mathrm{~g}(81 \%)$, mp119-120 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.07$ $(\mathrm{m}, 4 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{dd}, J=11.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=17.5,11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.68(\mathrm{dd}, J=17.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 168.16, 159.85 , $144.25,138.42,136.88,128.41,126.10,121.24,119.50,113.98,62.92,42.64,33.43,27.87$, 20.73; MS (ESI): $m / z=369.75(\mathrm{M}+\mathrm{H})^{+}$.

4-(1-(3-Chlorophenyl)-3-(2-hydroxyphenyl)-4-methyl-4,5-dihydro-1H-pyrazol-5-yl)-2-

fluorophenol (9). The title compound was prepared by demethylation of 1-(3-chlorophenyl)-5-(3-fluoro-4-methoxyphenyl)-3-(2-methoxyphenyl)-4-methyl-4,5-dihydro-1H-pyrazole (8) using BBr_{3} (6 equiv) according to the general procedure for ether dealkylation. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; beige solid; yield: $0.27 \mathrm{~g}(69 \%)$; mp 160.1-161.4 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.30(\mathrm{~s}, 1 \mathrm{H}), 9.87(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, J=6.1,4.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.24$ (m, 1H), $7.20(\mathrm{dd}, J=12.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=12.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 2 \mathrm{H})$, $6.93-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{ddd}, J=7.9,2.0,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{qd}, J=7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 156.26,154.88,150.94\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=241.8 \mathrm{~Hz}\right), 144.47,144.30\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$ $12.1 \mathrm{~Hz}), 133.70,131.68\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=5.0 \mathrm{~Hz}\right), 130.71,130,128.40,121.68\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right)$,
$119.59,118.31,118.27,116.47,115.96,113.63\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=18.8 \mathrm{~Hz}\right), 112.15,111.35,68.33$, 50.92, 18.63 ; MS (ESI): $m / z=396.74(\mathrm{M}+\mathrm{H})^{+}$.

3-(Tert-butyl)-5-(3-chloro-4-methoxyphenyl)-1-(4-chlorophenyl)-1H-pyrazole (10). A

 mixture of 0.37 g (1 mmol) of 3-(tert-butyl)-5-(3-chloro-4-methoxyphenyl)-1-(4-chlorophenyl)-4,5-dihydro-1H-pyrazole (3e) and $0.34 \mathrm{~g}(1.5 \mathrm{mmol})$ of dichlorodicyanoquinone in 10 mL of benzene was heated to reflux for 5 h . The mixture was cooled to room temperature and filtered through a plug of silica gel wetted with diethyl ether. The filtrate was concentrated in vacuo and the residue was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $\left.1: 3\right)$ to give the title compound as a white solid $(95 \%, 0.35 \mathrm{~g}), \mathrm{mp} 182-183{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.21$ $(\mathrm{m}, 4 \mathrm{H}), 6.97(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 162.89,154.85,141.56,138.68,132.57,130.38,129.00,128.17,126.19$, $124.11,122.55,111.77,104.97,56.14,32.23,30.46 ; \mathrm{MS}(\mathrm{ESI}): m / z=374.67(\mathrm{M}+\mathrm{H})^{+}$.4-(3-(Tert-butyl)-1-(4-chlorophenyl)-1H-pyrazol-5-yl)-2-chlorophenol (11). The title compound was prepared by demethylation of 3-(tert-butyl)-5-(3-chloro-4-methoxyphenyl)-1-(4-chlorophenyl)-1H-pyrazole (10) using BBr_{3} (3 equiv) according to the general procedure for ether dealkylation. The product was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; off-white solid; yield: 0.18 g (50\%); mp 176.5-177.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.49(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 161.85,153.16,141.69,138.68,131.28,129.72,128.90,128.29,126.36,122.04$, $119.75,116.60,104.90,31.89,30.23$. ; MS (ESI): $m / z=360.77(\mathrm{M}+\mathrm{H})^{+}$.
(E)-3-(4-(Tert-butoxy)phenyl)-1-phenylprop-2-en-1-one (E2). Synthesized according to the general procedure for enone synthesis using acetophenone and 4-(tert-butoxy)benzaldehyde; yellow solid; yield: $2.46 \mathrm{~g}(88 \%)$; mp $117.5-119{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.18-$
$8.08(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.54$ $(\mathrm{m}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 189.07, 157.72, 143.77, 137.73, 132.96, 130.11, 129.16, 128.73, 128.41, 123.02, 120.45, 78.89, 28.53.

