## Dimensional and Coordination Number Reductions in a Large Family of Lanthanide Tellurite Sulfates

Jian Lin,<sup>†,‡</sup> Kariem Diefenbach,<sup>†</sup> Naoki Kikugawa,<sup>§,  $\perp$ </sup> Ryan E. Baumbach,<sup>§</sup> Thomas E. Albrecht-Schmitt<sup>\*†</sup>

<sup>†</sup>Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States

<sup>‡</sup>Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana, 46556, United States

<sup>§</sup>National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida, 32310, United States

<sup>1</sup>National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0044, Japan

## **Supporting Information**



Figure S1. Crystal images of lanthanide tellurite sulfates



Figure S2. Ball-and-stick representations of Ln polyhedra bonding geometries in LnTeSO-1, LnTeSO-2, LnTeSO-3, LnTeSO-4, and LnTeSO-5.



Figure S3. Ball-and-stick image of the  $Te_4O_{10}^{4-}$  polymer of **LnTeSO-5**.



Figure S4. Normalized UV-vis-NIR spectra of LnTeSO-1, LnTeSO-2, LnTeSO-3, and LnTeSO-4.

| Compound                                            | La-1       | Ce-1       | Pr-1       | Nd-1       | Sm-1       | Eu-1       | Gd-1       | Tb-1       | Ho-2        | Dy-3            | Ho-3        |
|-----------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|-----------------|-------------|
| Formula Mass                                        | 805.14     | 807.56     | 809.14     | 815.80     | 828.02     | 831.24     | 841.82     | 845.16     | 1073.11     | 728.72          | 733.58      |
| Color                                               | Colorless  | Colorless  | Green      | Purple     | Colorless  | Colorless  | Colorless  | Colorless  | Pink        | Colorless       | Pink        |
| Habit                                               | Sphenoid   | Tablet      | Columnar        | Columnar    |
| Space Group                                         | $P2_{1}/c$ | $P2_{1}/c$ | $P2_{1}/c$ | $P2_{l}/c$ | $P2_{1}/c$ | $P2_l/c$   | $P2_{l}/c$ | $P2_{l}/c$ | $P2_{1}/m$  | $P\overline{1}$ | $P\bar{1}$  |
| a (Å)                                               | 9.6300(19) | 9.597(3)   | 9.575(5)   | 9.5838(5)  | 9.5721(7)  | 9.5815(18) | 9.5855(9)  | 9.6120(5)  | 5.4548(4)   | 5.3523(9)       | 5.3462(7)   |
| b (Å)                                               | 6.9840(14) | 6.9391(18) | 6.934(4)   | 6.8832(4)  | 6.8269(5)  | 6.8132(13) | 6.7774(6)  | 6.7491(4)  | 15.3443(10) | 8.2283(14)      | 8.2012(11)  |
| c (Å)                                               | 8.2879(16) | 8.248(2)   | 8.212(4)   | 8.1783(5)  | 8.0964(6)  | 8.0687(15) | 7.9941(8)  | 7.9564(4)  | 8.0291(5)   | 12.341(2)       | 12.3034(17) |
| a (deg)                                             | 90         | 90         | 90         | 90         | 90         | 90         | 90         | 90         | 90          | 90.774(2)       | 90.7190(10) |
