Online Supporting Information for "Green Production of Ultrahigh-Basicity Polyaluminum Salts with Maximum Atomic Economy by Ultrafiltration and Electrodialysis with Bipolar Membranes"

Qing Chen¹, Chang Xue¹, Wei-Ming Zhang^{*1}, Wei-Guo Song^{*2}, Li-Jun Wan² and Kun-Song Ma³

¹ College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325000, P.R. China

² Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China

³ Yangzhou Hongyuan Electronic Co., Ltd., Gaoyou 225600, P.R. China

*Corresponding author. Tel.: +86 577 86689300 (W.-M. Zhang), +86 10 62557908 (W.-G. Song)

E-mail: weiming@iccas.ac.cn, wsong@iccas.ac.cn

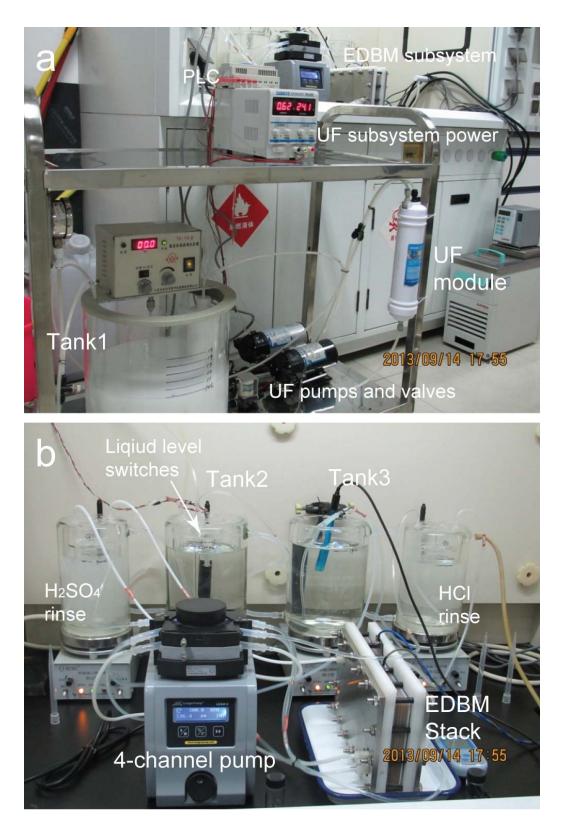
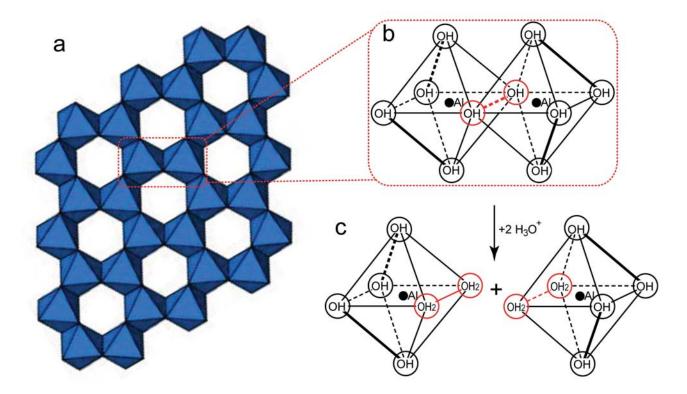



Figure S1. Photographs of the integrated system. The UF subsystem (a) and the EDBM subsystem (b).

Figure S2. Solution chemistry of Al(OH)₃ reacting with free acids. (a) Schematic layer structure of aluminum hydroxide (gibbsite). Each octahedron represents 1 Al³⁺ surrounded by 6 OH⁻, and each OH⁻ is shared by 2 adjacent octahedrons, giving an empirical formula of Al(OH)₃. (b) A close look of the adjacent aluminum octahedrons. The shared double hydroxide bridges are emphasized as thick lines. (c) The combined hydroxide bridges are taken apart when attacked by hydrated protons. Separated [Al(H₂O)₆]³⁺ octahedrons are the final products when gibbsite reacts with adequate free acids.

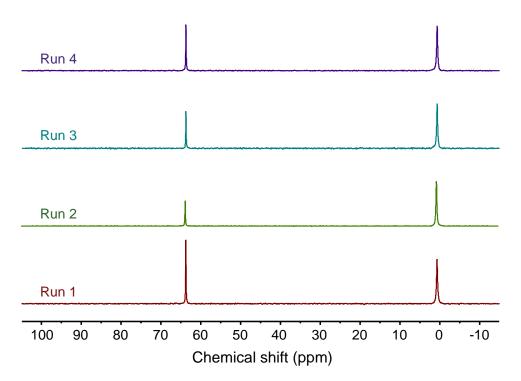


Figure S3. ²⁷Al-NMR spectrum of the final polyaluminum products in all batches.

Items	UF+EDI	BM process	Notes
Lab system parameters			
System production cycle	20	hour/batch	EDBM with large mixing tank, including 30 min clean
Final product basicity	70%		See Fig. 4c for details
Polyaluminum salt yield		mol/batch	Calculated as Al
	0.101	kg/batch	Calculated as AI_2 (OH) _{4.2} Cl _{1.8} ·2H ₂ O solids
UF effective membrane area	0.20	m ²	
UF average power	20.0		15 W for normal and 40 W for flush operation
UF energy consumption	0.040	kWh/batch	
EDBM effective membrane area	0.168	m²	187 cm2 x 9 cell pairs
EDBM energy consumption	0.250	kWh/batch	See Fig. 3b for details
Full system cost estimation			
Scale up factor from lab system	200		Cost analysis appliable for large system only
UF effective membrane area	40	m²	
UF module cost	1,200	\$	Litree LH3-1060-V module (same fiber, 40 m2 area)
EDBM effective membrane area	33.7		
EDBM total membrane area	42.1	m²	80% effective area ratio
BP membrane cost	30,294		\$720/m2 for BP membrane
Anion membrane cost	15,147		\$360/m2 for anion membrane
EDBM stack cost	68,162	\$	1.5 times for membranes
Cost for core membrane modules	69,362		UF Module + EDBM stack
Peripheral equipment cost	34,681		50% of core membrane modules
Capital cost	104,042		
Maintenance cost	10,404	\$/year	10% of capital cost per year
System lifespan		year	
Available working time		hour/year	
Total investment in system lifespan	124,851	\$	Capital + Maintenance
Total yields in system lifespan	162,216	kg	as $AI_2(OH)_{4.2} CI_{1.8} \cdot 2H_2 O$ solids
Capital cost	0.770	\$/kg	
Energy consumption		kWh/kg	UF + EDBM
Electricity charge		\$/kWh	
Energy cost	0.286	\$/kg	
Total cost (exclude feed chemicals)	1.06	\$/kg	as $AI_2(OH)_{4.2} CI_{1.8} \cdot 2H_2 O$ solids

 Table S1. Cost estimation of the integrated process.