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Abstract—Structural code coverage is a popular test adequacy
metric that measures the percentage of program structure (e.g.,
statement, branch, decision) executed by a test suite. While
structural coverage has several benefits, previous studies showed
that code coverage is not a good indicator of a test suite’s
fault-detection effectiveness as code coverage does not consider
test assertion quality. In this research, we formally define the
coverage gap in structural testing as the percentage of program
structure that is executed but not observed by any test oracle.
Our large-scale empirical study of 13 Java applications, 16K
test cases, and 51.6K test assertions shows that even for mature
test suites, the gap can be as high as 51 percentage points (pp)
and is 34 pp on average. Our study shows that the coverage
gap strongly and negatively correlates with a test suite’s fault-
detecting effectiveness. We propose a lightweight static analysis
of program dependencies related to the gap to produce a ranked
recommendation of test focus methods that can improve test suite
quality. When considering 34.8K assertions in the test suite as
ground truth, the recommender suggests two-thirds of the focus
methods written by testers within the top 5 recommendations.

Index Terms—code coverage, test oracles, fault-detection effec-
tiveness, checked coverage, mutation testing

I. INTRODUCTION

Structural code coverage is a popular test adequacy metric
that reports the percentage of a program’s structural code
elements (e.g., statement, branch, condition, decision) exe-
cuted by a test suite. Among its strengths, code coverage
is easy to interpret, can be integrated into build processes,
incurs only modest runtime overhead, and many tools support
its consumption by software engineers [4], [25]. For these
reasons, code coverage tools are used by millions of developers
in thousands of organizations on a daily basis, e.g., [8], [36].

Despite its popularity, code coverage has well-understood
limitations. More than three decades ago, research on software
fault modeling, e.g., [46], established that for a program execu-
tion to reveal a faulty statement, four conditions must be met:
(C1) the statement must be executed; (C2) the execution of the
statement must create an error state; (C3) the error state must
propagate to program output; and (C4) the erroneous output
must be observed and be judged to be incorrect. Covering a
faulty statement is essential, but it only addresses the first of
these conditions, which likely contributes to research findings

demonstrating that coverage alone is inadequate for explaining
fault-detection effectiveness [5], [24].

Research has clearly demonstrated the importance of C4
by showing that the number and strength of assertions in test
oracles influences fault-detection effectiveness [51]. Moreover,
Schuler and Zeller developed checked coverage (CC) which,
at least partially, accounts for conditions C1, C2, and C4
by considering whether a statement can influence the oracle
through a chain of dependencies [40]. In this way, it identifies
statements that were covered by the test suite but unobserved
by a test oracle. Covered but unobserved statements are
incapable of revealing faults relative to an explicit oracle and
their inclusion in an adequacy metric overestimates the quality
of a test suite.

In this paper, we adapt the checked coverage framework
to support a richer coverage criterion – object branch cover-
age [12] – and to make it directly comparable to traditional
structural coverage measures. This allows for computation
of the checked coverage gap – the portion of the coverage
domain that is covered by a test suite, but unobserved by
a test oracle. We leverage these changes to show through
a controlled experiment using 13 real-world Java programs
with substantial test suites that the size of the coverage gap
ranges from 19% to 51% – 34% on average. We characterize
the consequences of the coverage gap through a study using
mutation testing that reveals that the size of the coverage
gap is strongly and negatively related to fault detection ef-
fectiveness. Finally, to mitigate the negative consequences
of the coverage gap, we propose a method that analyzes
control and data dependencies to recommend functions to
include as the focus method in a test oracle. Conceptually,
this recommender suggests focus methods that can establish
missing links in establishing conditions C3 and C4 from the
description above. By experimentally removing assertions in
existing test suites, we show that the original focus methods
that close the coverage gaps are recommended 50%, 67%, and
73% times within top-1, top-5, and top-10 recommendations,
respectively.

The primary contributions of this paper are:
(1) Confirming the findings of Schuler and Zeller’s checked
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coverage paper [40], [41].
(2) Demonstrating that for real-world Java systems tradi-

tional coverage criteria significantly overestimate test suite
quality by quantifying the gap between traditional statement
and object-branch criteria and their checked variants.

(3) Demonstrating that the size of the checked coverage gap
is strongly and negatively related to fault-detection effective-
ness.

(4) Proposing a method to recommend test oracle focus
methods that can close the coverage gap and demonstrating
its effectiveness.

II. BACKGROUND AND RELATED WORK

This section reviews program slicing, structural coverage,
and methods for assessing test suite effectiveness. It concludes
with a discussion of the most closely related research.

A. Program Slicing

Program slicing analyzes a program’s data flow and control
flow dependencies and computes a set of statements (program
slice) that may influence a designated set of values at some
point of interest in the program – known as the slicing
criterion [48]. Slicing can be divided along two axes: static
vs. dynamic and forward vs. backward [45]. Forward slicing
computes statements that the criterion affects and backward
slicing computes statements that affect the criterion. Static
backward slicing computes all statements that may affect
the slicing criterion on some program execution, whereas,
dynamic backward slicing computes statements that actually
affect the slicing criterion on a specific program execution [1].
Slicing can easily be adapted to different representations of a
program, e.g., source, bytecode, or assembler. In this work we
use dynamic backward slicing on Java programs represented
in bytecode.

B. Testing and Structural Coverage

A test consists of the definition of a set of test inputs
and a predicate, called the test oracle, which is true if the
test is consistent with program requirements [3]. Oracles are
commonly expressed as assert statements whose arguments
express those predicates. A test suite is a set of tests.