| β (deg)                                             | 106.317(2) | 106.452(3) | 106.640(5) | 106.758(1) | 106.984(1) | 107.113(2) | 107.688(2) | 107.934(1) | 99.492(1)   | 101.525(2)      | 101.505(2)  |
| γ (deg)                                             | 90         | 90         | 90         | 90         | 90         | 90         | 90         | 90         | 90          | 103.895(3)      | 103.809(2)  |
| V (Å <sup>3</sup> )                                 | 534.96(18) | 526.8(2)   | 522.4(5)   | 516.59(5)  | 506.01(6)  | 503.41(16) | 494.78(8)  | 491.07(5)  | 662.84(8)   | 515.87(15)      | 512.30(12)  |
| Z                                                   | 2          | 2          | 2          | 2          | 2          | 2          | 2          | 2          | 2           | 2               | 2           |
| T (K)                                               | 100        | 100        | 100        | 100        | 100        | 100        | 100        | 100        | 298         | 298             | 100         |
| λ (Å)                                               | 0.71073    | 0.71073    | 0.71073    | 0.71073    | 0.71073    | 0.71073    | 0.71073    | 0.71073    | 0.71073     | 0.71073         | 0.71073     |
| Maximum 2θ<br>(deg.)                                | 27.510     | 27.690     | 27.590     | 27.490     | 27.530     | 27.500     | 27.520     | 27.500     | 28.520      | 27.540          | 27.500      |
| $\rho_{calcd}$ (g cm <sup>-3</sup> )                | 4.998      | 5.091      | 5.144      | 5.245      | 5.435      | 5.484      | 5.651      | 5.716      | 5.362       | 4.666           | 4.730       |
| $\mu$ (Mo K $\alpha$ ) (cm <sup>-1</sup> )          | 13.686     | 14.429     | 15.163     | 15.953     | 17.631     | 18.516     | 19.567     | 20.611     | 22.450      | 17.619          | 18.601      |
| $R(F) \text{ for } F_o^2 > 2\sigma $<br>$(F_o^2)^a$ | 0.0391     | 0.0424     | 0.0390     | 0.0376     | 0.0376     | 0.0512     | 0.0351     | 0.0456     | 0.0239      | 0.0267          | 0.0297      |
| $R_w (F_o^{2})^b$                                   | 0.0923     | 0.1237     | 0.0951     | 0.0969     | 0.0892     | 0.1394     | 0.0794     | 0.0951     | 0.0604      | 0.0660          | 0.0707      |
| Compound                                            | Er-3       | Er-4       | Tm-4       | Yb-4       | Lu-4       | Gd-5       | Dy-5       | Ho-5       | Er-5        | Tm-5            | Yb-5        |
| Formula Mass                                        | 734.26     | 861.84     | 865.18     | 873.40     | 877.26     | 1080.96    | 1091.46    | 1096.32    | 1100.98     | 1104.32         | 1112.54     |
| Color                                               | Purple     | Purple     | Colorless  | Colorless  | Colorless  | Colorless  | Colorless  | Colorless  | Pink        | Colorless       | Pink        |
| Habit                                               | Columnar   | Tablet     | Tablet     | Tablet     | Tablet     | Acicular   | Acicular   | Acicular   | Acicular    | Acicular        | Acicular    |