(E)-3-(4-(Tert-butoxy)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one
 (E3). Synthesized

 according to the general procedure for enone synthesis using 1-(2-hydroxyphenyl)ethanone and 4-(tert-butoxy)benzaldehyde, the product was precipitated after neutralization with 2 M HCl ; yellow solid; yield: $2.57 \mathrm{~g}(87 \%) ; \mathrm{mp} 137-138{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.35(\mathrm{~s}$, $1 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=11.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{td}, J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H})$.
(E)-3-(4-(Tert-butoxy)phenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (E4). Synthesized

 according to the general procedure for enone synthesis using 1-(2-methoxyphenyl)ethanone and 4-(tert-butoxy)benzaldehyde; yellow oil; yield: $2.51 \mathrm{~g}(81 \%) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.59(\mathrm{dd}, J=8.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.08-6.96(\mathrm{~m}, 4 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$.
(E)-3-(4-(Tert-butoxy)phenyl)-1-(2-ethoxyphenyl)prop-2-en-1-one (E5). Synthesized

 according to the general procedure for enone synthesis using 1-(2-ethoxyphenyl)ethanone and 4-(tert-butoxy)benzaldehyde; yellow oil; yield: $2.65 \mathrm{~g}(82 \%) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64$ (dd, $J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H})$, $7.38(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.66,157.66,157.48$, 142.37, 132.66, 130.32, 129.87, 129.46, 129.12, 125.79, 123.58, 120.55, 112.56, 79.13, 64.14, 28.80, 14.74according to the general procedure for enone synthesis using 1-(2-chlorophenyl)ethanone and 4-(tert-butoxy)benzaldehyde; yellow oil; yield: $2.85 \mathrm{~g}(91 \%) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68$ $(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 1 \mathrm{H})$, $7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{td}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.36(\mathrm{~s}, 9 \mathrm{H})$.

(E)-3-(4-(Tert-butoxy)phenyl)-1-(thiophen-2-yl)prop-2-en-1-one (E7). Synthesized

 according to the general procedure for enone synthesis using 1-(thiophen-2-yl)ethanone and 4-(tert-butoxy)benzaldehyde; yellowish white solid ; yield: $2.57 \mathrm{~g}(90 \%) ; \mathrm{mp} 128.1{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.30(\mathrm{dd}, J=3.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-$ $7.79(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dt}, J=10.0,5.0 \mathrm{~Hz}$, 1H), $7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $\left.d_{6}\right) \delta 181.53,157.75$, $145.66,142.86,135.27,133.36,130.12,128.99,128.85,122.99,120.28,78.91,28.53$.
(E)-3-(4-(Tert-butoxy)phenyl)-1-(pyridin-2-yl)prop-2-en-1-one (E8). Synthesized according

 to the general procedure for enone synthesis using 1-(pyridin-2-yl)ethanone and 4-(tertbutoxy)benzaldehyde; greenish yellow solid; yield: $2.56 \mathrm{~g}(91 \%)$; mp 117.1-118.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.79(\mathrm{ddd}, J=4.7,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-$ $8.09(\mathrm{~m}, 1 \mathrm{H}), 8.07-8.03(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{ddd}, J=7.5$, 4.7, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 188.52$, $157.95,153.55,149.13,143.79,137.69,129.98,129.01,127.50,123.04,122.38,119.12,78.95$, 28.52. according to the general procedure for enone synthesis using 1-(1H-pyrrol-2-yl)ethanone and 4-(tert-butoxy)benzaldehyde; yellowish white solid; yield: $2.26 \mathrm{~g}(84 \%) ; \mathrm{mp} 116.5-118.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}$, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=2.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{ddd}, J=3.7,2.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00$ $(\mathrm{m}, 2 \mathrm{H}), 6.35(\mathrm{dt}, J=3.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.97$, $157.75,141.95,133.24,129.81,129.25,125.14,123.76,120.49,116.03,110.88,79.31,28.89$.
(E)-1-(4-Aminophenyl)-3-(4-(tert-butoxy)phenyl)prop-2-en-1-one (E10). Synthesized

 according to the general procedure for enone synthesis using 1-(4-aminophenyl)ethanone and 4-(tert-butoxy)benzaldehyde; yellow solid; yield: 2.30 g (78 \%); mp 113.7-115.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6}) $\delta 7.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.77-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H})$.(E)-1-(3-Methoxyphenyl)-4,4-dimethylpent-1-en-3-one (E11). Synthesized according to the general procedure for enone synthesis using pinacolone and 3-methoxybenzaldehyde; yellow oil; yield: $1.87 \mathrm{~g}(86 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}$, $1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=5.3,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{dt}, J=7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H})$.

