# **Supporting Information**

# Transient block copolymer topologies for generating nanoporous polymer membranes

<sup>1</sup>Corinna Stegelmeier, <sup>2</sup>Volkan Filiz, <sup>2,3</sup>Volker Abetz, <sup>4</sup>Jan Perlich, <sup>5</sup>Andreas Fery, <sup>1</sup>Pia Ruckdeschel, <sup>1</sup>Sabine Rosenfeldt, <sup>1</sup>Stephan Förster

<sup>1</sup> Physical Chemistry I, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany

<sup>2</sup> Institute of Polymer Research, Helmholz-Zentrum Geesthacht, Max-Planck-Straße 1 21502 Geesthacht, Germany

<sup>3</sup> Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany

<sup>4</sup> Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany

<sup>5</sup> Physical Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany

# Volatility of the casting solvents

The vapor pressures at 20°C are given by  $p_{THF}^0 = 173$  mbar and  $p_{DMF}^0 = 3.8$  mbar, i.e. THF has a 48-fold vapor pressure compared to DMF (see Table S1). Assuming a similar diffusivity of the two solvents (similar values of  $\lambda$ ) we expect a similar ratio of 48:1 for the evaporation rates.

Evaporation rates were measured for the pure solvents. The data are displayed in Table S1

**Table S1.** Measured loss of weight for the pure solvents THF and DMF starting from 70  $\mu$ L and 50  $\mu$ L respectively.

| THF (70 μL) |           | DMF (50 μL) |           |
|-------------|-----------|-------------|-----------|
| Time [sec]  | Mass [mg] | Time [sec]  | Mass [mg] |
| 0           | 61.2      | 0           | 48        |
| 5           | 54.2      | 5           | 43        |
| 15          | 48.5      | 10          | 42.2      |
| 25          | 43        | 20          | 42        |
| 35          | 37        | 30          | 41.9      |
| 45          | 32        | 40          | 41.7      |
| 55          | 27        | 50          | 41.4      |
| 65          | 22        | 60          | 41.1      |
| 75          | 17        | 70          | 40.8      |
| 85          | 13        | 80          | 40.5      |
| 95          | 8         | 90          | 40.4      |
| 105         | 5         | 100         | 39.9      |
| 115         | 2         | 110         | 39.8      |
| 125         | 1         | 120         | 39.4      |
| 135         | 0         | 130         | 39        |
| -           | -         | 140         | 37.8      |
| -           | -         | 150         | 38.4      |
| -           | -         | 160         | 38.2      |
| -           | -         | 170         | 37.6      |
| -           | -         | 180         | 37.6      |

The experiments confirmed the expectations and rendered a ratio 43:1 relative to equal volumes (10  $\mu$ L).

#### **Anisotropic PS-P4VP-scattering patterns**

Kinetic studies using *in-situ* synchrotron SAXS were also performed with PS-*b*-P4VP diblock copolymers. Evidence of the ordered cylindrical phase (OC) mentioned in the trajectories described in Figures 4 and 5 was obtained at higher evaporation times where anisotropic scattering patterns were found after 70 seconds.



**Figure S1.** Evolution of scattering patterns of an evaporating PS-*b*-P4VP ( $M_n$ =100k, f(4VP)=0.25) solution in DMF/THF: 7/3. The anisotropic scattering pattern appears after 70 seconds.

Anisotropic patterns were found for PS-P4VP block copolymers likely due to the better solubility of P4VP in DMF which results in a different swelling behavior and a more stable OC-phase than found for PS-P2VP.

More detailed ternary phase diagram (see Figure 4)



**Figure S2.** Detailed version of Fig. 4 displaying more AFM-images obtained along the evaporation trajectories. In Fig. 4 the number of images have been reduced to improve clarity.

# Enlarged AFM images of the ternary phase diagram (see Figure 4)

Series black: 15wt% SVP-1 in DMF



**Figure S3.** AFM height image of a polymer membrane cast from a solution of 15 wt% S2VP-1 in pure DMF after an evaporation time of 40 seconds.

#### 100.0 nm 100.0 nm 75.0 nm 0.0 3.0 µm 0.0 Height 3.0 µm 0.0 Height 3.0 µm Height 100.0 nm 200.0 nm 3.0 µm 0.0 Height 0.0 Height 3.0 µm

#### Series purple: 15wt% SVP-1 in DMF/THF: 70/30

**Figure S4.** AFM height image of a polymer membranes cast from a solution of 15 wt% S2VP-1 in DMF/THF: 70/30. The evaporation times are 0 sec, 15 sec, 30 sec, 40 sec and 60 sec respectively.

# Series yellow: 15wt% SVP-1 in DMF/THF: 50/50



**Figure S5.** AFM height image of a polymer membranes cast from a solution of 15 wt% S2VP-1 in DMF/THF: 50/50. The evaporation times are 0 sec and 15 sec respectively. Series green:

#### Series green: 15wt% SVP-1 in DMF/THF: 30/70



**Figure S6.** AFM height images of polymer membranes cast from a solution of 15 wt% S2VP-1 in DMF/THF: 30/70. The evaporation times are 0 sec, 15 sec, 30 sec, respectively.

### Series blue: 15wt% SVP-1 in pure THF



**Figure S7.** AFM height images of olymer membranes cast from a solution of 15 wt% S2VP-1 in pure THF. The evaporation times are 0 sec, 15 sec, 30 sec and 60 sec. The last image was taken from a completely dried membrane.

#### Series orange: 10 wt% SVP-1 in pure THF



**Figure S8.** AFM height image of a polymer membrane cast from a solution of 10 wt% S2VP-1 in pure THF.

Series red: 20 wt% SVP-1 in pure THF



Figure S9. AFM height images of polymer membranes cast from a solution of 20 wt% S2VP-

1 in pure THF.