Table S1. Crystallographic Data for LnTeSO-1, LnTeSO-2, LnTeSO-3, LnTeSO-4, and LnTeSO-5.

| Space Group                                         | $P\overline{1}$ | ΡĪ         | $P\overline{1}$ | PĪ          | РĪ        | PĪ         | PĪ          | PĪ          | PĪ         | PĪ        | РĪ        |
|-----------------------------------------------------|-----------------|------------|-----------------|-------------|-----------|------------|-------------|-------------|------------|-----------|-----------|
| a (Å)                                               | 5.332(3)        | 5.3243(11) | 5.2912(4)       | 5.3243(6)   | 5.289(3)  | 6.8584(8)  | 6.8248(5)   | 6.8115(3)   | 6.7819(17) | 6.7692(6) | 6.7434(5) |
| b (Å)                                               | 8.155(5)        | 8.2705(17) | 8.2255(6)       | 8.2148(9)   | 8.193(5)  | 9.3454(11) | 9.3245(6)   | 9.3149(5)   | 9.259(2)   | 9.2956(8) | 9.2433(7) |
| c (Å)                                               | 12.264(8)       | 13.220(3)  | 13.1589(9)      | 13.2547(14) | 13.144(8) | 9.9200(12) | 9.8785(7)   | 9.8627(5)   | 9.838(3)   | 9.8114(8) | 9.7798(8) |
| a (deg)                                             | 90.522(9)       | 89.007(2)  | 89.005(2)       | 88.4150(10) | 89.033(6) | 89.744(2)  | 89.8550(10) | 89.8870(10) | 89.901(5)  | 89.932(2) | 89.937(2) |
| β (deg)                                             | 101.425(9)      | 87.485(2)  | 87.6410(10)     | 87.2720(10) | 87.531(6) | 72.406(2)  | 72.4430(10) | 72.4970(10) | 72.535(4)  | 72.498(1) | 72.493(2) |
| γ (deg)                                             | 103.814(9)      | 72.328(2)  | 72.3330(10)     | 72.2410(10) | 72.455(6) | 87.498(2)  | 87.9530(10) | 88.1390(10) | 88.596(5)  | 88.385(2) | 88.825(2) |
| V (Å <sup>3</sup> )                                 | 506.7(5)        | 554.1(2)   | 545.23(7)       | 551.43(10)  | 542.6(6)  | 605.47(12) | 598.96(7)   | 596.47(5)   | 589.1(3)   | 588.54(9) | 581.22(8) |
| Z                                                   | 2               | 2          | 2               | 2           | 2         | 2          | 2           | 2           | 2          | 2         | 2         |
| T (K)                                               | 298             | 100        | 100             | 298         | 100       | 100        | 298         | 100         | 100        | 100       | 100       |
| λ (Å)                                               | 0.71073         | 0.71073    | 0.71073         | 0.71073     | 0.71073   | 0.71073    | 0.71073     | 0.71073     | 0.71073    | 0.71073   | 0.71073   |
| Maximum 2θ<br>(deg.)                                | 27.490          | 27.480     | 27.530          | 27.590      | 27.620    | 27.570     | 27.600      | 27.580      | 27.660     | 27.430    | 27.530    |
| $\rho_{calcd}$ (g cm <sup>-3</sup> )                | 4.813           | 5.166      | 5.270           | 5.260       | 5.370     | 5.929      | 6.052       | 6.104       | 6.207      | 6.232     | 6.357     |
| $\mu$ (Mo K $\alpha$ ) (cm <sup>-1</sup> )          | 27.490          | 20.648     | 21.865          | 22.489      | 23.814    | 20.555     | 22.181      | 23.011      | 24.114     | 24.952    | 26.092    |
| $R(F) \text{ for } F_o^2 > 2\sigma $<br>$(F_o^2)^a$ | 0.0771          | 0.0337     | 0.0200          | 0.0186      | 0.0252    | 0.0239     | 0.0178      | 0.0163      | 0.0194     | 0.0336    | 0.0230    |
| $R_w (F_o^2)^b$                                     | 0.2041          | 0.1086     | 0.0470          | 0.0461      | 0.0606    | 0.0525     | 0.0401      | 0.0411      | 0.0485     | 0.0736    | 0.0445    |