1-(4-Methoxyphenyl)-4,4-dimethylpent-1-en-3-one (E12). Synthesized according to general procedure for enone synthesis using pinacolone and 4-methoxybenzaldehyde; yellow oil; yield: $1.97 \mathrm{~g}(90.5 \%) .{ }^{1}$

1-(4-Chlorophenyl)-4,4-dimethylpent-1-en-3-one (E13). Synthesized according to the general procedure for enone synthesis pinacolone and 4-chlorobenzaldehyde; white solid; yield: $2.11 \mathrm{~g}(95 \%) ; \mathrm{mp} 85-87^{\circ} \mathrm{C} .{ }^{2}$

(E)-1-(3-Fluoro-4-methoxyphenyl)-4,4-dimethylpent-1-en-3-one
 (E14). Synthesized

 according to the general procedure for enone synthesis using pinacolone and 3-fluoro-4methoxybenzaldehyde; yellowish white solid; yield: $2.22 \mathrm{~g}(94 \%) ; \mathrm{mp} 84.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.80(\mathrm{dd}, J=12.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=5.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 203.24,151.53\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=244.2 \mathrm{~Hz}\right), 148.83\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=10.9 \mathrm{~Hz}\right)$, $140.80,127.86\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6.8 \mathrm{~Hz}\right), 126.67\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 120.49,114.79\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=18.4 \mathrm{~Hz}\right)$, 113.66, 56.09, 42.76, 25.76.
(E)-1-(3-Chloro-4-methoxyphenyl)-4,4-dimethylpent-1-en-3-one
 (E15). Synthesized

 according to the general procedure for enone synthesis using pinacolone and 3-chloro-4methoxybenzaldehyde; white solid; yield: 2.24 g (89%); mp 75.2-77. ${ }^{\circ}{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 8.00(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 203.27,155.89,140.44,129.73,129.26,128.27,121.69,120.52,112.77,56.30$, 42.77, 25.76.(E)-1-(4-Fluoro-3-methoxyphenyl)-4,4-dimethylpent-1-en-3-one (E16). Synthesized according to the general procedure for enone synthesis using pinacolone and 4-fluoro-3methoxybenzaldehyde; yellow oil; yield: $1.96 \mathrm{~g}(83 \%) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO) $\delta 7.91-$
$7.83(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=15.6,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.98-6.93 (m, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H})$.

3-(3,4-Dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (E17). Synthesized

 according to the general procedure for enone synthesis using 1-(2-methoxyphenyl)ethanone and 3,4-dimethoxybenzaldehyde; yellow oil; yield: $2.38 \mathrm{~g}(80 \%){ }^{3}$
(E)-3-(3-Fluoro-4-methoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one

(E18).
Synthesized according to the general procedure for enone synthesis using 1-(2methoxyphenyl)ethanone and 3-fluoro-4-methoxybenzaldehyde; yellow solid; yield: 2.66 g (93 \%); mp $97.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.70(\mathrm{dd}, J=12.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.55-7.50$ (m, 2H), $7.47(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ $-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $192.14,157.59,151.53\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=244.5 \mathrm{~Hz}\right), 149.04\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=10.9 \mathrm{~Hz}\right), 141.58\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.2\right.$ $\mathrm{Hz}), 132.82,129.37,128.98,127.77\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6.8 \mathrm{~Hz}\right), 126.40\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 126.02$, $120.48,114.99\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=18.4 \mathrm{~Hz}\right), 113.85,112.28,56.12,55.78$.