A key question in judging a test suite is the extent to
which the set of test inputs force the execution of different
parts of the software. Coverage criteria are used to make
such judgements. Many different structural coverage criteria
have been developed that vary in the definition of their
coverage domain, e.g., [38]. The coverage domain defines
a set of elements which capture the structure of a program.
For example, coverage elements may be functions, statements,
branch outcomes, pairs of definitions and uses, or program
paths. A widely used structural criterion is statement coverage
(SC) which is efficient to compute and whose results are easy
to interpret, e.g., [36]. Coverage criteria naturally define an
adequacy requirement which states that all feasible elements
of the coverage domain must be executed by a test suite. One
coverage criterion, c, is said to be stronger than another, c′,

if adequacy for c implies adequacy for c′. For inadequate
test suites, coverage is usually expressed as the percentage
of the coverage domain that was executed by a test suite. For
inadequate tests, one must take care in comparing coverage
percentages, because the strength relation does not apply,
and changes in the coverage domain can shift percentages
significantly, e.g., expressing coverage for statements versus
basic blocks.

For critical systems, a number of stronger structural criteria
have been developed, e.g., MC/DC [6]. In this paper, we
choose object branch coverage (OBC) as a representative of
such criteria [12]. OBC defines a coverage domain consisting
of the outcomes of all object code branch instructions. For
a simple decision, source branch and object branch coverage
requirements are the same. However, for compound conditions
in languages with short-circuit evaluation of logical expres-
sions, OBC is much stronger. It has been shown that OBC is
stronger than source branch, condition, and condition/decision
coverage, and for simple and commonly met restrictions on
programs, it is stronger than MC/DC [12].

C. Test Effectiveness

Test effectiveness refers to the fault-detection effectiveness
of a test suite. A widely used approach to measure effec-
tiveness is mutation testing which injects artificial faults in a
program through minor modifications, such as changing con-
ditional boundary or altering arithmetic operators. A modified
program (mutant) is killed if any test detects it. The mutation
score measures the percentage of mutants killed by a test suite.
Mutation testing has proven to be a good indicator of test suite
fault-detection ability [2], [33]. In our research, we use the PIT
mutation tool for the Java programs [11].

D. Test Oracles

Oracles play a fundamental role in testing - without them,
a test is incapable of making a judgement about the exercised
program behavior [3], [43]. Because of their centrality, there
is a long history of research on how to derive test oracles
from requirements specifications, e.g., [34], [39], [44], and the
interest in generating oracle assertions continues with recent
work proposing methods that learn to generate test assertions
from examples, e.g., [47]. Despite this progress, most test
oracles in use today are either implicit, i.e., checks imposed
by the runtime system, or written by developers.

Developer effort in writing tests, and encoding oracles, is
valuable, and researchers have studied a variety of methods
for leveraging existing test oracles to support different soft-
ware testing sub-problems: test data selection [50], test case
prioritization [42], and test coverage [40], [49] – which we
discuss in detail below.

A primary motivation in our work is the growing body of
research demonstrating the strong link between oracle quality
and fault-detection effectiveness. Of the recent work in this
area, Zhang and Mesbah’s study of the relationship between
assertions and test effectiveness is noteworthy [51]. They
found that the number of assertions is strongly correlated with
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test suite effectiveness and that checked coverage, discussed
below, is more strongly correlated with test suite effective-
ness than traditional coverage metrics. They also found that
developer-written assertions are more effective than automated
assertions.

E. Oracle-Based Coverage

In 2007, Ken Koster and David Kao proposed a structural
test adequacy metric called state coverage that measures the
percentage of output-defining and side effect variables checked
by test oracles [35]. To the best of our knowledge, state
coverage is the first paper that introduced a structural test
adequacy metric that considers the use of test oracles in a test
suite. By doing so, state coverage focuses more on checking
the behavior of the programs than merely executing them.
The authors conducted a small experiment on the Apache
Jakarta Commons Lang, a utility package of Java. They
randomly reduced the number of checks in a test suite to
vary the total number of checks and compute varied levels of
state coverage. Their experimental study demonstrated some
correlation between total checks and the mutation scores and
between checks and state coverage.

Schuler and Zeller proposed checked coverage (CC) as a
metric to assess test oracle quality [40] [23]. CC is computed
by intersecting recorded coverage sets with dynamic backward
slices using test assertions as the slice criterion. Their study
showed that CC is more sensitive to assertions in test suite than
statement coverage. Their study only considered statement
coverage criterion and showed that CC is always less than
statement coverage and it is common for mature test suites to
miss assertions in the test case. In our study, we adapt CC to
support an additional coverage domain, OBC, and to compute
coverage with respect to that underlying domain which allows
their direct comparison – what we term the coverage gap.
Additionally, we propose a recommender that recommends
actionable suggestion to improve CC and thus improving test
suite fault-detection effectiveness.

While CC and state coverage are limited to statement-
based coverage, the oracle-based concept of observability was
proposed for the MC/DC coverage criterion to support the
testing of mission critical systems [49]. Observability ensures
a masking-free path from the coverage element to a test oracle
and in this way it can guide test generation. This idea was
later extended to other Boolean expression-based criteria [37].
Existing implementations of observable coverage focus on test
generation for data flow languages and are not applicable
to computing test suite coverage for imperative languages.
Consequently, we do not include them in our evaluation. Like
this work, our extension of CC to support other host criteria,
like OBC, allows us to explore whether checked coverage
varies with the host criteria.

III. APPROACH

We adapt CC to different host coverage criteria, define the
coverage gap, and how the gap can be analyzed to recommend
test suite enhancements that reduce it.

A. Host Coverage (h)

We generalize CC to allow it to be applied to an underlying
host coverage criterion.

Definition 1 (Coverage Elements and Domain): A coverage
element represents the execution of a fragment of a program
(e.g., statement, branch, condition, decision, def-use pair). A
coverage domain, H , is the set of coverage elements associated
with a given program.