|                                    | La-1                   | Ce-1                   | Pr-1                   | Nd-1                 | Sm-1                 | Eu-1                 | Gd-1                 | Tb-1                 |
|------------------------------------|------------------------|------------------------|------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Ln(1)-O(2)                         | 2.470(13)              | 2.441(16)              | 2.434(14)              | 2.413(12)            | 2.388(15)            | 2.367(9)             | 2.365(8)             | 2.342(10)            |
| Ln(1)-O(3)#1                       | 2.482(7)               | 2.463(8)               | 2.448(7)               | 2.435(7)             | 2.406(7)             | 2.387(17)            | 2.374(15)            | 2.384(10)            |
| Ln(1)-O(5)                         | 2.497(7)               | 2.465(8)               | 2.462(7)               | 2.436(7)             | 2.406(7)             | 2.392(9)             | 2.382(7)             | 2.387(16)            |
| Ln(1)-O(3)                         | 2.526(7)               | 2.511(8)               | 2.495(7)               | 2.479(6)             | 2.444(7)             | 2.431(9)             | 2.401(8)             | 2.378(9)             |
| Ln(1)-O(6)                         | 2.531(7)               | 2.513(7)               | 2.498(6)               | 2.485(7)             | 2.446(7)             | 2.441(9)             | 2.426(7)             | 2.422(9)             |
| Ln(1)-O(4)                         | 2.570(6)               | 2.535(7)               | 2.525(6)               | 2.515(6)             | 2.474(7)             | 2.448(8)             | 2.436(7)             | 2.413(9)             |
| Ln(1)-O(7)#2                       | 2.577(6)               | 2.563(7)               | 2.542(6)               | 2.535(6)             | 2.514(7)             | 2.504(10)            | 2.485(7)             | 2.491(9)             |
| Ln(1)-O(4)#1                       | 2.615(6)               | 2.589(8)               | 2.585(6)               | 2.576(6)             | 2.553(7)             | 2.542(9)             | 2.520(7)             | 2.490(9)             |
| Ln(1)-O(7)                         | 2.702(6)               | 2.703(8)               | 2.683(6)               | 2.672(7)             | 2.670(7)             | 2.701(11)            | 2.658(7)             | 2.690(10)            |
| Te(1A)- $O(3)$                     | 1 845(8)               | 1 832(10)              | 1 840(8)               | 1 832(8)             | 1 861(8)             | 1 881(12)            | 1 825(8)             | 1 821(10)            |
| $T_{e}(1A) = O(2) #3$              | 1.045(0)               | 1.032(10)<br>1.935(18) | 1.040(0)<br>1.930(16)  | 1.052(0)<br>1.96(2)  | 2.017(17)            | 1.001(12)<br>1.95(2) | 2 12(2)              | 223(2)               |
| Te(1A) - O(2)#3<br>Te(1A) - O(1)#1 | 2.093(17)              | 2 10(2)                | 2.104(16)              | 2.138(17)            | 2.017(17)<br>2.19(2) | 2.15(3)              | 2.12(2)<br>2.16(2)   | 2.23(2)<br>2.28(3)   |
| Te(1A) - O(1)                      | 2.099(17)<br>2.290(18) | 2.10(2)<br>2.25(2)     | 2.104(10)<br>2.24(2)   | 2.130(17)            | 2.15(2)<br>2.25(2)   | 2.13(3)<br>2 17(3)   | 2.10(2)<br>2 19(2)   | 2.26(3)<br>2.15(2)   |
| Te(1A)-O(2)                        | 2.296(10)              | 2.23(2)<br>2 352(18)   | 2.24(2)<br>2 364(16)   | 2.22(2)<br>2 341(17) | 2.23(2)<br>2 342(19) | 2.17(3)<br>2 341(19) | 2.15(2)<br>2 355(17) | 2.13(2)<br>2 327(18) |
| Te(1R) - O(3)                      | 1 850(8)               | 1 846(9)               | 1 850(8)               | 1.841(8)             | 2.312(1)             | 1.883(12)            | 1 893(8)             | 2.327(10)            |
| Te(1B) - O(2)                      | 2 130(15)              | 2.083(17)              | 2.070(15)              | 2.024(15)            | 1 815(9)             | 1.005(12)            | 1.055(0)             | 2.57(3)              |
| Te(1B) - O(1)                      | 2.150(15)<br>2.154(17) | 2.009(17)<br>2.19(2)   | 2.070(13)              | 2.021(13)            | 1.013(5)             | 2 17(3)              | 2 09(3)              | 1.908(10)            |
| Te(1B) - O(1)#1                    | 2.134(17)<br>2.314(17) | 2.13(2)<br>2.23(2)     | 2.175(10)<br>2.225(17) | 2.21(2)<br>2.226(18) | 2.16(3)              | 2.17(3)<br>2.24(3)   | 2.05(3)              | 1.966(17)            |
| Te(1B) - O(2)#3                    | 2.318(16)              | 2.308(18)              | 2.317(17)              | 2.35(2)              | 2.10(3)<br>2.21(2)   | 2.28(4)              | 2.22(2)              | 1 99(3)              |
| Te(1B) - O(1)#4                    | 2.46(2)                | 2.48(3)                | 2.46(3)                | 2.38(2)              | 2.433(17)            | 2.20(1)<br>2.37(2)   | 2.23(2)              | 2.24(2)              |
|                                    | 2:10(2)                | 2.10(0)                | 2.10(0)                | 2.00(0)              | 2.100(17)            | 2.37(2)              | 2.27(2)              | (_)                  |
| S(1)-O(5)#5                        | 1.449(7)               | 1.455(8)               | 1.455(6)               | 1.452(7)             | 1.446(7)             | 1.452(9)             | 1.454(7)             | 1.445(9)             |
| S(1)-O(6)#6                        | 1.466(7)               | 1.456(8)               | 1.469(6)               | 1.460(6)             | 1.466(7)             | 1.449(9)             | 1.455(7)             | 1.458(9)             |
| S(1)-O(7)                          | 1.483(6)               | 1.488(8)               | 1.490(6)               | 1.483(6)             | 1.485(6)             | 1.495(9)             | 1.494(7)             | 1.494(9)             |
| S(1)-O(4)#1                        | 1.487(6)               | 1.497(7)               | 1.497(6)               | 1.488(6)             | 1.490(6)             | 1.501(11)            | 1.496(7)             | 1.497(9)             |