(E)-3-(4-Ethoxy-3,5-difluorophenyl)-1-(2-methoxyphenyl)prop-2-en-1-one

(E19).
Synthesized according to the general procedure for enone synthesis using 1-(2methoxyphenyl)ethanone and 4-ethoxy-3,5-difluorobenzaldehyde; yellow solid; yield: 2.92 g (92 \%); mp $85.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.55$ (ddd, $J=8.4,7.3$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dt}, J=6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}$, $J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ 191.97, $157.78,155.28\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246.3,{ }^{3} J_{\mathrm{C}-\mathrm{F}} 6.5\right.$
$\mathrm{Hz}), 139.87,135.95\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=14.7 \mathrm{~Hz}\right), 133.87,130.26\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.3 \mathrm{~Hz}\right), 129.49,128.68$, $128.17,120.49,112.54\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=17.6,{ }^{4} J_{\mathrm{C}-\mathrm{F}}=5.7 \mathrm{~Hz}\right), 112.31,70.11,55.82,15.23$.

(E)-3-(2,3-Difluoro-4-methoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one

(E20).
Synthesized according to the general procedure for enone synthesis using 1-(2methoxyphenyl)ethanone and 2,3-difluoro-4-methoxybenzaldehyde; yellow solid; yield: 2.91 g (96 \%); mp 128-130 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.66(\mathrm{td}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.58-$ $7.53(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=15.6,13.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=8.5,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- $\left.d_{6}\right) \delta 191.57,157.83,150.14,149.45\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=251.6,{ }^{2} J_{\mathrm{C}-\mathrm{F}}=10.6 \mathrm{~Hz}\right), 140.16\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}\right.$ $\left.=245.6,{ }^{2} J_{\mathrm{C}-\mathrm{F}} 14.3 \mathrm{~Hz}\right), 133.60,133.30,129.63,128.48,127.99,124.37,120.60,116.20,112.39$, 109.51, 56.79, 55.79.

(E)-1-(2,4-Dimethoxyphenyl)-3-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one

(E21).
Synthesized according to the general procedure for enone synthesis using 1-(2,4dimethoxyphenyl)ethanone and 3-fluoro-4-methoxybenzaldehyde; yellow solid; yield: 2.71 g (86 \%); mp $85-86{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.65(\mathrm{dt}, J=14.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=11.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $\left.d_{6}\right) \delta 189.30,163.83,160.12,151.53\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=244.4 \mathrm{~Hz}\right), 148.80(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=10.8 \mathrm{~Hz}\right), 140.19,131.91,128.09\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6.8 \mathrm{~Hz}\right), 126.11,126.06\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right)$, $121.50,114.84\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=18.3 \mathrm{~Hz}\right), 113.87,105.88,98.60,56.10,55.91,55.56$.

1-(4-Fluorophenyl)-4,4-dimethylpent-1-en-3-one (E22). Synthesized according to the general procedure for enone synthesis using pinacolone and 4-fluorobenzaldehyde; yellow solid; yield: $1.73 \mathrm{~g}(84 \%) ; \mathrm{mp} 42.5-44.1^{\circ} \mathrm{C} .{ }^{4}$

1-(4-Bromophenyl)-4,4-dimethylpent-1-en-3-one (E23). Synthesized according to the general procedure for enone synthesis using pinacolone and 4-bromobenzaldehyde; white solid; yield: $2.48 \mathrm{~g}(93 \%) ; \mathrm{mp} 102-103{ }^{\circ} \mathrm{C} .{ }^{5,6}$

4-(4,4-Dimethyl-3-oxopent-1-en-1-yl)benzonitrile (E24). Synthesized according to the general procedure for enone synthesis using pinacolone and 4-formylbenzonitrile; white solid; yield: 1.95 g (92%); mp 131-133 ${ }^{\circ} \mathrm{C}^{7,}{ }^{7} 8$

3-(4-Methoxyphenyl)-1-phenylprop-2-en-1-one (E25). Synthesized according to the general procedure for enone synthesis using acetophenone and 4-methoxybenzaldehyde; yellow solid; yield: $1.88 \mathrm{~g}(79 \%) ; \mathrm{mp} 73-74{ }^{\circ} \mathrm{C} .{ }^{9}$

4,4-Dimethyl-1-(4-nitrophenyl)pent-1-en-3-one (E26). Synthesized according to the the general procedure for enone synthesis using pinacolone and 4-nitrobenzaldehyde; beige solid; yield: $2.23 \mathrm{~g}(96 \%) ; \mathrm{mp} 107-109^{\circ} \mathrm{C} .{ }^{10}$

