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Preface

This book consists of ten weeks of material given as a course on ordi-
nary differential equations (ODEs) for second year mathematics majors
at the University of Bristol. It is the first course devoted solely to dif-
ferential equations that these students will take. An obvious question
is “why does there need to be another textbook on ODEs”? From one
point of view the answer is certainly that it is not needed. The classic
textbooks of Coddington and Levinson, Hale, and Hartman1 provide a 1 E. A. Coddington and N. Levinson.

Theory of Ordinary Differential Equations.
Krieger, 1984; J. K. Hale. Ordinary Differ-
ential Equations. Dover, 2009; and P. Hart-
man. Ordinary Differential Equations. So-
ciety for industrial and Applied Mathe-
matics, 2002

thorough exposition of the topic and are essential references for math-
ematicians, scientists and engineers who encounter and must under-
stand ODEs in the course of their research. However, these books are
not ideal for use as a textbook for a student’s first exposure to ODEs
beyond the basic calculus course (more on that shortly). Their depth
and mathematical thoroughness often leave students that are relatively
new to the topic feeling overwhelmed and grasping for the essential
ideas within the topics that are covered. Of course, (probably) no one
would consider using these texts for a second year course in ODEs.
That’s not really an issue, and there is a large market for ODE texts for
second year mathematics students (and new texts continue to appear
each year). I spent some time examining some of these texts (many
which sell for well over a hundred dollars) and concluded that none of
them really would ‘’work” for the course that I wanted to deliver. So,
I decided to write my own notes, which have turned into this small
book. I have taught this course for three years now. There are typi-
cally about 160 students in the class, in their second year, and I have
been somewhat surprised, and pleased, by how the course has been re-
ceived by the students. So now I will explain a bit about my rationale,
requirements and goals for the course.

In the UK students come to University to study mathematics with
a good background in calculus and linear algebra. Many have ‘’seen”
some basic ODEs already. In their first year students have a year long
course in calculus where they encounter the typical first order ODEs,
second order linear constant coefficient ODEs, and two dimensional
first order linear matrix ODEs. This material tends to form a sub-
stantial part of the traditional second year course in ODEs and since
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I can consider the material as ‘’already seen, at least, once”, it allows
me to develop the course in a way that makes contact with more con-
temporary concepts in ODEs and to touch on a variety of research
issues. This is very good for our program since many students will do
substantial projects that approach research level and require varying
amounts of knowledge of ODEs.

This book consists of 10 chapters, and the course is 12 weeks long.
Each chapter is covered in a week, and in the remaining two weeks I
summarize the entire course, answer lots of questions, and prepare the
students for the exam. I do not cover the material in the appendices in
the lectures. Some of it is basic material that the students have already
seen that I include for completeness and other topics are ‘’tasters” for
more advanced material that students will encounter in later courses
or in their project work. Students are very curious about the notion
of ‘’chaos”, and I have included some material in an appendix on that
concept. The focus in that appendix is only to connect it with ideas that
have been developed in this course related to ODEs and to prepare
them for more advanced courses in dynamical systems and ergodic
theory that are available in their third and fourth years.

There is a significant transition from first to second year mathemat-
ics at Bristol. For example, the first year course in calculus teaches a
large number of techniques for performing analytical computations,
e.g. the usual set of tools for computing derivatives and integrals of
functions of one, and more variables. Armed with a large set of com-
putational skills, the second year makes the transition to ‘’thinking
about mathematics” and ‘’creating mathematics”. The course in ODEs
is ideal for making this transition. It is a course in ordinary differen-
tial ‘’equations”, and equations are what mathematicians learn how to
solve. It follows then that students take the course with the expecta-
tion of learning how to solve ODEs. Therefore it is a bit disconcerting
when I tell them that it is likely that almost all of the ODEs that they
encounter throughout their career as a mathematician will not have an-
alytical solutions. Moreover, even if they do have analytical solutions
the complexity of the analytical solutions, even for ‘’simple” ODEs, is
not likely to yield much insight into the nature of the behavior of the
solutions of ODEs. This last statement provides the entry into the na-
ture of the course, which is based on the ‘’vision of Poincaré”–rather
than seeking to find specific solutions of ODEs, we seek to understand
how all possible solutions are related in their behavior in the geomet-
rical setting of phase space. In other words, this course has been de-
signed to be a beginning course in ODEs from the dynamical systems
point of view.

I am grateful to all of the students who have taken this course over
the past three years. Teaching the course was a very rewarding expe-

©2017 Content under Creative Commons Attribution license CC-BY 4.0, code under BSD 3-Clause License.
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rience for me and I very much enjoyed discussing this material with
them in weekly office hours.

This book was typeset with the Tufte latex package. I am grateful to
Edward R. Tufte for realizing his influential design ideas in this Latex
book package.

©2017 Content under Creative Commons Attribution license CC-BY 4.0, code under BSD 3-Clause License.





1
Getting Started: The Language of ODEs

This is a course about ordinary differential equations (ODEs).
So we begin by defining what we mean by this term1. 1 The material in these lectures can be

found in most textbooks on ODEs. It
consists mainly of terminology and def-
initions. Generally such “defintion and
terminology” introductions can be te-
dious and a bit boring. We probably
have not entirely avoided that trap, but
the material does introduce much of the
essential language and some concepts
that permeate the rest of the course. If
you skip it, you will need to come back
to it.

Definition 1 (Ordinary differential equation). An ordinary differential
equation (ODE) is an equation for a function of one variable that involves
(‘’ordinary”) derivatives of the function (and, possibly, known functions of
the same variable).

We give several examples below.

1. d2x
dt2 + ω2x = 0,

2. d2x
dt2 − αx dx

dt − x + x3 = sin ωt,

3. d2x
dt2 − µ(1− x2) dx

dt + x = 0,

4. d3 f
dη3 + f d2 f

dη2 + β

(
1−

(
d2 f
dη2

)2
)
= 0,

5. d4y
dx4 + x2 d2y

dx2 + x5 = 0.

ODEs can be succinctly written by adopting a more compact no-
tation for the derivatives. We rewrite the examples above with this
shorthand notation.

1’. ẍ + ω2x = 0,

2’. ẍ− αxẋ− x + x3 = sin ωt,

3’. ẍ− µ(1− x2)ẋ + x = 0,

4’. f ′′′ + f f ′′ + β
(

1− ( f ′′)2
)
= 0, .

5’. y′′′′ + x2y′′ + x5 = 0
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Now that we have defined the notion of an ODE, we will need to
develop some additional concepts in order to more deeply describe the
structure of ODEs. The notions of ‘’structure” are important since we
will see that they play a key role in how we understand the nature of
the behavior of solutions of ODEs.

Definition 2 (Dependent variable). The value of the function, e.g for ex-
ample 1, x(t).

Definition 3 (Independent variable). The argument of the function, e.g
for example 1, t.

We summarize a list of the dependent and independent variables in
the five examples of ODEs given above.

example dependent variable independent variable

1 x t
2 x t
3 x t
4 f η

5 y x

Table 1.1: Identifying the independent
and dependent variables for several ex-
amples.

The notion of ‘’order” is an important characteristic of ODEs.

Definition 4 (Order of an ODE). The number associated with the largest
derivative of the dependent variable in the ODE.

We give the order of each of the ODEs in the five examples above.

example order

1 second order
2 second order
3 second order
4 third order
5 fourth order

Table 1.2: Identifying the order of the
ODE for several examples.

Distinguishing between the independent and dependent variables
enables us to define the notion of autonomous and nonautonomous
ODEs.

Definition 5 (Autonomous, Nonautonomous). An ODE is said to be au-
tonomous if none of the coefficients (i.e. functions) multiplying the depen-
dent variable, or any of its derivatives, depend explicitly on the independent
variable, and also if no terms not depending on the dependent variable or any
of it derivatives depend explicitly on the independent variable. Otherwise, it
is said to be nonautonomous.
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Or, more succinctly, an ODE is autonomous if the independent vari-
able does not explicitly appear in the equation. Otherwise, it is nonau-
tonomous.

We apply this definition to the five examples above, and summarize
the results in the table below.

example

1 autonomous
2 nonautonomous
3 autonomous
4 autonomous
5 nonautonomous

Table 1.3: Identifying autonomous and
nonautonomous ODEs for several exam-
ples.

All scalar ODEs, i.e. the value of the dependent variable is a scalar,
can be written as first order equations where the new dependent vari-
able is a vector having the same dimension as the order of the ODE.
This is done by constructing a vector whose components consist of the
dependent variable and all of its derivatives below the highest order.
This vector is the new dependent variable. We illustrate this for the
five examples above.

1.

ẋ = v,

v̇ = −ω2x, (x, v) ∈ R×R.

2.

ẋ = v,

v̇ = αxv + x− x3 + sin ωt, (x, v) ∈ R×R.

3.

ẋ = v,

v̇ = µ(1− x2)v− x, (x, v) ∈ R×R.

4.

f ′ = v,

f ′′ = u,

f ′′′ = − f f ′′ − β(1− ( f ′′)2)

or
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f ′ = v,

v′ = f ′′ = u,

u′ = f ′′′ = − f u− β(1− u2)

or

 f ′

v′

u′

 =

 v
u

− f u− β(1− u2)

 , ( f , v, u) ∈ R×R×R.

5.

y′ = w,

y′′ = v,

y′′′ = u,

y′′′′ = −x2y′′ − x5

or

y′ = w,

w′ = y′′ = v,

v′ = y′′′ = u,

u′ = y′′′′ = −x2v− x5

or


y′

w′

v′

u′

 =


w
v
u

−x2v− x5

 , (y, w, v, u) ∈ R×R×R×R.

Therefore without loss of generality, the general form of the ODE
that we will study can be expressed as a first order vector ODE:

ẋ = f (x), x(t0) ≡ x0, x ∈ Rn, autonomous, (1.1)

ẋ = f (x, t), x(t0) ≡ x0 x ∈ Rn, nonautonomous, (1.2)

where x(t0) ≡ x0 is referred to as the initial condition.
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This first order vector form of ODEs allows us to discuss many
properties of ODEs in a way that is independent of the order of the
ODE. It also lends itself to a natural geometrical description of the
solutions of ODEs that we will see shortly.

A key characteristic of ODEs is whether or not they are linear or
nonlinear.

Definition 6 (Linear and Nonlinear ODEs). An ODE is said to be linear
if it is a linear function of the dependent variable. If it is not linear, it is said
to be nonlinear.

Note that the independent variable does not play a role in whether
or not the ODE is linear or nonlinear.

example

1 linear
2 nonlinear
3 nonlinear
4 nonlinear
5 linear

Table 1.4: Identifying linear and nonlin-
ear ODEs for several examples.

When written as a first order vector equation the (vector) space of
dependent variables is referred to as the phase space of the ODE. The
ODE then has the geometric interpretation as a vector field on phase
space. The structure of phase space, e.g. its dimension and geometry,
can have a significant influence on the nature of solutions of ODEs. We
will encounter ODEs defined on different types of phase space, and of
different dimensions. Some examples are given in the following lists.

1-dimension

1. R –the real line,

2. I ⊂ R –an interval on the real line,

3. S1–the circle.

‘’Solving” One dimensional Autonomous ODEs. Formally (we will ex-
plain what that means shortly) an expression for the solution of a one
dimensional autonomous ODE can be obtained by integration. We
explain how this is done, and what it means. Let P denote one of
the one dimensional phase spaces described above. We consider the
autonomous vector field defined on P as follows:

ẋ =
dx
dt

= f (x), x(t0) = x0, x ∈ P . (1.3)
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This is an example of a one dimensional separable ODE which can be
written as follows:

∫ x(t)

x(t0)

dx′

f (x′)
=
∫ t

t0

dt′ = t− t0. (1.4)

If we can compute the integral on the left hand side of (1.4), then it may
be possible to solve for x(t). However, we know that not all functions

1
f (x) can be integrated. This is what we mean by we can ‘’formally”
solve for the solution for this example. We may not be able to represent
the solution in a form that is useful.