Table S2. Selected Bond Distances (Å) for lanthanide tellurite sulfates.

|              | Ho-2       |              | Dy-3     | Ho-3     | Er-3      |               | Er-4     | Tm-4      | Yb-4      | Lu-4      |
|--------------|------------|--------------|----------|----------|-----------|---------------|----------|-----------|-----------|-----------|
| Ho(1)-O(2)#1 | 2.313(5)   | Ln(1)-O(2)#1 | 2.283(5) | 2.282(5) | 2.462(16) | Ln(1)-O(3)#1  | 2.136(8) | 2.103(3)  | 2.098(3)  | 2.100(5)  |
| Ho(1)-O(6)   | 2.329(5)   | Ln(1)-O(1)#2 | 2.313(4) | 2.308(6) | 2.293(17) | Ln(1)-O(6)    | 2.268(7) | 2.240(4)  | 2.215(3)  | 2.217(5)  |
| Ho(1)-O(9)   | 2.3301(11) | Ln(1)-O(6)   | 2.319(5) | 2.306(6) | 2.266(18) | Ln(1)-O(7)    | 2.298(8) | 2.274(3)  | 2.284(3)  | 2.255(5)  |
| Ho(1)-O(3)   | 2.349(5)   | Ln(1)-O(3)   | 2.327(5) | 2.321(5) | 2.326(19) | Ln(1)-O(4)    | 2.299(8) | 2.287(4)  | 2.285(3)  | 2.269(5)  |
| Ho(1)-O(7)   | 2.350(5)   | Ln(1)-O(5)   | 2.334(5) | 2.320(6) | 2.346(17) | Ln(1)-O(2)    | 2.309(7) | 2.292(4)  | 2.290(3)  | 2.277(5)  |
| Ho(1)-O(1)#2 | 2.417(5)   | Ln(1)-O(4)   | 2.465(5) | 2.459(6) | 2.42(2)   | Ln(1)-O(5)    | 2.340(7) | 2.321(3)  | 2.322(3)  | 2.307(5)  |
| Ho(1)-O(2)#2 | 2.419(5)   | Ln(1)-O(9)   | 2.514(5) | 2.499(6) | 2.488(18) | Ln(1)-O(1)    | 2.444(7) | 2.436(4)  | 2.429(3)  | 2.415(5)  |
| Ho(1)-O(4)   | 2.439(5)   | Ln(1)-O(2)#2 | 2.530(5) | 2.500(5) | 2.307(18) |               |          |           |           |           |
|              |            |              |          |          |           | Ln(2)-O(9)    | 2.154(7) | 2.140(4)  | 2.129(3)  | 2.124(5)  |
| Ho(2)-O(1)#4 | 2.284(5)   | Ln(2)-O(1)   | 2.264(5) | 2.253(5) | 2.210(18) | Ln(2)-O(11)#2 | 2.209(8) | 2.187(3)  | 2.176(3)  | 2.177(4)  |
| Ho(2)-O(1)   | 2.284(5)   | Ln(2)-O(11)  | 2.268(5) | 2.256(6) | 2.26(3)   | Ln(2)-O(8)#3  | 2.223(7) | 2.198(3)  | 2.205(3)  | 2.184(5)  |
| Ho(2)-O(8)   | 2.331(7)   | Ln(2)-O(12)  | 2.281(5) | 2.265(6) | 2.26(2)   | Ln(2)-O(10)#4 | 2.253(7) | 2.236(4)  | 2.226(3)  | 2.217(5)  |
| Ho(2)-O(3)#5 | 2.359(5)   | Ln(2)-O(10)  | 2.314(5) | 2.304(6) | 2.30(2)   | Ln(2)-O(13)#2 | 2.258(7) | 2.241(3)  | 2.228(3)  | 2.227(5)  |
| Ho(2)-O(3)#6 | 2.359(5)   | Ln(2)-O(3)#4 | 2.383(4) | 2.381(5) | 2.366(18) | Ln(2)-O(12)#5 | 2.304(7) | 2.281(4)  | 2.276(3)  | 2.274(5)  |