4,4-Dimethyl-1-(3-nitrophenyl)pent-1-en-3-one (E27). Synthesized according to the general procedure for enone synthesis using pinacolone and 3-nitrobenzaldehyde; yellow solid; yield: $2.16 \mathrm{~g}(93 \%) ; \mathrm{mp} 92-94{ }^{\circ} \mathrm{C} .{ }^{11}$

1-Cyclopropyl-3-(4-nitrophenyl)prop-2-en-1-one (E28). Synthesized according to the general procedure for enone synthesis using 1-cyclopropylethanone and 4-nitrobenzaldehyde; yellowish white solid; yield: $1.82 \mathrm{~g}(84 \%) ; \mathrm{mp} 118.9-120^{\circ} \mathrm{C} .{ }^{12}$ and 4-nitrobenzaldehyde; yellowish white solid; yield: $1.96 \mathrm{~g}(85 \%) ; \mathrm{mp} 133.1{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.29-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ $(\mathrm{d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.07-1.01(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.41,148.46,140.97,138.72,129.77,128.77,124.15,23.12,20.26,11.90$.
(E)-1-Cyclohexyl-3-(4-nitrophenyl)prop-2-en-1-one (E30). Synthesized according to the general procedure for enone synthesis using 1-cyclohexylethanone and 4-nitrobenzaldehyde; beige solid; yield: $2.53 \mathrm{~g}(98 \%)$; mp $132-134{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-$ $2.56(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=22.1,11.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.54-1.18(\mathrm{~m}, 6 \mathrm{H})$.

3-(4-Nitrophenyl)-1-(thiophen-2-yl)prop-2-en-1-one (E31). Synthesized according to the general procedure for enone synthesis using 1-(thiophen-2-yl)ethanone and 4-nitrobenzaldehyde; yellow solid; yield: 2.14 g (83%); mp 207-209 ${ }^{\circ} \mathrm{C} .{ }^{13}$

1-(Furan-2-yl)-3-(4-nitrophenyl)prop-2-en-1-one (E32). Synthesized according to the general procedure for enone synthesis using 1-(furan-2-yl)ethanone and 4-nitrobenzaldehyde; yellow solid; yield: $2.13 \mathrm{~g}(88 \%)$; mp $224.4{ }^{\circ} \mathrm{C} .{ }^{14}$

1-(2-Chlorophenyl)-3-(4-nitrophenyl)prop-2-en-1-one (E33). Synthesized according to the general procedure for enone synthesis using 1-(2-chlorophenyl)ethanone and 4nitrobenzaldehyde; yellow solid; yield: $2.21 \mathrm{~g}(77 \%) ; \mathrm{mp} 162-163{ }^{\circ} \mathrm{C} .{ }^{15}$
(E)-3-(4-Nitrophenyl)-1-(2-(trifluoromethyl)phenyl)prop-2-en-1-one (E34). Synthesized according to the general procedure for enone synthesis using 1-(2-
(trifluoromethyl)phenyl)ethanone and 4-nitrobenzaldehyde; yellow solid; yield: 2.85 g (89 \%); mp 142-144 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.51-$ $7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{ddd}, J=8.0,4.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{ddd}, J=7.5,6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J$ $=16.1 \mathrm{~Hz}, 1 \mathrm{H})$.
(E)-3-(4-Nitrophenyl)-1-(o-tolyl)prop-2-en-1-one (E35). Synthesized according to the general procedure for enone synthesis using 1-(o-tolyl)ethanone and 4-nitrobenzaldehyde; yellowish white solid; yield: $2.16 \mathrm{~g}(81 \%)$; mp $128-129{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27$ $-8.20(\mathrm{~m}, 2 \mathrm{H}), 8.07-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{ddd}, J=$ $8.9,6.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.98,148.58,142.02,140.84,138.17,137.58,131.64,129.97,128.88,128.59$, 128.33, 125.63, 123.74, 20.40.