Definition 2 (Test Coverage): Test coverage for a host
criterion for an individual test t is defined by a function,
h(t) ⊆ H , that records the set of coverage elements executed
by the test.

Test coverage naturally extends to test suites, TS, h(TS) =⋃
t∈TS h(t) and coverage is typically reported as the ratio

|h(TS)|/|H|. When it is clear from the context we refer to
this ratio as h.

B. Checked Host Coverage (hcc)

We adapt the definition of Schuler and Zeller so that CC
computes the percentage of coverage elements defined by a
chosen host criterion that are executed by a test suite and
are observed by at least one test oracle. A coverage element
is observed if there is a chain of dynamic data or control
dependencies associated with a test execution that begins with
the element and ends with the argument of a test oracle
assertion.

Definition 3 (Checked Coverage): The set of observed
coverage elements for domain H and a test t with oracle o is:

hcc(t) = MAP(H, SLICE(o, TRACE(t)))

where TRACE records an object code trace of a test run, SLICE
computes a backwards dynamic slice of its second argument
(TRACE(t)) using the first argument (O) as a slicing criterion,
and MAP converts a sliced trace to a set of coverage elements
in H .

Functions TRACE and SLICE are the same as what was
defined for CC [40]. The MAP function is maps to the
selected coverage domain H . In CC, line number metadata
was used to map object trace elements back to source lines,
but to generalize to other domains additional processing is
required. For example, analysis of branch instructions and their
outcomes is needed to record OBC and for coverage domains
whose elements cannot be associated with a single object code
instruction, e.g., def-use coverage, MAP must ensure that the
entire coverage element is present in the sliced trace, e.g., a
bytecode writing to a field and a subsequent bytecode reading
from that field.

As with traditional coverage, CC extends naturally to
test suites and coverage can be reported as the ratio
|hcc(TS)|/|H|. When it is clear from the context we refer
to this ratio as HCC, with H replaced by the appropriate
coverage criterion, e.g., SCC and OBCC for statement and
object-branch checked coverage, respectively.
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Fig. 1. Overview of the HCC framework on a simple SUT. TSo is the original test suite (blue) and TSe is enriched test suite (green); their statement (SC)
and statement checked coverage (SCC) are shown to the lower right along with the statement checked coverage gap (Gs).

C. Coverage Gap (G)

Since h and hcc are defined over the same domain, H ,
we can compute the gap between them. As we discuss
below the set of coverage elements that constitute the gap,
Gh(TS) = h(TS)\hcc(TS), can be useful in recommending
test improvements. The size of the gap is simply the ratio of
the size of that set to the size of the domain, |Gh(TS)|/|H|.
When it is clear from the context we refer to the gap as Gh.

D. Assertion Recommender

As we show in §V the size of the Gh is negatively related
to fault-detection effectiveness. One approach to closing the
gap, and thereby improve a test suite, is to add assertions, but
what assertions should be added?

Our key insight is that the gap exists because the chain
of dependencies from an element of the coverage domain
to an oracle does not exist - either C3 or C4 are not
met. Consequently a covered but unobserved element of the
coverage domain can be eliminated from the gap by adding a
focus method to a test assertion that is the sink of a chain of
dependencies beginning with that element. We propose light-
weight static analysis to compute a candidate set of non-void
focus methods in the System Under Test (SUT) based on Gh –
the elements in the gap. More specifically, a non-void function
is recommended if: (1) it reads a field and the Gh contains a
write to that field; (2) it reads a field and the Gh contains
a call to a function that writes that field; or (3) it contains
an element in Gh that reads/writes a field. A static intra-
procedural flow-insensitive analysis can efficiently compute a
set of candidate focus methods based on these constraints. This
analysis may, however, yield many recommendations. When
a recommended method calls another it has the potential to
subsume the observations made by the second. We codify
this heuristic by computing a breadth-first ordering of the call
graph of recommended methods. The top-K recommendations
are the first K methods in this ordering. In §V, we show
this approach is quite effective. In future work, we plan to
explore accuracy improvements to the analysis and the ranking
heuristics.

This process requires that the test engineer formulate an ora-
cle assert statement whose argument invokes the recommended
focus method. The specifics of arguments to the recommended
function and how its results are tested are left to the tester,
but future work could build on methods that automatically
generate assertions [47]. In §V, we study the efficacy of
recommendations by removing test assertions from the test
suite and measuring whether the focus methods used in those
assertions are recommended.

E. Motivating Example

Figure 1, shows a motivating example that illustrates how
faults can hide in the gap between host coverage and its CC
variant and how the recommender can help close the gap and
detect the faults. 1 shows a simple Triangle class with eight
statements. 2 shows it’s original test suite, TSo, that achieves
100% statement coverage, SC. SCC ( 4 ) is computed using
the test assertions, shown with a blue background, as the
slicing criterion in TSo. This calculation reveals that only 25%
( 5 ) of the statements are covered and observed, which leaves
a significant gap, Gs = 75%( 3 ).

The unobserved statements are shown with red background
in 1 . If faults are present inside setPerimeter method,
such as “p=side2+side2+side3”, the test suite will not be able
to detect them. Therefore, despite achieving 100% statement
coverage, the original test suite is not as effective at detect-
ing faults. One well-understood strategy for increasing fault
detection effectiveness is to strengthen a test oracle [51]. The
checked coverage gap provides guidance on how oracles can
be strengthened.