| Ho(2)-O(5)#7 | 2.409(5)   | Ln(2)-O(7)#5 | 2.412(5) | 2.396(6) | 2.394(19) |               |          |           |           |           |
| Ho(2)-O(5)#8 | 2.409(5)   | Ln(2)-O(8)   | 2.446(5) | 2.439(6) | 2.431(18) | Te(1)-O(3)    | 1.791(8) | 1.801 (3) | 1.796 (3) | 1.794 (4) |
| Ho(2)-O(9)#6 | 2.467(8)   | Ln(2)-O(9)#4 | 2.741(5) | 2.735(6) | 2.751(19) | Te(1)-O(2)    | 1.911(7) | 1.914 (3) | 1.911 (3) | 1.916 (5) |
|              |            |              |          |          |           | Te(1)-O(2)#6  | 2.131(7) | 2.133 (4) | 2.130 (3) | 2.131 (4) |
| Te(1)-O(3)   | 1.851(5)   | Te(1)-O(3)   | 1.835(5) | 1.825(5) | 1.791(18) | Te(1)-O(1)    | 2.149(7) | 2.143 (3) | 2.148 (3) | 2.145 (4) |
| Te(1)-O(1)   | 1.857(5)   | Te(1)-O(1)   | 1.858(5) | 1.854(5) | 1.838(18) | Te(2)-O(8)    | 1.827(7) | 1.835 (4) | 1.836 (3) | 1.841 (5) |
| Te(1)-O(2)   | 1.866(5)   | Te(1)-O(2)   | 1.870(5) | 1.869(6) | 1.883(18) | Te(2)-O(9)    | 1.848(7) | 1.854 (3) | 1.854 (3) | 1.849 (5) |
|              |            |              |          |          |           | Te(2)-O(1)    | 1.931(7) | 1.935 (4) | 1.935 (3) | 1.938 (4) |
| S(1)-O(6)#1  | 1.464(5)   | S(1)-O(6)#4  | 1.461(5) | 1.462(6) | 1.460(19) |               |          |           |           |           |
| S(1)-O(7)#3  | 1.464(5)   | S(1)-O(7)    | 1.477(5) | 1.473(6) | 1.454(19) | S(1)-O(13)    | 1.465(7) | 1.460 (4) | 1.456 (3) | 1.462 (5) |
| S(1)-O(5)    | 1.477(5)   | S(1)-O(5)    | 1.478(5) | 1.478(6) | 1.478(18) | S(1)-O(4)     | 1.467(8) | 1.462 (4) | 1.457 (4) | 1.463 (5) |
| S(1)-O(4)    | 1.493(5)   | S(1)-O(4)#1  | 1.488(5) | 1.488(6) | 1.519(19) | S(1)-O (12)   | 1.474(8) | 1.469 (4) | 1.458 (3) | 1.465 (4) |
|              |            | S(2)-O(13)   | 1.430(6) | 1.447(6) | 1.45 (2)  | S(1)-O (10)   | 1.478(8) | 1.480 (4) | 1.474 (3) | 1.485 (5) |
|              |            | S(2)-O(12)#6 | 1.464(6) | 1.475(6) | 1.46 (2)  | S(2)-O(6)#1   | 1.451(8) | 1.462 (4) | 1.460 (3) | 1.468 (5) |
|              |            | S(2)-O(11)#7 | 1.475(5) | 1.479(6) | 1.46 (2)  | S(2)-O(5)     | 1.479(8) | 1.463 (4) | 1.463 (4) | 1.471 (5) |
|              |            | S(2)-O(10)   | 1.488(5) | 1.486(6) | 1.46 (2)  | S(2)-O(7)#7   | 1.477(8) | 1.463 (3) | 1.466 (4) | 1.474 (5) |