1-(2-Methoxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (E36). Synthesized according to the general procedure for enone synthesis using 1-(2-methoxyphenyl)ethanone and 4nitrobenzaldehyde; yellowish white solid; yield: $2.43 \mathrm{~g}(86 \%)$; mp $116.5-118{ }^{\circ} \mathrm{C} .{ }^{16}$

1-(Benzo[d][1,3]dioxol-5-yl)-3-(4-nitrophenyl)prop-2-en-1-one (E37). Synthesized

 according to the general procedure for enone synthesis using 1 -(benzo[d][1,3]dioxol-5yl)ethanone and 4-nitrobenzaldehyde; dark yellow solid; yield: $2.34 \mathrm{~g}(79 \%) ; \mathrm{mp} 182.4^{\circ} \mathrm{C} .{ }^{17}$2) Molecular modeling and docking. All procedures were performed using the Molecular Operating Environment (MOE) software package (v. 2010, Chemical Computing Group). A homology model for the catalytic domain of $\mathrm{PKC} \zeta$ was prepared based on the PDB coordinates 3A8X of the most closely related PKCl isoform. Because of the high identity of 84%, the following approach was chosen: supported by the rotamer explorer methodology, all amino acid residues different in PKC were mutated in silico to the respective $\mathrm{PKC} \zeta$ counterparts as follows: L251I, T267N, R269Q, N282H, N302S, H303N, E316T, F321L, S350A, S354C, L355I, S379A, R396G, Q496P, S475F, A481S, S482H, S486G, H499R, A505S, G508K, G509S, P511A, N515S, V516I, M520L, M521L, Q523K, V526A, V527L, K531Q, N533Q, S535T, G536D, E537D, F538Y, S545T, N549S, T561A, R563K, K564R. Most of these amino acid residues were located at the protein surface, thus major perturbations of the tertiary structure were not expected. This mutated 3D template was energy minimized using the following parameters: AMBER99 force field, adjust H and LP: enabled, calculate forcefield partial charges: enabled, other settings on default. In the resulting 3D model, the dimensions and topology of the PIFpocket appeared realistic when compared to the PIF-pockets of other PKC isoforms (e.g., PDB entries 3PFQ, PKC β II; 3IW4, PKC α; 1XJD, PKC θ). Molecular docking simulations were performed using the MMFF94x force field and the "triangle matcher" method, defining the target site by selecting L319 (PKCi notation) which is central to the PIF-pocket. Only the poses with the top 3 affinity scores were further evaluated.
3) Table S1. Inhibition of recombinant $\mathrm{PKC} \zeta$ and the $\mathrm{NF}-\mathrm{\kappa B}$ pathway in cells by compounds
(6a-6n)

${ }^{a}$ Values are mean of at least two experiments; standard deviation $<15 \%$; ND: not determined
4) Table S2. Hit compound 1a does not inhibit other potential target kinases in the NF-кB pathway nor PKC β II

Kinase (human)	$\%$ inhibition at $10 \mu \mathrm{M}$ of 1a
IKK β	n.i.
PKC1	n.i.
RIPK2	n.i.
p38 α MAPK	10%
TAK1	n.i.
TBK1	n.i.
PKC β II	n.i.

n.i.: no inhibition. Each value is representative of at least two independent assays which essentially gave the same results.
5) Table S3. Wilcoxon's signed rank test

Group 1: low potency (less than 75% inhibition at $62.5 \mu \mathrm{M}$ in the cell free assay)					
compound \#	$\%$ inhibition at $5 \mu \mathrm{M}$ (U937 cells)	compound \#	$\%$ inhibition at $5 \mu \mathrm{M}$ (U937 cells)	compound \#	$\%$ inhibition at $5 \mu \mathrm{M}$ (U937 cells)
1g	40.7	3n	9.3	6 e	24.5
11	23.5	30	20.1	6 f	47.7
1m	48.7	3p	2.9	6 g	30.9
1n	50.2	3q	50.8	6h	44.9
10	51.8	4b	35	61	26.1
1p	41.5	4c	37.3	6j	24.4
1q	12.3	5a	5.9	6K	50.8
2d	26.5	6 a	22.7	61	31.3
2e	48.2	6b	23.5	6m	28.2
2 f	38.7	6C	42.3	6 n	22.2
31	3.7	6d	21.9	7 a	25.5
3m	5.5				
Group 2: moderate potency ($\mathrm{IC}_{50}=5-15 \mu \mathrm{M}$ in the cell free assay)					
compound \#	$\begin{gathered} \hline \% \text { inhibition at } 5 \mu \mathrm{M} \\ \text { (U937 cells) } \\ \hline \end{gathered}$	compound \#	$\begin{gathered} \hline \text { \% inhibition at } 5 \mu \mathrm{M} \\ \text { (U937 cells) } \\ \hline \end{gathered}$	compound \#	$\begin{gathered} \hline \text { \% inhibition at } 5 \mu \mathrm{M} \\ \text { (U937 cells) } \\ \hline \end{gathered}$
1a	75.1	1h	64.6	4a	89.9
1b	63.8	2 j	70.2	4 i	75.1
1c	58.4	21	42.3	4j	81.7
1 e	62.9				
Group 3: high potency ($\mathrm{IC}_{50}<5 \mu \mathrm{M}$ in the cell free assay)					
compound \#	$\begin{gathered} \% \text { inhibition at } 5 \mu \mathrm{M} \\ \text { (U937 cells) } \end{gathered}$	compound \#	$\begin{gathered} \% \text { inhibition at } 5 \mu \mathrm{M} \\ (\mathrm{U} 937 \text { cells }) \end{gathered}$	compound \#	$\begin{gathered} \% \text { inhibition at } 5 \mu \mathrm{M} \\ \text { (U937 cells) } \\ \hline \end{gathered}$
1i	73.5	1 t	84.2	4f	92.8
1j	89.7	2 c	68.2	4g	62
1k	73.7	4d	95	4h	71.7
1r	92	4e	85	4k	87.4
1s	90.1				