To illustrate, we show data and control dependencies among
the unobserved statements in 1 . Line 1, 2, 3 write the values
of the side1, side2, and side3, line 6 uses these values to
define the value of p which is returned by line 8. The assertion
recommender in 6 analyzes such read/write relationships to
suggest focus methods for enriched test assertions that can re-
duce the coverage gap. In this example, the getPerimeter
method is recommended and adding a test assertion using it

4



yields an enhanced test suite TSe ( 7 ) that achieves 100%
SCC ( 8 ) reducing the gap to 0%.

It can be challenging to navigate dependency chains from
the unobserved statements and add the appropriate assertions
in real programs with thousands of statements and hundreds of
methods. HCC automates the first part of this process. Then,
the recommender utilizes the HCC report and efficiently ana-
lyzes the SUT to recommend valuable methods for assertions.

IV. IMPLEMENTATION

We use two industrial standard tools to record host coverage:
for statement coverage Atlassian Clover [7] and for object
branch coverage JaCoCo [27]. We use the maven-clover-
plugin(4.0.6) and jacoco-maven-plugin(0.8.2).

A. CC computation

We use JavaSlicer, a backward dynamic slicing tool for Java
[22], to implement the SLICE component of CC. This tool
implements a TRACE module that instruments Java bytecode
and inserts additional instructions to record execution logs with
source file line numbers, variable references, instruction type,
and control flow jumps.

JavaSlicer is capable of supporting large and complex
slicing criterion and either individual or multiple assertions
to be included in a single slice. We use the Java parser [28] to
extract test assertions from JUnit tests and formulate a slicing
criterion.

For the statement coverage domain, we implemented the
MAP function (discussed in §III-B) using the source file anno-
tations included in the bytecode slices. For the object branch
coverage domain, we implemented the MAP function by ex-
tending JavaSlicer. JavaSlicer does not provide information
regarding which branch was taken for conditional instruction.
We extend the JavaSlicer so that when a conditional instruction
is found, we check whether the execution jumps out of the
current BB or not. This information is used to map slices to
the object branch coverage domain.

These implementations of TRACE, SLICE, and MAP for both
statement and object branch coverage establish a solid basis
for supporting a wider range of criteria; we leave that to future
work.

B. Recommender

The recommender takes two inputs: unobserved bytecodes
from Gh and the SUT. Since the recommender analyses are
flow-insensitive we use the ASM library [18] to efficiently
scan the SUT bytecode files to detect read/write relationships
on fields that appear in unobserved bytecodes as outlined in
§III.

The following listing illustrates an examples of the recom-
mendations computed for statement coverage gaps in the Joda
Time software.

Listing 1. Unobserved statement calls a method that writes field
f i n a l c l a s s GJDayOfWeekDateTimeField e x t e n d s P r e c i s e D u r a t i o n D a t e T i m e F i e l d {

GJDayOfWeekDateTimeField ( Bas i cChrono logy chrono logy , D u r a t i o n F i e l d days ) {
46 s u p e r ( Da teTimeFie ldType . dayOfWeek ( ) , days ) ; / * w r i t e s i U n i t M i l l i s f i e l d * /

i C h r o n o l o g y = c h r o n o l o g y ;

}

Recommendation : o rg / Joda / t ime / f i e l d / P r e c i s e D u r a t i o n D a t e T i m e F i e l d . g e t U n i t M i l l i s
/ * method from s u p e r c l a s s t h a t r e a d s i U n i t M i l l i s * /
p u b l i c f i n a l l ong g e t U n i t M i l l i s ( ) {

r e t u r n i U n i t M i l l i s ;
}

In Listing 1, line 46 is an unobserved statement,
which calls the constructor of the super-class
PreciseDurationDateTimeField, which writes
the iUnitField and iUnitMillis fields. After the
execution of line 46, calling and adding an assertion with
the getUnitMillis method can bring line 46 into the
dependence chain to be observed by a test assertion.

The recommender does not automatically add assertions. It
is up to the developer to incorporate the recommended meth-
ods into meaningful assertions. New inputs are not required for
most cases since unobserved statements are already executed.
However, a method can also be called transitively by other
methods making it difficult for the oracle to check its result.
In such a scenario, a tester may need to generate new inputs
to call the recommended method directly.

V. EXPERIMENTAL STUDY

We answer the following research questions to evaluate our
study:
RQ1 What are the coverage differences between host coverage
and HCC?
RQ2 To what extent do faults hide in the gap between host
coverage and HCC?
RQ3 Are the recommended focus methods representative of
the assertions in the original test suite?
RQ4 Does adding recommended assertions improve fault
detection effectiveness?

A. Artifacts

We evaluate our research on 13 large-scale open-source Java
systems as shown in Table I. To generalize the findings, we
have selected subjects from the checked coverage paper [41],
Defects4J [19], and some artifacts from GitHub. We select
these artifacts because they have mature and well-developed
test suites, a few artifacts are currently part of the Java
Development Kit (JDK) or used as a Java utility package,
and they have a large-scale codebase. In aggregate, our study
considers 248 thousand source lines of codes (SLOC) and 237
thousand lines of test code spread across 16 thousand test cases
with more than 51 thousand assertions. Our study includes the
largest artifacts in the original checked coverage study, but
uses more recent versions of those code bases. We replace
artifacts from that study, that are very dated and use old and
deprecated Java features, with more modern software systems
from different sources. The selection of these artifacts allows
us to confirm the general findings of Schuler and Zeller [40]
while enabling a broad evaluation of our research questions.