|               |           |           | S2—O11    | 1.485(8)  | 1.477 (4) 1.473 (3 | ) 1.482 (4) |
|---------------|-----------|-----------|-----------|-----------|--------------------|-------------|
|               |           |           |           |           |                    |             |
|               | Gd-5      | Dy-5      | Ho-5      | Er-5      | Tm-5               | Yb-5        |
| Ln(1)-O(1)    | 2.380(5)  | 2.353(3)  | 2.346(3)  | 2.332(3)  | 2.289(9)           | 2.304(5)    |
| Ln(1)-O(4)    | 2.492(4)  | 2.467(3)  | 2.456(3)  | 2.431(3)  | 2.329(9)           | 2.411(5)    |
| Ln(1)-O(6)#2  | 2.470(4)  | 2.430(3)  | 2.418(3)  | 2.393(3)  | 2.331(9)           | 2.364(4)    |
| Ln(1)-O(7)#1  | 2.345(4)  | 2.350(3)  | 2.345(3)  | 2.334(3)  | 2.316(8)           | 2.325(4)    |
| Ln(1)-O(9)    | 2.824(4)  | 2.783(3)  | 2.764(3)  | 2.722(3)  | 2.379(9)           | 2.698(5)    |
| Ln(1)-O(9)#1  | 2.384(4)  | 2.363(3)  | 2.353(3)  | 2.345(3)  | 2.432(9)           | 2.321(5)    |
| Ln(1)-O(10)   | 2.427(5)  | 2.431(3)  | 2.435(3)  | 2.435(3)  | 2.444(10)          | 2.435(4)    |
| Ln(1)-O(11)#3 | 2.458(4)  | 2.446(4)  | 2.445(3)  | 2.429(3)  | 2.437(9)           | 2.429(5)    |
| Ln(1)-O(13)   | 2.340(5)  | 2.311(4)  | 2.302(3)  | 2.286(3)  | 2.765(9)           | 2.270(5)    |
|               |           |           |           |           |                    |             |
| Ln((2)-O(2)#2 | 2.446(4)  | 2.416(3)  | 2.409(3)  | 2.398(3)  | 2.137(10)          | 2.372(4)    |
| Ln(2)-O(4)#1  | 2.477(4)  | 2.444(3)  | 2.434(3)  | 2.410(3)  | 2.251(9)           | 2.384(5)    |
| Ln(2)-O(5)#4  | 2.198(5)  | 2.158(4)  | 2.148(3)  | 2.142(3)  | 2.275(9)           | 2.112(5)    |
| Ln(2)-O(6)#2  | 2.365(4)  | 2.331(3)  | 2.321(3)  | 2.301(3)  | 2.308(9)           | 2.271(4)    |
| Ln(2)-O(7)    | 2.319(4)  | 2.279(3)  | 2.269(3)  | 2.255(3)  | 2.396(9)           | 2.218(4)    |
| Ln(2)-O(9)#1  | 2.484(4)  | 2.472(3)  | 2.460(3)  | 2.435(3)  | 2.405(9)           | 2.412(5)    |
| Ln(2)-O(10)#2 | 2.314(5)  | 2.292(3)  | 2.286(3)  | 2.274(3)  | 2.428(9)           | 2.258(4)    |
|               |           |           |           |           |                    |             |
| Te(1)-O(1)    | 1.856 (4) | 1.851 (3) | 1.850 (3) | 1.857 (3) | 1.845 (9)          | 1.855 (5)   |
| Te(1)-O(2)    | 1.859 (5) | 1.861 (3) | 1.864 (3) | 1.868 (3) | 1.860 (9)          | 1.874 (4)   |
| Te(1)-O(3)    | 1.913 (5) | 1.907 (3) | 1.909 (3) | 1.910 (3) | 1.893 (10)         | 1.899 (5)   |
| Te(2)-O(5)    | 1.813 (5) | 1.823 (4) | 1.824 (3) | 1.820 (3) | 1.816 (10)         | 1.828 (5)   |
| Te(2)-O(4)    | 1.885 (4) | 1.885 (3) | 1.887 (3) | 1.887 (3) | 1.882 (9)          | 1.881 (4)   |
| Te(2)-O(3)    | 2.037 (4) | 2.026 (3) | 2.026 (3) | 2.025 (3) | 2.023 (9)          | 2.031 (4)   |
| Te(2)-O(2)#5  | 2.320 (4) | 2.323 (3) | 2.323 (3) | 2.299 (3) | 2.306 (9)          | 2.282 (5)   |
| Te(3)-O(7)    | 1.865 (4) | 1.860 (3) | 1.861 (3) | 1.865 (3) | 1.850 (9)          | 1.868 (4)   |
| Te(3)-O(6)    | 1.862 (4) | 1.863 (3) | 1.861 (3) | 1.865 (3) | 1.856 (8)          | 1.870 (4)   |
| Te(3)-O(8)    | 1.925 (4) | 1.926 (3) | 1.922 (3) | 1.931 (3) | 1.905 (9)          | 1.924 (4)   |