Group 1 vs. group 2, exact P value is 0.002 ; group 1 vs. group 3, exact P value is 0.0017 ; group 2 vs. group 3 , exact P value is 0.0273
6) Table S4. MTT toxicity assay using RAW 264.7 cells*

Compound ($7.5 \mu \mathrm{M}$)	\% living cells compared to DMSO control*	Compound ($7.5 \mu \mathrm{M}$)	\% living cells compared to DMSO control*
1a	97	2e	92
1b	78	2 f	95
1c	100	2 g	94
1d	9	2h	90
1e	95	2 i	94
1f	49	2 j	89
1 g	99	2k	100
1h	92	21	92
1 i	100	30	88
1j	88	4a	92
1k	86	4b	63
11	98	4d	100
1m	83	4e	99
1n	90	4f	98
10	95	4 g	99
1p	94	4h	100
19	100	4i	92
1 r	100	4j	84
1s	96	4k	100
1 t	100	6 a	91
1u	100	6 c	85
2 a	83	6 h	84
2b	84	9	100
2c	94	11	100
2 d	93	Curcumin	100

* Average of at least two independent experiments

7) Table S5. Selectivity profile of $\mathbf{4 f} v s$. the PKC family and further AGC kinases

Kinase (human)	\% inhibition at $10 \mu \mathrm{M}$ of $\mathbf{4 f}$
PKC α	4
PKC $\beta \mathrm{I}$	n.i.
PKC β II	12
PKC γ	6
PKC δ	n.i.
PKC ε	n.i.
PKC η	n.i.
PKC θ	n.i.
PKC	n.i.
PDK1	8
PKA	n.i.
RSK1	3
MSK1	11
p70S6K	n.i.
SGK1	18

n.i.: no inhibition. Each value is representative of at least two independent assays which essentially gave the same results.

8) Figure S1. Molecular electrostatic potentials (MEP) mapped on the isoelectronic density surfaces of $0.002 \mathrm{e} / \mathrm{a}_{0}{ }^{3}$. The $a b$ initio calculations of the lowest energy conformers and the electrostatic potentials were carried out at the B3LYP density functional scheme with the 6$31 \mathrm{G}^{* *}$ basis set in water, as implemented in the Gaussian 03 suite of programs. ${ }^{18}$ The color codes were uniformely adjusted to range from -150 to $+390 \mathrm{~kJ} / \mathrm{mol}$. The arrow points to the hydrogen of the phenolic hydroxyl, which shows a higher positive potential in the compounds from panel (A) than in those from (B). Hence the OH hydrogen in the compounds from (A) is expected to exhibit a higher donor strength.
9) Figure S2. Work-flow chart.