B. RQ1: Host Coverage versus HCC.

RQ1 investigates the gap in structural testing in terms of the
difference between code coverage and host checked coverage,
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TABLE I
DESCRIPTION OF ARTIFACTS

Artifact (version) Description Program Size(SLOC)1 Test Size(SLOC)1 Tests(#)2 Assertions(#)2

Commons-Cli (1.4) [13] Command line option parsing 2,699 3,932 372 573
Commons-Codec (1.2) [14] Common encodings 8,352 12,182 887 1,793
Commons-Csv (1.5) [15] CSV utilities 1,615 4,467 296 934
Commons-Lang (3.6) [16] Java helper utilities 27,265 48,172 2,908 15,424
Commons-Validator (1.6) [17] Data validation 7,409 8,352 536 2,486
Gson (2.8.0) [21] JSON support 7,815 13,762 1,014 1,780
Jackson-Dataformat-Xml (2.9.10) [26] XML processing 4,945 5,728 185 556
Jaxen (1.2.0) [29] XPath engine 10,760 8,042 716 587
JFreeChart (1.5.0) [30] 2D Charts 97,350 39,348 2,174 5,506
Joda-Time (2.10.11) [31] Date and time library 28,811 55,849 4,238 17,973
Jsoup (1.10.1) [32] HTML parsing 10,785 5,499 510 1,645
Plexus-Utils (3.1.0) [9] Utility classes 18,496 6,337 304 799
XStream (1.14.15) [10] XML serialization 21,741 25,518 1,830 1,554

Total: 248K 237K 16K 51.6K
1 Source lines of code (SLOC) are non-comment, non-blank lines reported by IntelliJ statistic plugin.
2 Tests are JUnit test cases annotated with @Test, Assertions are JUnit assertions

TABLE II
HOST COVERAGE, HCC AND COVERAGE GAP FOR STATEMENT AND OBJECT BRANCH CRITERIA

Artifact Test(#) Assertion(#) SC(%) SCC(%) Gaps (%p) OBC(%) OBCC(%) Gapob (%p)
Commons-Cli 137 405 83 55 28 74 44 30
Commons-Codec 563 1,030 75 32 43 77 32 45
Commons-Csv 278 898 92 49 43 88 41 47
Commons-Lang 2,534 14,153 82 54 28 81 52 29
Commons-Validator 442 2,276 77 51 26 76 46 30
Gson 1,014 1,723 86 48 38 79 46 33
Jackson-Dataformat-Xml 185 530 68 47 21 60 41 19
Jaxen 581 567 67 38 29 56 25 31
JFreeChart 2,174 5,420 57 21 36 47 17 30
Joda-Time 4,193 17,589 89 55 34 77 41 36
Jsoup 510 1,645 73 36 37 73 35 38
Plexus-Utils 277 780 48 26 22 37 18 19
XStream 1,697 1,238 74 25 49 72 21 51
Total/Average: 14.6K 48.3K 75 41 34 69 35 34

presented as a percentage point (pp), for statement and object
branch criteria.

Experimental Procedure. To compute checked statement
coverage (SCC) and object branch coverage (OBCC), first,
we identify all JUnit assertions in the test suite and construct
the slicing criteria automatically using our implemented tool.
Next, we record the execution trace of the test class using
the JavaSlicer tracer module and compute the dynamic slices
using the slicer module. We repeat this process for all test
classes in each artifact. Occasionally, we need to exclude test
cases/classes due to the limitations of JavaSlicer. We also
exclude those tests from host coverage computation to avoid
overestimating the gap. Our study considers 91% of the total
test cases and 94% of the total assertions from the original
test suites across the 13 artifacts. The total number of tests and
assertions are shown in columns II and III of Table II. Once all
slices are computed, we count the total unique statements and
object branches across each subject. Statement coverage gap
(Gs) and object branch coverage gap (Gob) are then calculated
by subtracting SCC and OBCC from the statement and object
branch coverage and represented as percentage points.

Analysis and Findings: Table II summarizes the results,
where each row represents coverage values for each arti-
fact. Each row includes the total number of tests, assertions,
statement coverage (SC), statement checked coverage (SCC),

statement coverage gap (Gs), object branch coverage (OBC),
object branch checked coverage (OBCC), and object branch
gap (Gapob). In total, we have studied 14.6 thousand tests
and 48.3 thousand assertions. For the statement criterion, the
minimum and maximum gaps are 21 pp and 49 pp, and the
average statement gap is 34 pp. Note that gaps for two different
subjects are not comparable, as it depends on each subject’s
host coverage. Similar to the statement coverage, the object
branch coverage gap varies from 19 pp to 51 pp. We observe
a 34 pp average object branch coverage gap across 13 subjects.

RQ1: On average, approximately 34% of the code
elements exercised by test inputs are not checked by
test oracles.

C. RQ2: Coverage Gap versus Fault-detection Effectiveness

In RQ1, we notice a substantial gap between host coverage
and HCC. As the gap represents the percentage of coverage
elements executed but not observed by any oracle, faults
residing within the gap are more likely to go undetected.
Therefore, in RQ2, we investigate the extent to which faults
may hide in the gap and how the coverage gap may affect the
fault-detection effectiveness of a test suite. To this end, we
conduct two experiments operating at different granularities.
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The first experiment investigates the relationship between the
gap and test effectiveness at the application level, and the
second experiment investigates the relationship between the
gap and test effectiveness at the package level.

1) Application Level Analysis: Experimental Procedure.
In this experiment, we manipulate the gap size for 12 of the
applications in RQ1 by randomly removing assertions from
their test suites1. To remove an assertion without affecting the
host coverage, we transform selected JUnit assertions with
a no-op. This preserves host coverage, since the assertion
arguments are still evaluated, but it may affect HCC and thus
impact the gap. For each application, we derive 15 different
test suites from the original test suite by enabling the following
percentage of assertions from test suites: 0% (all assertions
disabled), 1%, 2%, 5%, 7%, 10%, 15%, 20%, 25%, 30%, 45%,
55%, 65%, 75%, and 100%. The selection of assertions is
random. We compute mutation scores for all test suites and use
them as a proxy for fault detection effectiveness. We mutate
the source code using PIT’s STRONG mutation operators (the
rest of the PIT parameters are set to their default values),
which injects between 794 and 34,608 mutations across the
applications; with a total of 95,393 mutations for the entire
study. We compute the kill scores for an application by running
the 15 generated test suites on the mutated source.