The higher dimensional phase spaces that we will consider will be
constructed as Cartesian products of these three basic one dimensional
phase spaces.

2-dimensions

1. R2 = R×R–the plane,

2. T2 = S× S–the two torus,

3. C = I × S– the (finite) cylinder,

4. C = R× S– the (infinite) cylinder.

In many applications of ODEs the independent variable has the in-
terpretation of time, which is why the variable t is often used to de-
note the independent variable. Dynamics is the study of how systems
change in time. When written as a first order system ODEs are often
referred to as dynamical systems, and ODEs are said to generate vector
fields on phase space. For this reason the phrases ODE and vector field
tend to be used synonomously. Moreover, this geometrical view leads
to an alternate, but synonomous, terminology for solutions of ODEs.
In particular, solutions of ODEs may be referred to as trajectories or
orbits.

Several natural questions arise when analysing an ODE . ‘’Does the
ODE have a solution?” ‘’Are solutions unique?” (And what does
‘’unique” mean?) The standard way of treating this in an ODE course
is to “prove a big theorem” about existence and uniqueness. Rather,
than do that (you can find the proof in hundreds of books, as well as
in many sites on the internet), we will consider some examples that
illustrate the main issues concerning what these questions mean, and
afterwards we will describe sufficent conditions for an ODE to have a
unique solution (and then consider what ‘’uniqueness” means).

First, do ODEs have solutions? Not necessarily, as the following
example shows.



getting started: the language of odes 19

Example 1 (An example of an ODE that has no solutions.). Consider
the following ODE defined on R:

ẋ2 + x2 + t2 = −1, x ∈ R.

This ODE has no solutions since the left hand side is nonnegative and the
right hand side is strictly negative.

Then you can ask the question–”if the ODE has solutions, are they
unique?” Again, the answer is ‘’not necessarily”, as the following ex-
ample shows.

Example 2 (An example illustrating the meaning of uniqueness).

ẋ = ax, x ∈ R, (1.5)

where a is an arbitrary constant. The solution is given by

x(t) = ceat. (1.6)

So we see that there are an infinite number of solutions, depending upon the
choice of the constant c. So what could uniqueness of solutions mean? If we
evaluate the solution (1.6) at t = 0 we see that

x(0) = c. (1.7)

Substituting this into the solution (1.6), the solution has the form:

x(t) = x(0)eat. (1.8)

From the form of (1.8) we can see exactly what ‘’uniquess of solutions” means.
For a given initial condition, there is exactly one solution of the ODE satis-
fying that initial condition.

Example 3. An example of an ODE with non-unique solutions.
Consider the following ODE defined on R:

ẋ = 3x
2
3 , x(0) = 0, x ∈ R. (1.9)

It is easy to see that a solution satisfying x(0) = 0 is x = 0. However, one
can verify directly by substituting into the equation that the following is also
a solution satisfying x(0) = 0:

x(t) =

{
0, t ≤ a
(t− a)3, t > a

(1.10)

for any a > 0. Hence, in this example, there are an infinite number of
solutions satisfying the same initial condition. This example illustrates
precisely what we mean by uniqueness. Given an initial condition, only one
(‘’uniqueness”) solution satisfies the initial condition at the chosen initial
time.
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There is another question that comes up. If we have a unique solu-
tion does it exist for all time? Not necessarily, as the following example
shows.

Example 4. An example of an ODE with unique solutions that exists only
for a finite time.

Consider the following ODE on R:

ẋ = x2, x(0) = x0, x ∈ R. (1.11)

We can easily integrate this equation (it is separable) to obtain the following
solution satisfying the initial condition:

x(t) =
x0

1− x0t
(1.12)

The solution becomes infinite, or ‘’does not exist” or ‘’blows up” at t
x0

. This
is what ‘’does not exist” means. So the solution only exists for a finite time,
and this ‘’time of existence” depends on the initial condition.

These three examples contain the essence of the ‘’existence issues”
for ODEs that will concern us. They are the ‘’standard examples” that
can be found in many textbooks2.3 2 J. K. Hale. Ordinary Differential Equa-

tions. Dover, 2009; P. Hartman. Ordi-
nary Differential Equations. Society for in-
dustrial and Applied Mathematics, 2002;
and E. A. Coddington and N. Levinson.
Theory of Ordinary Differential Equations.
Krieger, 1984

3 The ‘’Existence and Uniqueness The-
orem” is, traditionally, a standard part
of ODE courses beyond the elementary
level. This theorem, whose proof can
be found in numerous texts (including
those mentioned in the Preface), will not
be given in this course. There are sev-
eral reasons for this. One is that it re-
quires considerable time to construct a
detailed and careful proof, and I do not
feel that this is the best use of time in a 12

week course. The other reason (not unre-
lated to the first) is that I do not feel that
the understanding of the detailed ‘’Exis-
tence and Uniqueness” proof is particu-
larly important at this stage of the stu-
dents education. The subject has grown
so much in the last forty years, especially
with the merging of the ‘’dynamical sys-
tems point of view” with the subject of
ODEs, that there is just not enough time
to devote to all the topics that students
‘’should know”. However, it is impor-
tant to know what it means for an ODE
to have a solution, what uniqueness of
solutions means, and general conditions
for when an ODE has unique solutions.

Now we will state the standard ‘’existence and uniqueness” theo-
rem for ODEs. The statement is an example of the power and flexibil-
ity of expressing a general ODE as a first order vector equation. The
statement is valid for any (finite) dimension.

We consider the general vector field on Rn

ẋ = f (x, t), x(t0) = x0, x ∈ Rn. (1.13)

It is important to be aware that for the general result we are going
to state it does not matter whether or not the ODE is autonomous or
nonautonomous.

We define the domain of the vector field. Let U ⊂ Rn be an open set
and let I ⊂ R be an interval. Then we express that the n-dimensional
vector field is defined on this domain as follows:

f : U × I → Rn,

(x, t) → f (x, t) (1.14)

We need a definition to describe the ‘’regularity” of the vector field.

Definition 7 (Cr function). We say that f (x, t) is Cr on U × I ⊂ Rn ×R

if it is r times differentiable and each derivative is a continuous function (on
the same domain). If r = 0, f (x, t) is just said to be continuous.
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Now we can state sufficient conditions for (1.13) to have a unique so-
lution. We suppose that f (x, t) is Cr, r ≥ 1. We choose any point
(x0, t0) ∈ U× I. Then there exists a unique solution of (1.13) satisfying
this initial condition. We denote this solution by x(t, t0, x0), and reflect
in the notation that it satisfies the initial condition by x(t0, t0, x0) = x0.
This unique solution exists for a time interval centered at the initial
time t0, denoted by (t0 − ε, t0 + ε), for some ε > 0. Moreover, this
solution, x(t, t0, x0), is a Cr function of t, t0, x0. Note that from Exam-
ple 4 ε may depend on x0. This also explains how a solution ‘’fails to
exist”–it becomes unbounded (‘’blow up”) in a finite time.

Finally, we remark that existence and uniqueness of ODEs is the
mathematical manifestation of determinism. If the initial condition
is specified (with 100% accuracy), then the past and the future is
uniquely determined. The key phrase here is ‘’100% accuracy”. Num-
bers cannot be specified with 100% accuracy. There will always be
some imprecision in the specification of the initial condition. Chaotic
dynamical systems are deterministic dynamical systems having the
property that imprecisions in the initial conditions may be magnified
by the dynamical evolution, leading to seemingly random behavior
(even though the system is completely deterministic).

Problem Set 1

1. For each of the ODEs below, write it as a first order system, state
the dependent and independent variables, state any parameters in
the ODE (i.e. unspecified constants) and state whether it is linear or
nonlinear, and autonomous or nonautonomous,

(a)
θ̈ + δθ̇ + sin θ = F cos ωt, θ ∈ S1.

(b)
θ̈ + δθ̇ + θ = F cos ωt, θ ∈ S1.

(c)
d3y
dx3 + x2y

dy
dx

+ y = 0, x ∈ R1.

(d)

ẍ + δẋ + x− x3 = θ,

θ̈ + sin θ = 0, (x, θ) ∈ R1 × S1.

(e)

θ̈ + δθ̇ + sin θ = x,

ẍ− x + x3 = 0, (θ, x) ∈ S1 ×R1.
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2. Consider the vector field:

ẋ = 3x
2
3 , x(0) 6= 0, x ∈ R.

Does this vector field have unique solutions? 4 4 Note the similarity of this exercise to
Example 3. The point of this exercise is
to think about how issues of existence
and uniqueness depend on the initial
condition.

3. Consider the vector field:

ẋ = −x + x2, x(0) = x0, x ∈ R.

Determine the time interval of existence of all solutions as a function
of the initial condition, x0. 5 5 Here is the point of this exercise: ẋ =

−x has solutions that exist for all time
(for any initial condition), ẋ = x2 has
solutions that ‘’blow up in finite time”.
What happens when you ‘’put these
two together”? In order to answer this
you will need to solve for the solution,
x(t, x0).

4. Consider the vector field:

ẋ = a(t)x + b(t), x ∈ R.

Determine sufficient conditions on the coefficients a(t) and b(t) for
which the solutions will exist for all time. Do the results depend on
the initial condition? 6 6 The ‘’best” existence and uniqueness

theorems are when you can analytically
solve for the ‘’exact” solution of an ODE
for arbitrary initial conditions. This is
the type of ODE where that can be done.
It is a first order, linear inhomogeneous
ODE that can be solved using an ‘’inte-
grating factor”. However, you will need
to argue that the integrals obtained from
this procedure ‘’make sense”.

5. Consider the following two ODEs:

dy
dx

= − 1
x

y + x, (1.15)

and

ẋ = x,

ẏ = −y + x2. (1.16)

and

(a) For each ODE state the dependent variable, the independent vari-
able and whether it is linear or nonlinear, autonomous or nonau-
tonomous.

(b) Find the explicit solutions of each ODE for a general initial condi-
tion. (Hint: using the techniques in Appendix B may be helpful.)

(c) Describe in what sense these two ODEs are ”the same”.

6. Recall the definition of second order linear ODE given in this chap-
ter:

m
d2s
dt2 = (a0 + a1(t))s + (b0 + b1(t))ṡ + c0 + c1(t), (1.17)
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where a0, b0, c0 are constants, and a1(t), b1(t), c1(t) are functions of
t.

First, consider the situation where c0 = c1(t) = 0, i.e.,

m
d2s
dt2 = (a0 + a1(t))s + (b0 + b1(t))ṡ. (1.18)

In this case the linear ODE is said to be homogeneous.

(a) Suppose s1(t) is a solution of (1.18), and let k1 denote a constant
(real number). Prove that k1s1(t) is also a solution of (1.18).

(b) Suppose s1(t) and s2(t) are solutions of (1.18), and let k1 and
k2 denote constants (real numbers). Prove that k1s1(t) + k2s2(t)
is also a solution of (1.18). This is the superposition principle for
linear homogeneous ODE’s.

(c) Do these two results hold for (1.17)?

7. Are the following second order ordinary differential equations lin-
ear or nonlinear?

(a) ms̈ = −s + cos t,

(b) ms̈ = −s2 + cos t,

(c) ms̈ = −s cos t,

(d) ms̈ = −t2s,

(e) ms̈ = −s + s2,

8. Solve the following ODE:

ms̈ = g, s(0) = s0, ṡ(0) = 0,

where g is a constant.