10) References

1. Garcia-Raso, A.; Sinisterra, J. V.; Marinas, J. M., Activated barium hydroxide as a catalyst in organic synthesis. Pol. J. Chem. 1982, 56, (10-12), 1435-45.
2. Reiser, W.; Schnalke, K. E.; Baumert, J. Preparation of 1-(4-chlorophenyl)-4,4-dimethyl-pent-1-en-3-one as an agrochemical intermediate. DE3921167C1, 1990.
3. Savkar, G. S.; Bokil, K. V.; Nargund, K. S., Condensation of o-anisylsuccinic anhydride with phenyl methyl ethers. J. Univ. Bombay, Sci. 1940, 9, (Pt. 3), 150-5.
4. Esen, I.; Yolacan, C.; Aydogan, F., Long chain dicationic phase transfer catalysts in the condensation reactions of aromatic aldehydes in water under ultrasonic effect. Bull. Korean Chem. Soc. 2010, 31, 2289-2292.
5. Boyer, J.; Corriu, R. J. P.; Perz, R.; Reye, C., Heterogeneous catalysis by salts and without solvent. III. Synthesis of α, β-unsaturated carbonyl compounds from silyl enol ethers. J. Organomet. Chem. 1980, 184, (2), 157-66.
6. Unterhalt, B.; Reinhold, H. J., Unsaturated oximes. XXV. Reactions of 1-aryl-4,4-dimethyl-1-penten-3-ones with hydroxylamine. Arch. Pharm. (Weinheim, Ger.) 1983, 316, (1), 68-75.
7. Unterhalt, B.; Koehler, H.; Reinhold, H. J., Unsaturated oximes, part 19. Uniform styrylalkyl oximes. Arch. Pharm. (Weinheim, Ger.) 1978, 311, (7), 604-8.
8. Chen, K.-W.; Syu, S.-e.; Jang, Y.-J.; Lin, W., A facile approach to highly functional trisubstituted furans via intramolecular Wittig reactions. Org. Biomol. Chem. 2011, 9, 2098-106.
9. Irie, K.; Watanabe, K., Aldol condensations with metal(II) complex catalysts. Bull. Chem. Soc. Jpn. 1980, 53, (5), 1366-71.
10. Sinistierra, J. V.; Garcia-Raso, A.; Cabello, J. A.; Marinas, J. M., An improved procedure for the Claisen-Schmidt reaction. Synthesis 1984, (6), 502-4.
11. Yang, G.-C.; Huang, J.-X.; Zhong, J.-H.; Chen, J.-W., Catalytic synthesis of $\alpha, \beta-$ unsaturated carbonyl compounds by tellurium(IV) chloride. Hecheng Huaxue 1998, 6, (3), 324327.
12. Bunce, S. C.; Dorsman, H. J.; Popp, F. D., Synthesis of α, β-unsaturated cydopropyl ketones and 3-cyclopropylpyrazolines. J. Chem. Soc. 1963, 303-7.
13. Goodell, J. R.; Puig-Basagoiti, F.; Forshey, B. M.; Shi, P.-Y.; Ferguson, D. M., Identification of compounds with anti-West Nile Virus activity. J. Med. Chem. 2006, 49, 212737.
14. Liu, W.; Shi, H.-M.; Jin, H.; Zhao, H.-Y.; Zhou, G.-P.; Wen, F.; Yu, Z.-Y.; Hou, T.-P., Design, synthesis and antifungal activity of a series of novel analogs based on diphenyl ketones. Chem. Biol. Drug Des. 2009, 73, 661-7.
15. Falcao, d. F. L., Synthesis of nonnatural chalcones. Bol. Fac. Farm., Univ. Coimbra, Ed. Cient. 1968, 28, 49-52.
16. Kim, Y. S.; Kumar, V.; Lee, S.; Iwai, A.; Neckers, L.; Malhotra, S. V.; Trepel, J. B., Methoxychalcone inhibitors of androgen receptor translocation and function. Bioorg. Med. Chem. Lett. 2012, 22, $2105-9$.
17. Chiaradia, L. D.; Martins, P. G. A.; Cordeiro, M. N. S.; Guido, R. V. C.; Ecco, G.; Andricopulo, A. D.; Yunes, R. A.; Vernal, J.; Nunes, R. J.; Terenzi, H., Synthesis, biological evaluation, and molecular modeling of chalcone derivatives as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatases (PtpA and PtpB). J. Med. Chem. 2012, 55, 390-402.
18. Heim, R.; Lucas, S.; Grombein, C. M.; Ries, C.; Schewe, K. E.; Negri, M.; Müller-Vieira, U.; Birk, B.; Hartmann, R. W., Overcoming Undesirable CYP1A2 Inhibition of Pyridylnaphthalene-Type Aldosterone Synthase Inhibitors: Influence of Heteroaryl Derivatization on Potency and Selectivity. J. Med. Chem. 2008, 51, (16), 5064-5074.