| Te(3)-O(1)#2 | 2.515 (5) | 2.509 (4) | 2.502 (3) | 2.470 (3) | 2.490 (9)  | 2.463 (5) | - |
|--------------|-----------|-----------|-----------|-----------|------------|-----------|---|
| Te(4)-O(10)  | 1.863 (5) | 1.867 (3) | 1.864 (3) | 1.864 (3) | 1.860 (9)  | 1.869 (5) |   |
| Te(4)-O(9)   | 1.894 (4) | 1.886 (3) | 1.890 (3) | 1.892 (3) | 1.895 (8)  | 1.892 (5) |   |
| Te(4)-O(8)   | 1.956 (4) | 1.940 (3) | 1.947 (3) | 1.939 (3) | 1.957 (9)  | 1.939 (4) |   |
| Te(4)-O(4)   | 2.467 (4) | 2.457 (3) | 2.450 (3) | 2.445 (3) | 2.441 (8)  | 2.440 (4) |   |
|              |           |           |           |           |            |           |   |
| S(1)-O(12)   | 1.463 (5) | 1.456 (4) | 1.461 (3) | 1.462 (3) | 1.447 (11) | 1.466 (5) |   |
| S(1)-O(13)   | 1.465 (5) | 1.465 (4) | 1.464 (3) | 1.473 (4) | 1.461 (11) | 1.471 (5) |   |
| S(1)-O(11)   | 1.481 (5) | 1.478 (4) | 1.472 (3) | 1.479 (3) | 1.461 (10) | 1.475 (5) |   |
| S(1)-O(14)   | 1.473 (5) | 1.469 (4) | 1.475 (3) | 1.488 (4) | 1.467 (10) | 1.481 (5) |   |

| Ln   | Ln-Ln (Å) | Ln   | Ln-Ln (Å) |
|------|-----------|------|-----------|
| Ce-1 | 4.298(1)  | Ho-5 | 3.7256(3) |
| Pr-1 | 4.282(2)  | Er-4 | 5.142(7)  |
| Nd-1 | 4.263(1)  | Er-5 | 3.6849(7) |
| Sm-1 | 4.220(1)  | Tm-4 | 5.112(5)  |
| Tb-1 | 4.142(1)  | Tm-5 | 3.6915(9) |
| Gd-5 | 3.7889(5) | Yb-4 | 5.160(4)  |
| Dy-5 | 3.7458(4) |      |           |

Table S3. The closest  $Ln^{3+}-Ln^{3+}$  distances for the compounds magnetism measurement.