9. Solve the following ODE:

ms̈ = sin t, s(0) = s0, ṡ(0) = 0.

10. Consider the following ODE:

ms̈ = s− s2.

Find the function of s and ṡ that a solution of this ODE must satisfy.
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11. Consider Newton’s equations:

m
d2s
dt2 = F(s).

Define a new time variable, τ, which is related to the “old” time t
by:

t =
√

mτ.

Use the chain rule to show that with respect to the new time the
ODE becomes:

d2s
dτ2 = F(s),

i.e., the constant disappears. This is referred to as rescaling time.

12. Consider the following nonlinear ODE:

s̈ = s− s2.

Suppose s1(t) and s2(t) are solutions, and let k1 and k2 denote con-
stants.

(a) Is k1s1(t) a solution?

(b) Is k1s1(t) + k2s2(t) a solution?



2
Special Structure and Solutions of ODEs

A consistent theme throughout all of ODEs is that ‘’spe-
cial structure” of the equations can reveal insight into the

nature of the solutions. Here we look at a very basic and important
property of autonomous equations:

‘’Time shifts of solutions of autonomous ODEs are also solutions of the ODE
(but with a different initial condition)”.

Now we will show how to see this.

Throughout this course we will assume that existence and

uniqueness of solutions holds on a domain and time inter-
val sufficient for our arguments and calculations.

We start by establishing the setting. We consider an autonomous
vector field defined on Rn:

ẋ = f (x), x(0) = x0, x ∈ Rn, (2.1)

with solution denoted by:

x(t, 0, x0), x(0, 0, x0) = x0.

Here we are taking the initial time to be t0 = 0. We will see, shortly,
that for autonomous equations this can be done without loss of gener-
ality. Now we choose s ∈ R (s 6= 0, which is to be regarded as a fixed
constant). We must show the following:

ẋ(t + s) = f (x(t + s)) (2.2)

This is what we mean by the phrase time shifts of solutions are solu-
tions. This relation follows immediately from the chain rule calcula-
tion:

d
dt

=
d

d(t + s)
d(t + s)

dt
=

d
d(t + s)

. (2.3)
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Finally, we need to determine the initial condition for the time shifted
solution. For the original solution we have:

x(t, 0, x0), x(0, 0, x0) = x0, (2.4)

and for the time shifted solution we have:

x(t + s, 0, x0), x(s, 0, x0). (2.5)

It is for this reason that, without loss of generality, for autonomous
vector fields we can take the initial time to be t0 = 0. This allows us
to simplify the arguments in the notation for solutions of autonomous
vector fields, i.e., x(t, 0, x0) ≡ x(t, x0) with x(0, 0, x0) = x(0, x0) = x0

Example 5 (An example illustrating the time-shift property of au-
tonomous vector fields.). Consider the following one dimensional autonomous
vector field:

ẋ = λx, x(0) = x0, x ∈ R, λ ∈ R. (2.6)

The solution is given by:

x(t, 0, x0) = x(t, x0) = eλtx0. (2.7)

The time shifted solution is given by:

x(t + s, x0) = eλ(t+s)x0. (2.8)

We see that it is a solution of the ODE with the following calculations:

d
dt

x(t + s, x0) = λeλ(t+s)x0 = λx(t + s, x0), (2.9)

with initial condition:

x(s, x0) = eλsx0. (2.10)

In summary, we see that the solutions of autonomous vector fields
satisfy the following three properties:

1. x(0, x0) = x0

2. x(t, x0) is Cr in x0

3. x(t + s, x0) = x(t, x(s, x0))

Property one just reflects the notation we have adopted. Property 2

is a statement of the properties arising from existence and uniqueness
of solutions. Property 3 uses two characteristics of solutions. One is
the ‘’time shift” property for autonomous vector fields that we have
proven. The other is ‘’uniquess of solutions” since the left hand side
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and the right hand side of Property 3 satisfy the same initial condition
at t = 0.

These three properties are the defining properties of a flow, i.e., a
one-parameter group of transformations of the phase space. In other
words, we view the solutions as defining a map of points in phase
space. The group property arises from property 3, i.e., the time-shift
property. In order to emphasise this ‘’map of phase space” property
we introduce a general notation for the flow as follows

x(t, x0) ≡ φt(·),

where the ‘’·” in the argument of φt(·) reflects the fact that the flow is
a function on the phase space. With this notation the three properties
of a flow are written as follows:

1. φ0(·) is the identity map.

2. φt(·) is Cr for each t

3. φt+s(·) = φt ◦ φs(·)

We often use the phrase ‘’the flow generated by the (autonomous) vec-
tor field”. Autonomous is in parentheses as it is understood that when
we are considering flows then we are considering the solutions of au-
tonomous vector fields. This is because nonautonomous vector fields
do not necessarily satisfy the time-shift property, as we now show with
an example.

Example 6 (An example of a nonautonomous vector field not having
the time-shift property.). Consider the following one dimensional vector
field on R:

ẋ = λtx, x(0) = x0, x ∈ R, λ ∈ R.

This vector field is separable and the solution is easily found to be:

x(t, 0, x0) = x0e
λ
2 t2

.

The time shifted ‘’solution” is given by:

x(t + s, 0, x0) = x0e
λ
2 (t+s)2

.

We show that this does not satisfy the vector field with the following calcula-
tion:

d
dt

x(t + s, 0, x0) = x0e
λ
2 (t+s)2

λ(t + s).

6= λtx(t + s, 0, x0).
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Perhaps a more simple example illustrating that nonautonomous
vector fields do not satisfy the time-shift property is the following.

Example 7. Consider the following one dimensional nonautonomous vector
field:

ẋ = et, x ∈ R.

The solution is given by:

x(t) = et.

It is easy to verify that the time-shifted function:

x(t + s) = et+s,

does not satisfy the equation.

In the study of ODEs certain types of solutions have achieved a level
of prominence largely based on their significance in applications. They
are

• equilibrium solutions,

• periodic solutions,

• heteroclinic solutions,

• homoclinic solutions.

We define each of these.

Definition 8 (Equilibrium). A point in phase space x = x̄ = Rn that is a
solution of the ODE , i.e.

f (x̄) = 0, f (x̄, t) = 0,

is called an equilibrium point. These may also be referred to as fixed points.

For example, x = 0 is an equilibrium point for the following au-
tonomous and nonautonomous one dimensional vector fields, respec-
tively,

ẋ = x, x ∈ R,

ẋ = tx, x ∈ R.

A periodic solution is simply a solution that is periodic in time.
Its definition is the same for both autonomous and nonautonomous
vector fields.
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Definition 9 (Periodic solutions). A solution x(t, t0, x0) is periodic if there
exists a T > 0 such that

x(t, t0, x0) = x(t + T, t0, x0)

Homoclinic and heteroclinic solutions are important in a variety of
applications. Their definition is not so simple as the definitions of
equilibrium and periodic solutions since they can be defined and gen-
eralized to many different settings. We will only consider these spe-
cial solutions for autonomous vector fields, and solutions homoclinic
or heteroclinic to equilibrium solutions.

Definition 10 (Homoclinic and Heteroclinic Solutions). Suppose x̄1 and
x̄2 are equilibrium points of an autonomous vector field, i.e.

f (x̄1) = 0, f (x̄2) = 0.

A trajectory x(t, t0, x0) is said to be heteroclinic to x̄1 and x̄2 if

lim
t→∞

x(t, t0, x0) = x̄2,

lim
t→−∞

x(t, t0, x0) = x̄1 (2.11)

If x̄1 = x̄2 the trajectory is said to be homoclinic to x̄1 = x̄2.

Example 8. 1 1 There is a question that we will return
to throughout this course. What does
it mean to ‘’solve” an ODE? We would
argue that a more ‘’practical” question
might be, ‘’what does it mean to under-
stand the nature of all possible solutions
of an ODE?”. But don’t you need to be
able to answer the first question before
you can answer the second? We would
argue that Fig. 2.1 gives a complete
‘’qualitative” understanding of (2.12) in
a manner that is much simpler than one
could directly obtain from its solutions.
In fact, it would be an instructive exer-
cise to first solve (2.12) and from the so-
lutions sketch Fig. 2.1. This may seem
a bit confusing, but it is even more in-
structive to think about, and understand,
what it means.

Here we give an example illustrating equilibrium points and heteroclinic
orbits. Consider the following one dimensional autonomous vector field on R:

ẋ = x− x3 = x(1− x2), x ∈ R. (2.12)

This vector field has three equilibrium points at x = 0, ±1.
In Fig. 2.1 we show the graph of the vector field (2.12) in panel a) and the

phase line dynamics in panel b).
The solid black dots in panel b) correspond to the equilibrium points and

these, in turn, correspond to the zeros of the vector field shown in panel a).
Between its zeros, the vector field has a fixed sign (i.e. positive or negative),
corresponding to ẋ being either increasing or decreasing. This is indicated by
the direction of the arrows in panel b).

Our discussion about trajectories, as well as this example, brings
us to a point where it is natural to introduce the important notion
of an invariant set. While this is a general idea that applies to both
autonomous and nonautonomous systems, in this course we will only
discuss this notion in the context of autonomous systems. Accordingly,
let φt(·) denote the flow generated by an autonomous vector field.



30 ordinary differential equations

x

x

x-x3

(a)

(b)

Figure 2.1: a) Graph of the vector field.
b) The phase space.

Definition 11 (Invariant Set). A set M ⊂ Rn is said to be invariant if

x ∈ M⇒ φt(x) ∈ M ∀t.

In other words, a set is invariant (with respect to a flow) if you start
in the set, and remain in the set, forever.

If you think about it, it should be clear that invariant sets are sets of
trajectories. Any single trajectory is an invariant set. The entire phase
space is an invariant set. The most interesting cases are those “in
between”. Also, it should be clear that the union of any two invariant
sets is also an invariant set (just apply the definition of invariant set to
the union of two, or more, invariant sets).

There are certain situations where we will be interested in sets that
are invariant only for positive time–positive invariant sets.

Definition 12 (Positive Invariant Set). A set M ⊂ Rn is said to be posi-
tive invariant if

x ∈ M⇒ φt(x) ∈ M ∀t > 0.

There is a similar notion of negative invariant sets, but the general-
ization of this from the definition of positive invariant sets should be
obvious, so we will not write out the details.

Concerning example 8, the three equilibrium points are invariant
sets, as well as the closed intervals [−1, 0] and [0, 1]. Are there other
invariant sets?

Problem Set 2
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1. Consider an autonomous vector field on the plane having an equi-
librium point with a homoclinic orbit connecting the equilibrium
point, as illustrated in Fig. 1. We assume that existence and unique-
ness of solutions holds. Can a trajectory starting at any point on the
homoclinic orbit reach the equilibrium point in a finite time? (You
must justify your answer.)2 2 The main points to take into account for

this problem are the fact that two trajec-
tories cannot cross (in a finite time), and
that an equilibrium point is a trajectory.

2. Can an autonomous vector field on R that has no equilibrium points
have periodic orbits? We assume that existence and uniqueness of
solutions holds.(You must justify your answer.)3 3 The main points to take into account in

this problem is that the phase space is R

and using this with the implication that
trajectories of autonomous ODEs ‘’can-
not cross”.

3. Can a nonautonomous vector field on R that has no equilibrium
points have periodic orbits? We assume that existence and unique-
ness of solutions holds.(You must justify your answer.)4 4 It is probably easiest to answer this

problem by constructing a specific exam-
ple.4. Can an autonomous vector field on the circle that has no equilib-

rium points have periodic orbits? We assume that existence and
uniqueness of solutions holds. (You must justify your answer.)5 5 The main point to take into account

here is that the phase space is ‘’peri-
odic”.5. Consider the following autonomous vector field on the plane:

ẋ = −ωy,

ẏ = ωx, (x, y) ∈ R2,

where ω > 0.