Analysis and Findings. Figure 2 shows the statement
coverage gap and mutation score plots for 12 applications used
in RQ1. The gap size is on the X-axis and the mutation score
is on the Y-axis. We also compute a linear regression with
R2 value and slope for each artifact. The R2 value indicates
the goodness of the fit of the linear regression model, and
it measures the proportion of the variance in the dependent
variable (mutation score) predictable from the independent
variable (Gap). The slope indicates the steepness of each
regression line which measures the change in mutation score
as the coverage gap increases 1 unit. The higher the slope, the
higher the change rate. We also compute Kendall’s correlation
coefficient (τ ) to measure the strength and direction of the
relationship between coverage gap and mutation score.

We see high R2 values (0.76 to 0.98), indicating that the gap
can predict a high proportion of the variance in the mutation
scores. High correlation coefficients (τ ) (-.88 to -.1) also indi-
cate that gap and test effectiveness are strongly and negatively
correlated. Across the study the p-values computed for the
correlation coefficients lie in the range [2.14e−12, 1.33e−04],
indicating that the strong negative correlation holds with
significance.

The negative slope of the regression line measures the
drop in mutation score as the coverage gap increases. A
high negative slope also indicates the strength/effectiveness of
the oracles. Commons-codec has the highest slopes (-1.37),
indicating that test effectiveness drops quickly as the gap
increases. A lower slope, like Jaxen’s -0.13, indicates that the
mutation score decreases by .13% as the statement coverage

1XStream was not included in RQ2 because it triggers a bug in the PIT
mutation testing tool used in this study.

gap increases by 1%. We found that this was caused by the
large number of mutants (40%) seeded in Jaxen killed by
the runtime system (implicit oracles). When all 581 assertions
are enabled, Jaxen achieves a 49% mutation score, meaning
that explicit assertions kill only 9% of mutants (around 480
mutants). Further analysis showed that the Jaxen test suite
contains many exception oracles that check exceptional be-
havior inside the catch block, and STRONG mutators do
not mutate exception cause, types or message. As a result,
enabling/disabling those assertions does not affect the mutation
scores much.

2) Package Level Analysis: Testing typically operates at a
finer granularity than the entire application, e.g., at the class
or package level. We explored whether the trends observed
at the application also appear at the package level along with
extending the study to consider the OBC host criterion and its
checked variant OBCC.

Experimental Procedure. To mitigate costs in conducting
this study, we did not consider all packages across all applica-
tions. Instead, we selected three applications from which we
selected three packages each. We selected the two applications
from RQ1 with the largest test suites, Commons-lang and
Joda-time. Both have relatively high degrees of statement
coverage, above 80%, so we chose an application with less
than 70% coverage, Jaxen, for variety.

To select the packages, we first sort the packages based on
the statement count and then sort again based on statement
coverage and select the top three packages per application.
We make this choice to maintain variation in the package
size and coverage. From Joda-Time, we have selected convert
(433 statements, 98% SC), time (4320 statements, 96% SC),
and chrono (2445 statements and 83% SC). From Commons-
Lang, we have selected mutable (320 statement and 100% SC),
math (699 statement and 98% SC), and lang3 (6011 statement
and 97% SC) packages. From Jaxen, we selected, expr (891
statement, 88% SC), function (446 statement, 99% SC) and
Jaxen (413 statement, 91% SC) packages. These package sizes
vary from 320-6011 statement count, and coverage varies from
83 to 100%. We manipulate the coverage gap using the same
approach as in the application-level study. For each package,
we generate 15 test suites to explore the SC gap and 15 test
suites to explore the OBC gap. We mutate the target package
source code (using PIT’s targetClasses option), run the newly
generated test suites on the mutated source code, and record
their mutation scores.

Analysis and Findings. Figure 3, shows three rows of
subplots for the Joda-Time, Commons-Lang, and Jaxen pack-
ages, respectively. Each subplot consists of two datasets; blue
data points show statement coverage gap and mutation scores,
and orange data points show object branch coverage gap and
mutation score.

A package’s coverage gap depends on its host coverage and
CC score, and we see a wider range of gaps across packages
than was observed at the application level. The highest gap
(when all assertions are disabled) is the same as host coverage.
On the other hand, the lowest gap is achieved when all asser-
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Fig. 2. Relationship between statement coverage gap (Gs) (X-axis) and mutation kill score (Y-axis) for 12 applications (one panel per application). Data
points plot gap between SC and SCC versus mutation kill score for 15 test suites with varying oracle strength. Slope of regression line and statistical tests
for each application shown in the box in the top of each panel.

Fig. 3. Mutation score vs statement coverage gap (blue data points) and
object branch gap (orange data points) at the package level. Each dataset is
computed from 15 test suites (30 test suites per package) with varying gap
and their mutation scores.

tions are enabled, which is the difference between host cover-
age and HCC. For example, the commons-mutable package’s
statement coverage gap varies from 9-100 pp (SC=100% and

SCC=91%), whereas the joda-chronology package’s statement
coverage gap varies from 48-83pp (SC=83% and SCC=35%).