• Show that the flow generated by this vector field is given by:6 6 Recall that the flow is obtained from the
solution of the ODE for an arbitrary ini-
tial condition.(

x(t)
y(t)

)
=

(
cos ωt − sin ωt
sin ωt cos ωt

)(
x0

y0

)
.
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• Show that the flow obeys the time shift property.

• Give the initial condition for the time shifted flow.

6. Consider the following autonomous vector field on the plane:

ẋ = λy,

ẏ = λx, (x, y) ∈ R2,

where λ > 0.

• Show that the flow generated by this vector field is given by:(
x(t)
y(t)

)
=

(
cosh λt sinh λt
sinh λt cosh λt

)(
x0

y0

)
.

• Show that the flow obeys the time shift property.

• Give the initial condition for the time shifted flow.

7. Show that the time shift property for autonomous vector fields im-
plies that trajectories cannot ‘’cross each other”, i.e. intersect, in
phase space.

8. Show that the union of two invariant sets is an invariant set.

9. Show that the intersection of two invariant sets is an invariant set.

10. Show that the complement of a positive invariant set is a negative
invariant set.



3
Behavior Near Trajectories and Invariant Sets: Stability

Consider the general nonautonomous vector field in n dimensions:

ẋ = f (x, t), x ∈ Rn, (3.1)

and let x̄(t, t0, x0) be a solution of this vector field.

Many questions in ODEs concern understanding the be-
havior of neighboring solutions near a given, chosen so-
lution. We will develop the general framework for considering such
questions by transforming (3.1) to a form that allows us to explicitly
consider these issues.

We consider the following (time dependent) transformation of vari-
ables:

x = y + x̄(t, t0, x0). (3.2)

We wish to express (3.1) in terms of the y variables. It is important to
understand what this will mean in terms of (3.2). For y small it means
that x is near the solution of interest, x̄(t, t0, x0). In other words, ex-
pressing the vector field in terms of y will provide us with an explicit
form of the vector field for studying the behavior near x̄(t, t0, x0). To-
wards this end, we begin by transforming (3.1) using (3.2) as follows:

ẋ = ẏ + ˙̄x = f (x, t) = f (y + x̄, t), (3.3)

or,

ẏ = f (y + x̄, t)− ˙̄x,

= f (y + x̄, t)− f (x̄, t) ≡ g(y, t), g(0, t) = 0. (3.4)

Hence, we have shown that solutions of (3.1) near x̄(t, t0, x0) are equiv-
alent to solutions of (3.4) near y = 0.

The first question we want to ask related to the behavior near x̄(t, t0, x0)

is whether or not this solution is stable? However, first we need to
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mathematically define what is meant by this term ‘’stable”. Now we
should know that, without loss of generality, we can discuss this ques-
tion in terms of the zero solution of (3.4).

We begin by defining the notion of ‘’Lyapunov stability” (or just
‘’stability”).

Definition 13 (Lyapunov Stability). y = 0 is said to be Lyapunov stable
at t0 if given ε > 0 there exists a δ = δ(t0, ε) such that

|y(t0)| < δ⇒ |y(t)| < ε, ∀t > t0 (3.5)

If a solution is not Lyapunov stable, then it is said to be unstable.

Definition 14 (Unstable). If y = 0 is not Lyapunov stable, then it is said to
be unstable.

Then we have the notion of asymptotic stability.

Definition 15 (Asymptotic stability). y = 0 is said to be asymptotically
stable at t0 if:

1. it is Lyapunov stable at t0,

2. there exists δ = δ(t0) > 0 such that:

|y(t0)| < δ⇒ lim
t→∞
|y(t)| = 0 (3.6)

We have several comments about these definitions.

• Roughly speaking, a Lyapunov stable solution means that if you
start close to that solution, you stay close–forever. Asymptotic sta-
bility not only means that you start close and stay close forever, but
that you actually get ‘’closer and closer” to the solution.

• Stability is an infinite time concept.

• If the ODE is autonomous, then the quantity δ = δ(t0, ε) can be
chosen to be independent of t0.

• The definitions of stability do not tell us how to prove that a solution
is stable (or unstable). We will learn two techniques for analyzing
this question–linearization and Lyapunov’s (second) method.

• Why is Lyapunov stability included in the definition of asymptotic
stability? Because it is possible to construct examples where nearby
solutions do get closer and closer to the given solution as t→ ∞, but
in the process there are intermediate intervals of time where nearby
solutions make ‘’large excursions” away from the given solution.
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‘’Stability” is a notion that applies to a ‘’neighborhood” of a trajec-
tory1. At this point we want to formalize various notions related to 1 The notion that stability of a trajectory

is a property of solutions in a neighbor-
hood of a trajectory often causes confu-
sion. To avoid confusion it is important
to be clear about the notion of a ‘’neigh-
borhood of a trajectory”, and then to re-
alize that for solutions that are Lyapunov
(or asymptotically) stable all solutions in
the neighborhood have the same behav-
ior as t→ ∞.

distance and neighborhoods in phase space. For simplicity in express-
ing these ideas we will take as our phase space Rn. Points in this phase
space are denoted x ∈ Rn, x ≡ (x1, . . . , xn). The norm, or length, of x,
denoted |x| is defined as:

|x| =
√

x2
1 + x2

2 + · · ·+ x2
n =

√
n

∑
i=1

x2
i .

The distance between two points in x, y ∈ Rn is defined as:

d(x, y) ≡ |x− y| =
√
(x1 − y1)2 + · · ·+ (xn − yn)2,

=

√
n

∑
i=1

(xi − yi)2. (3.7)

Distance between points in Rn should be somewhat familiar, but
now we introduce a new concept, the distance between a point and a
set. Consider a set M, M ⊂ Rn, let p ∈ Rn. Then the distance from p
to M is defined as follows:

dist(p, M) ≡ infx∈M|p− x|. (3.8)

We remark that it follows from the definition that if p ∈ M, then
dist(p, M) = 0.

We have previously defined the notion of an invariant set. Roughly
speaking, invariant sets are comprised of trajectories. We now have the
background to discuss the notion of stability of invariant sets . Recall,
that the notion of invariant set was only developed for autonomous
vector fields. So we consider an autonomous vector field:

ẋ = f (x), x ∈ Rn, (3.9)

and denote the flow generated by this vector field by φt(·). Let M be
a closed invariant set (in many applications we may also require M to
be bounded) and let U ⊃ M denoted a neighborhood of M.

The definition of Lyapunov stability of an invariant set is as follows.

Definition 16 (Lyapunov Stability of M). M is said to be Lyapunov stable
if for any neighborhood U ⊃ M, x ∈ U ⇒ φt(x) ∈ U, ∀t > 0.

SImilarly, we have the following definition of asymptotic stability of
an invariant set.

Definition 17 (Asymptotic Stability of M). M is said to be asymptotically
stable if
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1. it is Lyapunov stable,

2. there exists a neighborhood U ⊃ M such that ∀x ∈ U, dist(φt(x), M)→
0 as t→ ∞.

In the dynamical systems approach to ordinary differential equa-
tions some alternative terminology is typically used.

Definition 18 (Attracting Set). If M is asymptotically stable it is said to be
an attracting set.

The significance of attracting sets is that they are the ‘’observable” re-
gions in phase space since they are regions to which trajectories evolve
in time. The set of points that evolve towards a specific attracting set
is referred to as the basin of attraction for that invariant set.

Definition 19 (Basin of Attraction). Let B ⊂ Rn denote the set of all
points, x ∈ B ⊂ Rn such that

dist(φt(x), M)→ 0 as t→ ∞

Then B is called the basin of attraction of M.

We now consider an example that allows us to explicitly explore
these ideas2. 2 Initially, this type of problem (two inde-

pendent, one dimensional autonomous
vector fields) might seem trivial and like
a completely academic problem. How-
ever, we believe that there is quite a
lot of insight that can be gained from
such problems (that has been the case
for the author). Generally, it is use-
ful to think about breaking a problem
up into smaller, understandable, pieces
and then putting the pieces back to-
gether. Problems like this provide a
controlled way of doing this. But also,
these problems allow for exact compu-
tation by hand of concepts that do not
lend themselves to such computations
in the types of ODEs arising in typi-
cal applications. This gives some level
of confidence that you understand the
concept. Also, such examples could
served as useful benchmarks for numeri-
cal computations, since checking numer-
ical methods against equations where
you have an analytical solution to the
equation can be very helpful.

Example 9. Consider the following autonomous vector field on the plane:

ẋ = −x,

ẏ = y2(1− y2) ≡ f (y), (x, y) ∈ R2. (3.10)

First, it is useful to note that the x and y components of (3.10) are indepen-
dent. Consequently, this may seem like a trivial example. However, we will
see that such examples provide a great deal of insight, especially since they
allow for simple computations of many of the mathematical ideas.

In Fig. 3.1 we illustrate the flow of the x and y components of (3.10)
separately.
The two dimensional vector field (3.10) has equilibrium points at:

(x, y) = (0, 0), (0, 1), (0,−1).

In this example it is easy to identify three invariant horizontal lines (exam-
ples of invariant sets). Since y = 0 implies that ẏ = 0, this implies that the
x axis is invariant. Since y = 1 implies that ẏ = 0, this implies that the line
y = 1 is invariant. Since y = −1 implies that ẏ = 0, which implies that the
line y = −1 is invariant. This is illustrated in Fig. 3.2.3Below we provide 3 Make sure you understand why these

constraints on the coordinates imply the
existence of invariant lines.

some additional invariant sets for (3.10). It is instructive to understand why
they are invariant, and whether or not there are other invariant sets.
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f(y)
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Figure 3.1: a) The phase ‘”line” of the
x component of (3.10). b) The graph of
f (y) (top) and the phase ‘’line” of the y
component of (3.10) directly below.

x

y Figure 3.2: Phase plane of (3.10). The
black dots indicate equilibrium points.

Additional invariant sets for (3.10).

{(x, y)| −∞ < x < 0, −∞ < y < −1} ,

{(x, y)| 0 < x < ∞, −∞ < y < −1} ,

{(x, y)| −∞ < x < 0, −1 < y < 0} ,

{(x, y)| 0 < x < ∞, −1 < y < 0} ,

{(x, y)| −∞ < x < 0, 0 < y < 1} ,

{(x, y)| 0 < x < ∞, 0 < y < 1} ,

{(x, y)| −∞ < x < 0, 1 < y < ∞} ,

{(x, y)| 0 < x < ∞, 1 < y < ∞} ,
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Problem Set 3

1. Consider the following autonomous vector field on R:

ẋ = x− x3, x ∈ R. (3.11)

• Compute all equilibria and determine their stability, i.e., are they
Lyapunov stable, asymptotically stable, or unstable?

• Compute the flow generated by (3.11) and verify the stability
results for the equilibria directly from the flow.

2. 4Consider an autonomous vector field on Rn: 4 This problem is ‘’essentially the same”
as Problem 1 from Problem Set 2.

ẋ = f (x), x ∈ Rn. (3.12)

Suppose M ⊂ Rn is a bounded, invariant set for (3.12). Let φt(·)
denote the flow generated by (3.12).Suppose p ∈ Rn, p /∈ M. Is it
possible for

φt(p) ∈ M,

for some finite t?

3. Consider the following vector field on the plane:

ẋ = x− x3,

ẏ = −y, , (x, y) ∈ R2. (3.13)

(a) Determine 0-dimensional, 1-dimensional, and 2-dimensional in-
variant sets.