Similarly, mutation score also varies across a broader range
at the package level than was observed at the application level.
The lowest mutation score indicates the kill score when gap
is maximum (all assertions as removed). For example, the
commons-mutable package has the lowest mutation score of
5% (Gs=100pp) even when SC is 100%, which indicates that
95% faults can hide in the gap when host coverage yields
a high score. Commons-math has a low mutation score of
50% (Gs=98pp) when statement coverage is 98%, indicating
that 50% of faults can go undetected even with a perfect host
coverage. As the data suggests, this low mutation score varies
from package to package depending on where and what type
of mutants are injected. However, the variation of implicitly
killed mutants does not affect the relationship between the gap
and kill score; instead, it just shifts the regression lines along
the Y-axis.

Looking across host criteria, we see similar trends for
statement and object branch coverage. These trends are similar
to those observed at the application level. We observe high
correlation coefficient (τ ) (ranging from -.9 to -1) values for
all packages and criteria, indicating that test suite effectiveness
is strongly negatively correlated to the gap. Across the nine
packages and two host criteria, the p-values computed for the
correlation coefficients lie in the range [1.02e−21, 2.51e−04],
so we can say that the strong negative correlation holds with
significance
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We also get high R2 values for all packages and criteria,
indicating that the gap variation can explain a high proportion
of variance in test effectiveness.

RQ2: Faults can hide in the coverage gap and there
is a strong negative and statistically-significant corre-
lation between coverage gap size and fault-detection
effectiveness.

VI. RQ3: RECOMMENDATION EVALUATION

In RQ1, we notice gaps between host coverage and HCC
of up to 49%, indicating that almost half of the executed
statements do not influence any oracles in the test suite. RQ2
shows that test effectiveness decreases as the coverage gap
increases, and a strong negative correlation exists between
them. Therefore, a tester should aim to lower this coverage
gap by enriching the oracle. To this end, we implement the
recommender discussed in Section IV-B to provide developers
actionable feedback to reduce the gap by adding more test
oracles. In this research question, we evaluate the accuracy of
recommendations.
Assessing Recommendation Quality. A focus method is
one whose result is checked by an assertion. To evaluate
the quality of the recommendations, from each test suite in
each of the artifacts, we remove a single assertion at a time,
record the set of statements that become unchecked, and then
run the recommender to recommend focus methods. If the
focus method in the removed assertion is among the top-k
recommendations, then we have a top-k match. We analyze
the 34,894 assertions, from the 14.6k test cases of the 13
artifacts, that include a focus method in the applications’ code.
A possible future extension may include assertions having no
method calls in the assertion body, as we can easily find the
focus methods by analyzing the bytecodes.

Table III summarizes the results. Each row represents an
artifact. Column I shows the artifact name, and II represents
the number of assertions for evaluating the recommendations.
Columns III, IV, and IV present the top-1, top-5, and top-
10 scores. The top-K score measures the percentage of focus
methods within the top-K recommendations.

On average, 46%, 67%, and 73% of the assertion focus
methods are within the top 1, top 5, and top 10 recom-
mendations. Furthermore, for artifacts like Common-Codec,
Commons-Lang, and JFreeChart, the recommender achieves
more than 80% top 1 score. The recommender recommends
all possible ways to check a set of unchecked statements;
however, the ranking algorithm works well when there is a
single dominator method in the call graph of the recommended
methods.

For other artifacts like Jaxen, Commons-Cli’s, and Joda-
Time, the scores are lower for various reasons. For Commons-
Cli’s the reason is that the test cases are less diverse. Among
332 assertion focus methods, only 46 focus methods are
unique. As a result, when the recommender misses a few

TABLE III
PERCENTAGE OF ASSERTION FOCUS METHODS RECOMMENDED WITHIN

THE TOP-K RECOMMENDATIONS ACROSS ALL 13 ARTIFACTS

Artifacts Assert(#) Top 1(%) Top 5(%) Top 10(%)
Commons-Cli 332 16 51 70
Commons-Codec 532 84 96 97
Commons-Csv 602 69 84 90
Commons-Lang 9843 80 96 98
Commons-Validator 1441 50 77 89
Jackson-Dataformat-Xml 83 33 43 63
Jaxen 134 11 30 37
JFreeChart 3240 82 93 97
Joda-Time 15775 17 43 53
Jsoup 1098 21 31 38
Gson 871 53 82 87
Plexus-Utils 365 55 75 78
XStream 578 38 56 59
Summary Total Average Average Average

34894 46 67 73

focus methods in the top-1, the overall top-1 score goes down
quickly.

For Jaxen, we find that from its 134 assertions, 83 checks
for exception causes, types, and messages. This is problematic
because JavaSlicer cannot construct the slice properly when an
exception is thrown. As a result, those statements are not in
the unchecked statements due to assertion removal, and the
recommender misses valuable information, which affects the
ranking process.

For Joda-Time, we find that it has a complex hierarchy
of sub and super-class, specially, in the Chronology package,
where fields are read and written by multiple methods. Since
any of these methods could be a focus method, the recom-
mender chances of producing the one used in the code are
reduced.

RQ3: On average, 67% of the focus methods in
the original test suites are suggested within the top
5 recommendations. Restricting to the top 1 recom-
mendation, nearly half of the developer-written focus
methods are present.

VII. RQ4: ASSERTION ADDITION AND GAP REDUCTION.

RQ3 shows that the recommender can accurately sug-
gest focus methods, and nearly 50% of the focus methods
are suggested within the top 1 recommendation. In RQ4,
we perform a smaller scale study on the classes in the
org.joda.time.chrono package’s test suite to inves-
tigate whether adding assertions reduces its gap and im-
proves fault-detection effectiveness. To this end, we man-
ually added assertions using simple nullness or equality
checks of the recommended methods’ return values. For
example, GJEraDateTimeField class has 13 pp gap and
our recommender suggested to check the return value of
getMaximumTextLength and set methods. We added
the assertions shown in Listing 2, resulting in a 10 pp gap
reduction and 7 pp fault-detection improvement.