(b) Determine the attracting sets and their basins of attraction.

(c) Describe the heteroclinic orbits and compute analytical expres-
sions for the heteroclinic orbits.

(d) 5Does the vector field have periodic orbits? 5 Keep in mind here that a trajectory is
periodic if it is periodic, with the same
period, in each component.(e) Sketch the phase portrait.6
6 There is a point to consider early on in
this course. What exactly does ‘’sketch
the phase portrait mean”? It means
sketching trajectories through different
initial conditions in the phase space in
such a way that a ‘’complete picture” of
all qualitatively distinct trajectories is ob-
tained. The phrase qualitatively distinct is
the key here since you can only sketch
trajectories for a finite number of initial
conditions (unless you sketch an invari-
ant set or manifold) and only a finite
length of the trajectory, unless the tra-
jectory is a fixed point, periodic, homo-
clinic, or heteroclinic.



4
Behavior Near Trajectories: Linearization

Now we are going to discuss a method for analyzing sta-
bility that utilizes linearization about the object whose

stability is of interest. For now, the ‘’objects of interest” are spe-
cific solutions of a vector field.The structure of the solutions of linear,
constant coefficient systems is covered in many ODE textbooks. My
favorite is the book of Hirsch et al.1. It covers all of the linear algebra 1 Morris W Hirsch, Stephen Smale, and

Robert L Devaney. Differential equations,
dynamical systems, and an introduction to
chaos. Academic press, 2012

needed for analyzing linear ODEs that you probably did not cover in
your linear algebra course. The book by Arnold2 is also very good, but

2 V. I. Arnold. Ordinary differential equa-
tions. M.I.T. press, Cambridge, 1973.
ISBN 0262010372

the presentation is more compact, with fewer examples.
We begin by considering a general nonautonomous vector field:

ẋ = f (x, t), x ∈ Rn, (4.1)

and we suppose that

x̄(t, t0, x0), (4.2)

is the solution of (4.1) for which we wish to determine its stability
properties. As when we introduced the definitions of stability, we
proceed by localizing the vector field about the solution of interest.
We do this by introducing the change of coordinates

x = y + x̄

for (4.1) as follows:

ẋ = ẏ + ˙̄x = f (y + x̄, t),

or

ẏ = f (y + x̄, t)− ˙̄x,

= f (y + x̄, t)− f (x̄, t), (4.3)
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where we omit the arguments of x̄(t, t0, x0) for the sake of a less cum-
bersome notation. Next we Taylor expand f (y + x̄, t) in y about the
solution x̄, but we will only require the leading order terms explic-
itly3: 3 For the necessary background that you

will need on Taylor expansions see Ap-
pendix A.

f (y + x̄, t) = f (x̄, t) + D f (x̄, t)y +O(|y|2), (4.4)

where D f denotes the derivative (i.e. Jacobian matrix) of the vector
valued function f andO(|y|2) denotes higher order terms in the Taylor
expansion that we will not need in explicit form. Substituting this into
(4.4) gives:

ẏ = f (y + x̄, t)− f (x̄, t),

= f (x̄, t) + D f (x̄, t)y +O(|y|2)− f (x̄, t),

= D f (x̄, t)y +O(|y|2). (4.5)

Keep in mind that we are interested in the behaviour of solutions near
x̄(t, t0, x0), i.e., for y small. Therefore, in that situation it seems reason-
able that neglecting the O(|y|2) in (4.5) would be an approximation
that would provide us with the particular information that we seek.
For example, would it provide sufficient information for us to deter-
mine stability? In particular,

ẏ = D f (x̄, t)y, (4.6)

is referred to as the linearization of the vector field ẋ = f (x, t) about
the solution x̄(t, t0, x0).

Before we answer the question as to whether or not (4.1) provides
an adequate approximation to solutions of (4.5) for y ‘’small”, we will
first study linear vector fields on their own.

Linear vector fields can also be classified as nonautonomous or au-
tonomous. Nonautonomous linear vector fields are obtained by lin-
earizing a nonautonomous vector field about a solution (and retaining
only the linear terms). They have the general form:

ẏ = A(t)y, y(0) = y0, (4.7)

where

A(t) ≡ D f (x̄(t, t0, x0), t) (4.8)

is a n × n matrix. They can also be obtained by linearizing an au-
tonomous vector field about a time-dependent solution.

An autonomous linear vector field is obtained by linearizing an au-
tonomous vector field about an equilibrium point. More precisely, let
ẋ = f (x) denote an autonomous vector field and let x = x0 denote an
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equilibrium point, i.e. f (x0) = 0. The linearized autonomous vector
field about this equilibrium point has the form:

ẏ = D f (x0)y, y(0) = y0, (4.9)

or

ẏ = Ay, y(0) = y0, (4.10)

where A ≡ D f (x0) is a n× n matrix of real numbers. This is significant
because (4.10) can be solved using techniques of linear algebra, but
(4.7), generally, cannot be solved in this manner. Hence, we will now
describe the general solution of (4.10).

The general solution of (4.10) is given by:

y(t) = eAty0. (4.11)

In order to verify that this is the solution, we merely need to substitute
into the right hand side and the left hand side of (4.10) and show that
equality holds. However, first we need to explain what eAt is, i.e. the
exponential of the n × n matrix A (by examining (4.11) it should be
clear that if (4.11) is to make sense mathematically, then eAt must be a
n× n matrix).

Just like the exponential of a scalar, the exponential of a matrix is
defined through the exponential series as follows:

eAt ≡ I + At +
1
2!

A2t2 + · · ·+ 1
n!

Antn + · · · ,

=
∞

∑
i=0

1
i!

Aiti, (4.12)

where I denotes the n× n identity matrix. But we still must answer
the question, “does this exponential series involving products of ma-
trices make mathematical sense”? Certainly we can compute products
of matrices and multiply them by scalars. But we have to give mean-
ing to an infinite sum of such mathematical objects. We do this by
defining the norm of a matrix and then considering the convergence
of the series in norm. When this is done the ‘’convergence problem”
is exactly the same as that of the exponential of a scalar. Therefore
the exponential series for a matrix converges absolutely for all t, and
therefore it can be differentiated with respect to t term-by-term, and
the resulted series of derivatives also converges absolutely.

Next we need to argue that (4.11) is a solution of (4.10). If we dif-
ferentiate the series (4.12) term by term, we obtain that:

d
dt

eAt = AeAt = eAt A, (4.13)
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where we have used the fact that the matrices A and eAt commute (this
is easy to deduce from the fact that A commutes with any power of
A)4. It then follows from this calculation that: 4 See Appendix B for another derivation

of the solution of (4.10).

ẏ =
d
dt

eAty0 = AeAty0 = Ay. (4.14)

Therefore the general problem of solving (4.10) is equivalent to com-
puting eAt, and we now turn our attention to this task.

First, suppose that A is a diagonal matrix, say

A =


λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 · · · λn

 (4.15)

Then it is easy to see by substituting A into the exponential series (4.12)
that:

eAt =


eλ1t 0 · · · 0

0 eλ2t · · · 0

0 0
. . . 0

0 0 · · · eλnt

 (4.16)

Therefore our strategy will be to transform coordinates so that in the
new coordinates A becomes diagonal (or as ‘’close as possible” to di-
agonal, which we will explain shortly). Then eAt will be easily com-
putable in these coordinates. Once that is accomplished, then we use
the inverse of the transformation to transform the solution back to the
original coordinate system.

Now we make these ideas precise. We let

y = Tu, u ∈ Rn, y ∈ Rn, (4.17)

where T is a n× n matrix whose precise properties will be developed
in the following.

This is a typical approach in ODEs. We propose a general

coordinate transformation of the ODE, and then we con-
struct it in a way that gives the properties of the ODE that

we desire. Substituting (4.17) into (4.10) gives:

ẏ = Tu̇ = Ay = ATu, (4.18)

T will be constructed in a way that makes it invertible, so that we have:

u̇ = T−1 ATu, u(0) = T−1y(0). (4.19)
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To simplify the notation we let:

Λ = T−1 AT, (4.20)

or

A = TΛT−1. (4.21)

Substituting (4.21) into the series for the matrix exponential (4.12)
gives:

eAt = eTΛT−1 t,

= 1 + TΛT−1t +
1
2!

(
TΛT−1

)2
t2 + · · ·+ 1

n!

(
TΛT−1

)n
tn + · · · .

(4.22)

Now note that for any positive integer n we have:

(
TΛT−1

)n
=

(
TΛT−1

) (
TΛT−1

)
· · ·
(

TΛT−1
) (

TΛT−1
)

︸ ︷︷ ︸
n factors

,

= TλnT−1. (4.23)

Substituting this into (4.22) gives:

eAt =
∞

∑
n=0

1
n!

(
TΛT−1

)n
tn,

= T

(
∞

∑
n=0

1
n!

Λn tn

)
T−1,

= TeΛtT−1, (4.24)

or

eAt = TeΛtT−1. (4.25)

Now we arrive at our main result. If T is constructed so that

Λ = T−1 AT, (4.26)

is diagonal, then it follows from (4.16) and (4.25) that eAt can always be
computed. So the ODE problem of solving (4.10) becomes a problem
in linear algebra. But can a general n × n matrix A always be diag-
onalized? If you have had a course in linear algebra, you know that
the answer to this question is “no”. There is a theory of the (real) that
will apply here. However, that would take us into too great a diver-
sion for this course. Instead, we will consider the three standard cases
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for 2× 2 matrices. That will suffice for introducing the the main ideas
without getting bogged down in linear algebra. Nevertheless, it cannot
be avoided entirely. You will need to be able to compute eigenvalues
and eigenvectors of 2× 2 matrices, and understand their meaning.

The three cases of 2× 2 matrices that we will consider are charac-
terized by their eigenvalues:

• two real eigenvalues, diagonalizable A,

• two identical eigenvalues, nondiagonalizable A,

• a complex conjugate pair of eigenvalues.

In the table below we summarize the form that these matrices can be
transformed in to (referred to as the of A) and the resulting exponential
of this canonical form.

eigenvalues of A canonical form, Λ eΛ

λ, µ real, diagonalizable

(
λ 0
0 µ

) (
eλ 0
0 eµ

)

λ = µ real, nondiagonalizable

(
λ 1
0 λ

) (
I +

(
0 1
0 0

))(
eλ 0
0 eλ

)

complex conjugate pair, α± iβ

(
α −β

β α

)
eα

(
cos β − sin β

sin β cos β

)

Once the transformation to Λ has been carried out, we will use these
results to deduce eΛ.

Problem Set 4

1. Suppose Λ is a n× n matrix and T is a n× n invertible matrix. Use
mathematical induction to show that:

(
T−1ΛT

)k
= T−1ΛkT,

for all natural numbers k, i.e., k = 1, 2, 3, . . ..

2. Suppose A is a n× n matrix. Use the exponential series to give an
argument that:

d
dt

eAt = AeAt.

(You are allowed to use eA(t+h) = eAteAh without proof, as well as
the fact that A and eAt commute, without proof.)
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3. Consider the following linear autonomous vector field:

ẋ = Ax, x(0) = x0, x ∈ Rn,

where A is a n× n matrix of real numbers.

• Show that the solutions of this vector field exist for all time.

• Show that the solutions are infinitely differentiable with respect
to the initial condition, x0.

5 5 The next two problems often give stu-
dents difficulties. There are no hard cal-
culations involved. Just a bit of thinking.
The solutions for each ODE can be ob-
tained easily. Once these are obtained
you just need to think about what they
mean in terms of the concepts involved
in the questions that you are asked, e.g.
Lyapunov stability means that if you
‘’start close, you stay close–forever”.

4. Consider the following linear autonomous vector field on the plane:

(
ẋ1

ẋ2

)
=

(
0 1
0 0

)(
x1

x2

)
, (x1(0), x2(0)) = (x10, x20).

(4.27)

(a) Describe the invariant sets.

(b) Sketch the phase portrait.

(c) Is the origin stable or unstable? Why?

5. Consider the following linear autonomous vector field on the plane:

(
ẋ1

ẋ2

)
=

(
0 0
0 0

)(
x1

x2

)
, (x1(0), x2(0)) = (x10, x20).

(4.28)

(a) Describe the invariant sets.

(b) Sketch the phase portrait.

(c) Is the origin stable or unstable? Why?





5
Behavior Near Equilibria: Linearization

Now we will consider several examples for solving, and understand-
ing, the nature of the solutions, of

ẋ = Ax, x ∈ R2. (5.1)

For all of the examples, the method for solving the system is the
same.

Step 1. Compute the eigenvalues of A.

Step 2. Compute the eigenvectors of A.

Step 3. Use the eigenvectors of A to form the transformation matrix T.

Step 4. Compute Λ = T−1 AT.

Step 5. Compute eAt = TeΛtT−1.

Once we have computed eAt we have the solution of (5.1) through
any initial condiion y0 since y(t), y(0) = y0, is given by y(t) = eAty0

1. 1 Most of the linear algebra techniques
necessary for this material are covered
in Appendix A.Example 10. We consider the following linear, autonomous ODE:(

ẋ1

ẋ2

)
=

(
2 1
1 2

) (
x1

x2

)
, (5.2)

where

A ≡
(

2 1
1 2

)
. (5.3)

Step 1. Compute the eigenvalues of A.

The eigenvalues of A, denote by λ, are given by the solutions of the char-
acteristic polynomial:
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det

(
2− λ 1

1 2− λ

)
= (2− λ)2 − 1 = 0,

= λ2 − 4λ + 3 = 0, (5.4)

or

λ1, 2 = 2± 1
2

√
16− 12 = 3, 1.

Step 2. Compute the eigenvectors of A.

For each eigenvalue, we compute the corresponding eigenvector. The eigen-
vector correponding to the eigenvalue 3 is found by solving:(

2 1
1 2

)(
x1

x2

)
= 3

(
x1

x2

)
, (5.5)

or,

2x1 + x2 = 3x1, (5.6)

x1 + 2x2 = 3x2. (5.7)

Both of these equations yield the same equation since the two equations are
dependent:

x2 = x1. (5.8)

Therefore we take as the eigenvector corresponding to the eigenvalue 3:(
1
1

)
. (5.9)

Next we compute the eigenvector corresponding to the eigenvalue 1. This
is given by a solution to the following equations:(

2 1
1 2

)(
x1

x2

)
=

(
x1

x2

)
, (5.10)

or

2x1 + x2 = x1, (5.11)

x1 + 2x2 = x2. (5.12)

Both of these equations yield the same equation:

x2 = −x1. (5.13)
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Therefore we take as the eigenvector corresponding to the eigenvalue 1:(
1
−1

)
. (5.14)

Step 3. Use the eigenvectors of A to form the transformation matrix
T.

For the columns of T we take the eigenvectors corresponding the the eigen-
values 1 and 3:

T =

(
1 1
−1 1

)
, (5.15)

with the inverse given by:

T−1 =
1
2

(
1 −1
1 1

)
. (5.16)

Step 4. Compute Λ = T−1 AT.

We have:

T−1 AT =
1
2

(
1 −1
1 1

)(
2 1
1 2

)(
1 1
−1 1

)
,

=
1
2

(
1 −1
1 1

)(
1 3
−1 3

)
,

=

(
1 0
0 3

)
≡ Λ. (5.17)

Therefore, in the u1 − u2 coordinates (5.2) becomes:(
u̇1

u̇2

)
=

(
1 0
0 3

)(
u1

u2

)
. (5.18)

In the u1 − u2 coordinates it is easy to see that the origin is an unstable
equilibrium point.
Step 5. Compute eAt = TeΛtT−1.

We have:

eAt =
1
2

(
1 1
−1 1

)(
et 0
0 e3t

)(
1 −1
1 1

)
,

=
1
2

(
1 1
−1 1

)(
et −et

e3t e3t

)
,

=
1
2

(
et + e3t −et + e3t

−et + e3t et + e3t

)
. (5.19)
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We see that the origin is also unstable in the original x1− x2 coordinates.
It is referred to as a source, and this is characterized by the fact that all of the
eigenvalues of A have positive real part. The phase portrait is illustrated in
Fig. 5.1.

x1

x2

Figure 5.1: Phase plane of (5.19). The
origin is unstable–a source.

We remark this it is possible to infer the behavior of eAt as t→ ∞ from the
behavior of eΛt as t→ ∞ since T does not depend on t.

Example 11. We consider the following linear, autonomous ODE:(
ẋ1

ẋ2

)
=

(
−1 −1
9 −1

) (
x1

x2

)
, (5.20)

where

A ≡
(
−1 −1
9 −1

)
. (5.21)

Step 1. Compute the eigenvalues of A.

The eigenvalues of A, denote by λ, are given by the solutions of the char-
acteristic polynomial:

det

(
−1− λ −1

9 −1− λ

)
= (−1− λ)2 + 9 = 0,

= λ2 + 2λ + 10 = 0. (5.22)

or,

λ1, 2 = −1± 1
2

√
4− 40 = −1± 3i.
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The eigenvectors are complex, so we know it is not diagonalizable over the real
numbers. What this means is that we cannot find real eigenvectors so that it
can be transformed to a form where there are real numbers on the diagonal,
and zeros in the off diagonal entries. The best we can do is to transform it
to a form where the real parts of the eigenvalue are on the diagonal, and the
imaginary parts are on the off diagonal locations, but the off diagonal elements
differ by a minus sign.
Step 2. Compute the eigenvectors of A.

The eigenvector of A corresponding to the eigenvector −1− 3i is the solu-
tion of the following equations:

(
−1 −1
9 −1

)(
x1

x2

)
= (−1− 3i)

(
x1

x2

)
(5.23)

or,

−x1 − x2 = −x1 − 3ix1, (5.24)

9x1 − x2 = −x2 − 3ix2. (5.25)

A solution to these equations is given by:

(
1
3i

)
=

(
1
0

)
+ i

(
0
3

)
.

Step 3. Use the eigenvectors of A to form the transformation matrix
T.

For the first column of T we take the real part of the eigenvector corre-
sponding to the eigenvalue −1− 3i, and for the second column we take the
complex part of the eigenvector:

T =

(
1 0
0 3

)
, (5.26)

with inverse

T−1 =

(
1 0
0 1

3

)
. (5.27)

Step 4. Compute Λ = T−1 AT.

We have:
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T−1 AT =

(
1 0
0 1

3

)(
−1 −1

9 −1

)(
1 0
0 3

)
,

=

(
1 0
0 1

3

)(
−1 −3

9 −3

)
,

=

(
−1 −3

3 −1

)
≡ Λ. (5.28)

With Λ in this form, we know from the previous chapter that:

eΛt = e−t

(
cos 3t − sin 3t
sin 3t cos 3t

)
. (5.29)

Then we have:

eAt = TeΛtT−1.

From this expression we can conclude that eAt → 0 as t → ∞. Hence the
origin is asymptotically stable. It is referred to as a sink and it is characterized
by the real parts of the eigenvalues of A being negative. The phase plane is
sketched in Fig. 5.2.

x1

x2
Figure 5.2: Phase plane of (5.20). The
origin is a sink.

Example 12. We consider the following linear autonomous ODE:(
ẋ1

ẋ2

)
=

(
−1 1
1 1

) (
x1

x2

)
, (5.30)

where

A =

(
−1 1
1 1

)
. (5.31)
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Step 1. Compute the eigenvalues of A.

The eigenvalues are given by the solution of the characteristic equation:

det

(
−1− λ 1

1 1− λ

)
= (−1− λ)(1− λ)− 1 = 0,

= λ2 − 2 = 0, (5.32)

which are:

λ1, 2 = ±
√

2

Step 2. Compute the eigenvectors of A.

The eigenvector corresponding to the eigenvalue
√

2 is given by the solu-
tion of the following equations:(

−1 1
1 1

)(
x1

x2

)
=
√

2

(
x1

x2

)
(5.33)

or

−x1 + x2 =
√

2x1, (5.34)

x1 + x2 =
√

2x2. (5.35)

A solution is given by:

x2 = (1 +
√

2)x1,

corresponding to the eigenvector:(
1

1 +
√

2

)
The eigenvector corresponding to the eigenvalue −

√
2 is given by the so-

lution to the following equations:(
−1 1
1 1

)(
x1

x2

)
= −
√

2

(
x1

x2

)
, (5.36)

or

−x1 + x2 = −
√

2x1, (5.37)

x1 + x2 = −
√

2x2. (5.38)

A solution is given by:

x2 = (1−
√

2)x1,
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corresponding to the eigenvector:(
1

1−
√

2

)
.

Step 3. Use the eigenvectors of A to form the transformation matrix
T.

For the columns of T we take the eigenvectors corresponding the the eigen-
values

√
2 and −

√
2:

T =

(
1 1

1 +
√

2 1−
√

2

)
, (5.39)

with T−1 given by:

T−1 = − 1
2
√

2

(
1−
√

2 −1
−1−

√
2 1

)
. (5.40)

Step 4. Compute Λ = T−1 AT.

We have:

T−1 AT = − 1
2
√

2

(
1−
√

2 −1
−1−

√
2 1

)(
−1 1

1 1

)(
1 1

1 +
√

2 1−
√

2

)
,

= − 1
2
√

2

(
1−
√

2 −1
−1−

√
2 1

)( √
2 −

√
2

2 +
√

2 2−
√

2

)
,

= − 1
2
√

2

(
−4 0

0 4

)
=

( √
2 0
0 −

√
2

)
≡ Λ. (5.41)

Therefore in the u1 − u2 coordinates (5.30) takes the form:(
u̇1

u̇2

)
=

( √
2 0

0 −
√

2

)(
u1

u2

)
. (5.42)

The phase portrait of (5.42) is shown in 5.3.
It is easy to see that the origin is unstable for (5.42). In fig. 5.3 we see that

the origin has the structure of a saddle point, and we want to explore this idea
further.

In the u1− u2 coordinates the span of the eigenvector corresponding to the
eigenvalue

√
2 is given by u2 = 0, i.e. the u1 axis. The span of the eigenvector

corresponding to the eigenvalue −
√

2 is given by u1 = 0, i.e. the u2 axis.
Moreover, we can see from the form of (5.42) that these coordinate axes are
invariant. The u1 axis is referred to as the unstable subspace, denoted by Eu,
and the u2 axis is referred to as the stable subspace, denoted by Es. In other
words, the unstable subspace is the span of the eigenvector corresponding to
the eigenvalue with positive real part and the stable subspace is the span of
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u1

u2
Figure 5.3: Phase portrait of (5.42).

the eigenvector corresponding to the eigenvalue having negative real part. The
stable and unstable subspaces are invariant subspaces with respect to the flow
generated by (5.42).

The stable and unstable subspaces correspond to the coordinate axes in the
coordinate system given by the eigenvectors. Next we want to understand
how they would appear in the original x1 − x2 coordinates. This is accom-
plished by transforming them to the original coordinates using the transfor-
mation matrix (5.39).