Listing 2. Additional assertions based on the recommendations
GJEraDa teTimeFie ld g f = new GJEraDateTimeFie ld ( I s l a m i c C h r o n o l o g y . g e t I n s t a n c e ( ) ) ;
a s s e r t N o t E q u a l s ( 0 , g f . s e t ( 2 2 2 2 2 2 , 1 ) ) ;
a s s e r t N o t E q u a l s ( 0 , g f . getMaximumTextLength ( Lo ca l e .UK) ) ;
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Fig. 4. Gap reduction and mutation score improvement due to additional
assertions in the Joda-Time chronology package

We compute the coverage gap for the original and enriched
versions of the chronology package’s test suite, and report
gap reduction as percentage point differences. Similarly, we
perform mutation testing on the original and enriched test suite
and report the change in score as percentage point differences.

Figure 4(a) shows a data point per class with 31 in total.
Each data point represents the original gap (x-axis) and gap
reduction (y-axis) due to additional assertions for a class.
Generally, when the original gap is large, there is more room
for improvement; thus, the gap reduction also tends to be
high. For example, the BasicFixedMonthChronology
class has an 87 pp original gap, and additional assertions
reduced the gap by 70 pp. Conversely, when the gap is small,
the chances of reducing the gap diminishes. For example, the
AssembledChronology class has only 6 pp gap, and its
gap reduction is zero. We see a strong positive correlation
(.81) between the original gap and gap reduction due to
additional assertions, demonstrating that recommendations are
valuable in improving checked coverage.

Figure 4(b) shows the gap reduction on the x-axis and
mutation score improvement on the y-axis. We use color
to further delineate relationships: green points have original
gaps below 10 pp, blue points have a gap between 10-30 pp,
and red points have gaps of more than 30 pp. We observe
variability in this relation based on the original gap. When
the gap is large, red points, there is a potential for more
significant mutation score improvement, but this reduces with
gap – see the blue points and the green points. We note that
additional confounding factors, such as class sizes, number of
mutants per class, and strength of inserted assertion are likely
impacting the data. Despite these confounds, the data do show
a correlation between increased mutation scores and coverage
gap reduction. This suggests that gap reduction is necessary
for improving fault-detection effectiveness.

These findings suggest the potential benefit of the recom-
mender to increase fault detection effectiveness, even when
using the simplest assertions. In future work we plan to in-
tegrate the recommender with automated assertion generation
tools (e.g., EvoSuite [20]) to generate high-quality automated
assertions that check the recommended focus method.

RQ4: Additional assertions improved fault-detection
effectiveness by as much as 58 pp, with an average
improvement of 13 pp

A. Threats to Validity

External Validity. We study 13 open-source applications
from different domains and organizations. However, the find-
ings may not generalize to other projects following different
coding and V&V practices, or having fault types that require
other infrastructure to be detected. Similarly, our evaluation
targets two common host criteria but further studies are needed
to confirm that the findings generalize to other criteria.

Internal Validity. We employ several tools in the studies.
These tools and our manipulation and integration of their
outputs may have faults. We mitigated this threat by using
publicly available and broadly used tools such as JavaSlicer,
PIT, Clover, JaCoCo, and the ASM library to limit this threat.
We also conducted extensive testing of our pipeline which led
us to identify other limitations. For example, JavaSlicer can-
not handle well some integral Java classes (Java.lang.String,
java.lang.System, java.lang.Object). As a result, dependencies
through method calls of these classes cannot be computed,
leading to the overestimation of the coverage gap. To handle
such threats, we documented and excluded classes and tests
that the tools could not process consistently. To manipulate
coverage gap, we remove assertions from test suite. Although
systematic, this approach does not precisely control that
removing a percentage of random assertions may lead to
different gap sizes. However, as we only care about how the
gap affects the effectiveness, we do not consider this as a threat
to validity.

Construct Validity. We have established a connection be-
tween the coverage gap and test effectiveness through the
use of mutation testing. This connection depends on the
extent to which the generated mutations corresponds to real
faults. Future work could address this threat by examining
whether faults in previous versions of the systems reside in
the coverage gaps. Also, we note that the depicted relationship
between gap size and mutation scores is confounded by the
presence of mutations that are killed by implicit oracles (those
detected by the system, not the test assertions). Our construct
does not differentiate among faults that require an explicit
versus an implicit oracle, but the findings make it clear that
the more assertions that are required to expose a fault, the
stronger the relationship between gap and test effectiveness.

VIII. CONCLUSION AND FUTURE DIRECTIONS

Structural coverage is widely used as a test adequacy metric,
but its inability to relate coverage to what is observed by a test
oracle limits its fault-detection effectiveness. Our work contin-
ues a line of research, beginning with Schuler and Zeller [40],
that clearly demonstrates that incorporating the oracle into
coverage metrics improves their ability to measure test suite
quality. In particular, we find that there is a substantial gap
between the portions of a program that are covered and those
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that may influence a test oracle outcome. This gap can hide
faults, but it also represents a source of information that can
be leveraged to improve the fault detection effectiveness of
test suites by enhancing their test oracles with assertions that
call well-chosen focus methods.

We did not consider the cost of checked coverage in this
work, but we note that in our experiments it yields an order of
magnitude increase in the overhead of test coverage. Depend-
ing on the development context, this may mean that checked
coverage should only be run periodically, e.g., when the source
code of tests themselves are changed, rather than in a typical
continuous integration workflow. Such an adaptive approach to
configuring different forms of test coverage is consistent with
other research on how to adjust coverage methods to best suit
developer needs [25].

IX. DATA AVAILABILITY

Artifacts, tools, and results are available for review at https:
//github.com/icse2023anon/cc-gap-artifacts and will be made
publicly available upon acceptance.
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