We first transform the unstable subspace from the u1 − u2 coordinates to
the x1 − x2 coordinates. In the u1 − u2 coordinates points on the unstable
subspace have coordinates (u1, 0). Acting on these points with T gives:

T

(
u1

0

)
=

(
1 1

1 +
√

2 1−
√

2

)(
u1

0

)
=

(
x1

x2

)
, (5.43)

which gives the following relation between points on the unstable subspace in
the u1 − u2 coordinates to points in the x1 − x2 coordinates:

u1 = x1 (5.44)

(1 +
√

2)u1 = x2, (5.45)

or

(1 +
√

2)x1 = x2. (5.46)

This is the equation for the unstable subspace in the x1 − x2 coordinates,
which we illustrate in Fig. 5.4.
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x1

x2

Figure 5.4: The unstable subspace in the
original coordinates.

Next we transform the stable subspace from the u1 − u2 coordinates to the
x1 − x2 coordinates. In the u1 − u2 coordinates points on the stable subspace
have coordinates (0, u2). Acting on these points with T gives:

T

(
0
u2

)
=

(
1 1

1 +
√

2 1−
√

2

)(
0
u2

)
=

(
x1

x2

)
, (5.47)

which gives the following relation between points on the stable subspace in
the u1 − u2 coordinates to points in the x1 − x2 coordinates:

u2 = x1 (5.48)

(1−
√

2)u2 = x2 (5.49)

or

(1−
√

2)x1 = x2. (5.50)

This is the equation for the stable subspace in the x1 − x2 coordinates, which
we illustrate in Fig. 5.5.
In Fig. 5.6 we illustrate both the stable and the unstable subspaces in the
original coordinates.

Now we want to discuss some general results from these three ex-
amples.

For all three examples, the real parts of the eigenvalues of A were
nonzero, and stability of the origin was determined by the sign of the
real parts of the eigenvalues, e.g., for example 10 the origin was unsta-
ble (the real parts of the eigenvalues of A were positive), for example
11 the origin was stable (the real parts of the eigenvalues of A were
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x1

x2
Figure 5.5: The stable subspace in the
original coordinates.

x1

x2
Figure 5.6: The stable and unstable sub-
spaces in the original coordinates.

negative), and for example 12 the origin was unstable (A had one pos-
itive eigenvalue and one negative eigenvalue). This is generally true
for all linear, autonomous vector fields. We state this more formally.

Consider a linear, autonomous vector field on Rn:

ẏ = Ay, y(0) = y0, y ∈ Rn. (5.51)

Then if A has no eigenvalues having zero real parts, the stability of the
origin is determined by the real parts of the eigenvalues of A. If all
of the real parts of the eigenvalues are strictly less than zero, then the
origin is asymptotically stable. If at least one of the eigenvalues of A
has real part strictly larger than zero, then the origin is unstable.

There is a term applied to this terminology that permeates all of
dynamical systems theory.
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Definition 20 (Hyperbolic Equilibrium Point). The origin of (5.51) is
said to be hyperbolic if none of the real parts of the eigenvalues of A have zero
real parts.

It follows that hyperbolic equilibria of linear, autonomous vector
fields on Rn can be either sinks, sources, or saddles. The key point is
that the eigenvalues of A all have nonzero real parts.

If we restrict ourselves to two dimensions, it is possible to make a
(short) list of all of the distinct canonical forms for A. These are given
by the following six 2× 2 matrices.

The first is a diagonal matrix with real, nonzero eigenvalues λ, µ 6=
0, i.e. the origin is a hyperbolic fixed point:(

λ 0
0 µ

)
(5.52)

In this case the orgin can be a sink if both eigenvalues are negative, a
source if both eigenvalues are positive, and a saddle if the eigenvalues
have opposite sign.

The next situation corresponds to complex eigenvalues, with the
real part, α, and imaginary part, β, both being nonzero. In this case
the equilibrium point is hyperbolic, and a sink for α < 0, and a source
for α > 0. The sign of β does not influence stability:(

α β

−β α

)
. (5.53)

Next we consider the case when the eigenvalues are real, identical,
and nonzero, but the matrix is nondiagonalizable, i.e. two eigenvectors
cannot be found. In this case the origin is hyperbolic for λ 6= 0, and is
a sink for λ < 0 and a source for λ > 0:(

λ 1
0 λ

)
(5.54)

Next we consider some cases corresponding to the origin being non-
hyperbolic that would have been possible to include in the discussion
of earlier cases, but it is more instructive to explicitly point out these
cases separately.

We first consider the case where A is diagonalizable with one nonzero
real eigenvalue and one zero eigenvalue:(

λ 0
0 0

)
. (5.55)

We consider the case where the two eigenvalues are purely imagi-
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nary, ±i
√

β. In this case the origin is referred to as a center.(
0 β

−β 0

)
(5.56)

For completeness, we consider the case where both eigenvalues are
zero and A is diagonal. (

0 0
0 0

)
. (5.57)

Finally, we want to expand on the discussion related to the geo-
metrical aspects of Example 12. Recall that for that example the span
of the eigenvector corresponding to the eigenvalue with negative real
part was an invariant subspace, referred to as the stable subspace. Tra-
jectories with initial conditions in the stable subspace decayed to zero
at an exponential rate as t → +∞. The stable invariant subspace was
denoted by Es. Similarly, the span of the eigenvector corresponding
to the eigenvalue with positive real part was an invariant subspace,
referred to as the unstable subspace. Trajectories with initial condi-
tions in the unstable subspace decayed to zero at an exponential rate
as t→ −∞. The unstable invariant subspace was denoted by Eu.

We can easily see that (5.52) has this behavior when λ and µ have
opposite signs. If λ and µ are both negative, then the span of the
eigenvectors corresponding to these two eigenvalues is R2, and the
entire phase space is the stable subspace. Similarly, if λ and µ are both
positive, then the span of the eigenvectors corresponding to these two
eigenvalues is R2, and the entire phase space is the unstable subspace.

The case (5.53) is similar. For that case there is not a pair of real
eigenvectors corresponding to each of the complex eigenvalues. The
vectors that transform the original matrix to this canonical form are re-
ferred to as generalized eigenvectors. If α < 0 the span of the generalized
eigenvectors is R2, and the entire phase space is the stable subspace.
Similarly, if α > 0 the span of the generalized eigenvectors is R2, and
the entire phase space is the unstable subspace. The situation is similar
for (5.54). For λ < 0 the entire phase space is the stable subspace, for
λ > 0 the entire phase space is the unstable subspace.

The case (5.55) is different. The span of the eigenvector correspond-
ing to λ is the stable subspace for λ < 0, and the unstable subspace for
λ > 0 The space of the eigenvector corresponding to the zero eigen-
value is referred to as the center subspace.

For the case (5.56) there are not two real eigenvectors leading to the
resulting canonical form. Rather, there are two generalized eigenvec-
tors associated with this pair of complex eigenvalues having zero real
part. The span of these two eigenvectors is a two dimensional cen-
ter subspace corresponding to R2. An equilibrium point with purely
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imaginary eigenvalues is referred to as a center.
Finally, the case (5.57) is included for completeness. It is the zero

vector field where R2 is the center subspace.
We can characterize stability of the origin in terms of the stable,

unstable, and center subspaces. The origin is asymptotically stable if
Eu = ∅ and Ec = ∅. The origin is unstable if Eu 6= ∅.

Problem Set 5

1. Suppose A is a n× n matrix of real numbers. Show that if λ is an
eigenvalue of A with eigenvector e, then λ̄ is an eigenvalue of A
with eigenvector ē.

2. Consider the matrices:

A1 =

(
0 −ω

ω 0

)
, A2 =

(
0 ω

−ω 0

)
, ω > 0. (5.58)

Sketch the trajectories of the associated linear autonomous ordinary
differential equations:

(
ẋ1

ẋ2

)
= Ai

(
x1

x2

)
, i = 1, 2. (5.59)

3. Consider the matrix

A =

(
−1 −1
9 −1

)
(5.60)

(a) Show that the eigenvalues and eigenvectors are given by:

−1− 3i :

(
1
3i

)
=

(
1
0

)
+ i

(
0
3

)

−1 + 3i :

(
1
−3i

)
=

(
1
0

)
− i

(
0
3

)
.

(5.61)

(b) Consider the four matrices:

T1 =

(
1 0
0 −3

)
, T2 =

(
1 0
0 3

)
,

T3 =

(
0 1
−3 0

)
, T4 =

(
0 1
3 0

)
. (5.62)

Compute Λi = T−1
i ATi, i = 1, . . . , 4.
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(c) Discuss the form of T in terms of the eigenvectors of A. 2 2 The point ot this problem is to show
that when you have complex eigenval-
ues (in the 2 × 2 case) there is a great
deal of freedom in how you compute the
real canonical form.

4. Consider the following two dimensional linear autonomous vector
field:

(
ẋ1

ẋ2

)
=

(
−2 1
−5 2

)(
x1

x2

)
, (x1(0), x2(0)) = (x10, x20).

(5.63)

Show that the origin is Lyapunov stable. Compute and sketch the
trajectories.

5. Consider the following two dimensional linear autonomous vector
field:

(
ẋ1

ẋ2

)
=

(
1 2
2 1

)(
x1

x2

)
, (x1(0), x2(0)) = (x10, x20).

(5.64)

Show that the origin is a saddle. Compute the stable and unstable
subspaces of the origin in the original coordinates, i.e. the x1 − x2

coordinates. Sketch the trajectories in the phase plane.

6. Compute eA, where

A =

(
λ 1
0 λ

)
.

Hint. Write

A =

(
λ 0
0 λ

)
︸ ︷︷ ︸

≡S

+

(
0 1
0 0

)
︸ ︷︷ ︸

≡N

.

Then

A ≡ S + N, and NS = SN.

Use the binomial expansion fo compute (S + N)n, n ≥ 1,

(S + N)n =
n

∑
k=0

(
n
k

)
Sk Nn−k,

where
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(
n
k

)
≡ n!

k!(n− k)!

and substitute the results into the exponential series.



6
Stable and Unstable Manifolds of Equilibria

For hyperbolic equilibria of autonomous vector fields, the

linearization captures the local behavior near the equi-
libria for the nonlinear vector field. We describe the results
justifying this statement in the context of two dimensional autonomous
systems.1 1 An extremely complete and thorough

exposition of ‘’hyperbolic theory” is
given in .

Anatole Katok and Boris Hasselblatt.
Introduction to the modern theory of dynam-
ical systems, volume 54. Cambridge uni-
versity press, 1997

We consider a Cr, r ≥ 1 two dimensional autonomous vector field
of the following form:

ẋ = f (x, y),

ẏ = g(x, y), (x, y) ∈ R2. (6.1)

Let φt(·) denote the flow generated by (6.1). Suppose (x0, y0) is a hy-
perbolic equilibrium point of this vector field, i.e. the two eigenvalues
of the Jacobian matrix:( ∂ f

∂x (x0, y0)
∂ f
∂y (x0, y0)

∂g
∂x (x0, y0)

∂g
∂y (x0, y0)

)
,

have nonzero real parts. There are three cases to consider:

• (x0, y0) is a source for the linearized vector field,

• (x0, y0) is a sink for the linearized vector field,

• (x0, y0) is a saddle for the linearized vector field.

We consider each case individually. 2 2 Details of the stability results for the
hyperbolic source and sink can be found
in .

Morris W Hirsch, Stephen Smale, and
Robert L Devaney. Differential equations,
dynamical systems, and an introduction to
chaos. Academic press, 2012

(x0, y0) is a source.

In this case (x0, y0) is a source for (6.1). More precisely, there exists
a neighborhood U of (x0, y0) such that for any p ∈ U , φt(p) leaves U
as t increases.
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(x0, y0) is a sink.

In this case (x0, y0) is a sink for (6.1). More precisely, there exists a
neighborhood S of (x0, y0) such that for any p ∈ S , φt(p) approaches
(x0, y0) at an exponential rate as t increases. In this case (x0, y0) is an
example of an attracting set and its basin of attraction is given by:

B ≡
⋃
t≤0

φt (S) .

(x0, y0) is a saddle.

For the case of hyperbolic saddle points, the saddle point struc-
ture is still retained near the equilibrium point for nonlinear systems.
We now explain precisely what this means. In order to do this we
will need to examine (6.1) more closely. In particular, we will need
to transform (6.1) to a coordinate system that ‘’localizes” the behavior
near the equilibrium point and specifically displays the structure of
the linear part. We have already done this several times in examining
the behavior near specific solutions, so we will not repeat those details.

Transforming locally near (x0, y0) in this manner, we can express
(6.1) in the following form:

(
ξ̇

η̇

)
=

(
−α 0

0 β

)(
ξ

η

)
+

(
u(ξ, η)

v(ξ, η)

)
, α, β > 0, (ξ, η) ∈ R2,

(6.2)
where the Jacobian at the origin,(

−α 0
0 β

)
(6.3)

reflects the hyperbolic nature of the equilibrium point. The lineariza-
tion of (6.1) about the origin is given by:(

ξ̇

η̇

)
=

(
−α 0

0 β

)(
ξ

η

)
. (6.4)

It is easy to see for the linearized system that

Es = {(ξ, η) | η = 0} , (6.5)

is the invariant stable subspace and

Eu = {(ξ, η) | ξ = 0} , (6.6)

is the invariant unstable subspace.
We now state how this saddle point structure is inherited by the

nonlinear system by stating the results of the stable and unstable manifold
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theorem for hyperbolic equilibria for two dimensional autonomous vector
fields3. 3 The stable and unstable manifold the-

orem for hyperbolic equilibria of au-
tonomous vector fields is a fundamen-
tal result. The proof requires some pre-
liminary work to develop the appropri-
ate mathematical setting in order for the
proof to proceed. See, for example, .
Of course, before one proves a result one
must have a through understanding of
the result that one hopes to prove. For
this reason we focus on explicit exam-
ples here.

E. A. Coddington and N. Levinson.
Theory of Ordinary Differential Equations.
Krieger, 1984; P. Hartman. Ordinary Dif-
ferential Equations. Society for indus-
trial and Applied Mathematics, 2002;
J. K. Hale. Ordinary Differential Equations.
Dover, 2009; and Chicone Carmen. Ordi-
nary differential equations with applications.
Springer, 2000

First, we consider two intervals of the coordinate axes containing
the origin as follows:

Iξ ≡ {−ε < ξ < ε} , (6.7)

and

Iη ≡ {−ε < η < ε} , (6.8)

for some small ε > 0. A neighborhood of the origin is constructed by
taking the cartesian product of these two intervals:

Bε ≡
{
(ξ, η) ∈ R2 | (ξ, η) ∈ Iξ × Iη

}
, (6.9)

and it is illustrated in Fig. 6.1. The stable and unstable manifold
theorem for hyperbolic equilibrium points of autonomous vector fields
states the following.

There exists a Cr curve, given by the graph of a function of the ξ

variables:

η = S(ξ), ξ ∈ Iξ , (6.10)

This curve has three important properties.

It passes through the origin, i.e. S(0) = 0.

It is tangent to Es at the origin, i.e., dS
dξ (0) = 0.

It is locally invariant in the sense that any trajectory starting on the
curve approaches the origin at an exponential rate as t→ ∞, and it
leaves Bε as t→ −∞.

Moreover, the curve satisfying these three properties is unique. For
these reasons, this curve is referred to as the local stable manifold of
the origin, and it is denoted by:

Ws
loc ((0, 0)) = {(ξ, η) ∈ Bε | η = S(ξ)} . (6.11)

Similarly, there exists another Cr curve, given by the graph of a
function of the η variables:

ξ = U(η), η ∈ Iη , (6.12)

This curve has three important properties.

It passes through the origin, i.e. U(0) = 0.

It is tangent to Eu at the origin, i.e., dU
dη (0) = 0.
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It is locally invariant in the sense that any trajectory starting on the
curve approaches the origin at an exponential rate as t → −∞, and
it leaves Bε as t→ ∞.

For these reasons, this curve is referred to as the local unstable mani-
fold of the origin, and it is denoted by:

Wu
loc ((0, 0)) = {(ξ, η) ∈ Bε | ξ = U(η)} . (6.13)

The curve satisfying these three properties is unique.

ξ

η
Eu

sE

εB uW   ((0,0))

sW   ((0,0))
loc

loc

Figure 6.1: The neighborhood of the ori-
gin, Bε, showing the local stable and un-
stable manifolds

These local stable and unstable manifolds are the ‘’seeds” for the
global stable and unstable manifolds that are defined as follows:

Ws ((0, 0)) ≡
⋃
t≤0

φt (Ws
loc ((0, 0))) , (6.14)

and

Wu ((0, 0)) ≡
⋃
t≥0

φt (Wu
loc ((0, 0))) . (6.15)

Now we will consider a series of examples showing how these ideas
are used.

Example 13. We consider the following autonomous, nonlinear vector field
on the plane:

ẋ = x,

ẏ = −y + x2, (x, y) ∈ R2. (6.16)
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This vector field has an equilibrium point at the origin, (x, y) = (0, 0). The
Jacobian of the vector field evaluated at the origin is given by:(

1 0
0 −1

)
. (6.17)

From this calculation we can conclude that the origin is a hyperbolic saddle
point. Moreover, the x-axis is the unstable subspace for the linearized vector
field and the y axis is the stable subspace for the linearized vector field.

Next we consider the nonlinear vector field (6.16). By inspection, we see
that the y axis (i.e. x = 0) is the global stable manifold for the origin. We
next consider the unstable manifold. Dividing the second equation by the first
equation in (6.16) gives:

ẏ
ẋ
=

dy
dx

= − y
x
+ x. (6.18)

This is a linear nonautonomous equation. A solution of this equation passing
through the origin is given by:

y =
x2

3
. (6.19)

4 4 This linear first order equation can be
solved in the usual way with an integrat-
ing factor. See Appendix B for details of
this procedure.

It is also tangent to the unstable subspace at the origin. It is the global
unstable manifold5.

5 You should verify that this curve is in-
variant. In terms of the vector field, in-
variance means that the vector field is
tangent to the curve. Why?

We examine this statement further. It is easy to compute the flow gen-
erated by (6.16). The x-component can be solved and substituted into the y
component to yield a first order linear nonautonomous equation. Hence, the
flow generated by (6.16) is given by6: 6 Again, the equation is solved in the

usual way by using an integrating factor,
see Appendix B for details.

x(t, x0) = x0et,

y(t, y0) =

(
y0 −

x2
0

3

)
e−t +

x2
0

3
e2t. (6.20)

The global unstable manifold of the origin is the set of initial conditions having
the property that the trajectories through these initial conditions approach the
origin at an exponential rate as t→ −∞. On examining the two components
of (6.20), we see that the x component approaches zero as t → −∞ for any
choice of x0. However, the y component will only approach zero as t → −∞
if y0 and x0 are chosen such that

y0 =
x2

0
3

. (6.21)

Hence (6.21) is the global unstable manifold of the origin7. 7 (6.19) characterizes the unstable man-
ifold as an invariant curve passing
through the origin and tangent to the un-
stable subspace at the origin. (6.21) char-
acterizes the unstable manifold in terms
of the asymptotic behavior of trajectories
(as t → −∞) whose initial conditions
satisfy a particular constraint, and that
constraint is that they are on the unsta-
ble manifold of the origin.

Example 14. Consider the following nonlinear autonomous vector field on
the plane:
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ẋ = x− x3,

ẏ = −y, (x, y) ∈ R2. (6.22)

Note that the x and y components evolve independently.
The equilibrium points and the Jacobians associated with their lineariza-

tions are given as follows:

(x, y) = (0, 0);

(
1 0
0 −1

)
; saddle (6.23)

(x, y) = (±1, 0);

(
−2 0
0 −1

)
; sinks (6.24)

We now compute the global stable and unstable manifolds of these equilib-
ria. We begin with the saddle point at the origin.

(0, 0) :
Ws ((0, 0)) = {(x, y)|x = 0}
Wu ((0, 0)) = {(x, y)| − 1 < x < 1, y = 0}

(6.25)

For the sinks the global stable manifold is synonomous with the basin of
attraction for the sink.

(1, 0) : Ws ((1, 0)) = {(x, y)|x > 0} (6.26)

(−1, 0) : Ws ((−1, 0)) = {(x, y)|x < 0} (6.27)

y

x

Figure 6.2: Invariant manifold structure
of (6.22). The black dots indicate equilib-
rium points.

Example 15. In this example we consider the following nonlinear autonomous
vector field on the plane:
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ẋ = −x,

ẏ = y2(1− y2), (x, y) ∈ R2. (6.28)

Note that the x and y components evolve independently.
The equilibrium points and the Jacobians associated with their lineariza-

tions are given as follows:

(x, y) = (0, 0), (0,±1) (6.29)

(x, y) = (0, 0);

(
−1 0
0 0

)
; not hyperbolic (6.30)

(x, y) = (0, 1);

(
−1 0
0 −2

)
; sink (6.31)

(x, y) = (0,−1);

(
−1 0
0 2

)
; saddle (6.32)

We now compute the global invariant manifold structure for each of the
equilibria, beginning with (0, 0).

(0, 0);
Ws ((0, 0)) = {(x, y)|y = 0}
Wc ((0, 0)) = {(x, y)|x = 0, −1 < y < 1}

(6.33)

The x-axis is clearly the global stable manifold for this equilibrium point. The
segment on the y-axis between −1 and 1 is invariant, but it does not corre-
spond to a hyperbolic direction. It is referred to as the center manifold of
the origin, and we will learn much more about invariant manifolds associated
with nonhyperbolic directions later.

The equilibrium point (0, 1) is a sink. Its global stable manifold (basin of
attraction) is given by:

(0, 1); Ws ((0, 1)) = {(x, y)|y > 0} . (6.34)

The equilibrium point (0,−1) is a saddle point with global stable and
unstable manifolds given by:

(0,−1);
Ws ((0,−1)) = {(x, y)|y = −1}
Wu ((0,−1)) = {(x, y)|x = 0, −∞ < y < 0}

(6.35)

Example 16. In this example we consider the following nonlinear autonomous
vector field on the plane:
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x

y Figure 6.3: Invariant manifold structure
of (6.28). The black dots indicate equilib-
rium points.

ẋ = y,

ẏ = x− x3 − δy, (x, y) ∈ R2, δ ≥ 0, (6.36)

where δ > 0 is to be viewed as a parameter. The equilibrium points are given
by:

(x, y) = (0, 0), (±1, 0). (6.37)

We want to classify the linearized stability of the equilibria. The Jacobian of
the vector field is given by:

A =

(
0 1

1− 3x2 −δ

)
, (6.38)

and the eigenvalues of the Jacobian are:

λ± = − δ

2
± 1

2

√
δ2 + 4− 12x2. (6.39)

We evaluate this expression for the eigenvalues at each of the equilibria to
determine their linearized stability.

(0, 0); λ± = − δ
2 ±

1
2

√
δ2 + 4 (6.40)

Note that

δ2 + 4 > δ2,

therefore the eigenvalues are always real and of opposite sign. This implies
that (0, 0) is a saddle.

(±1, 0) λ± = − δ
2 ±

1
2

√
δ2 − 8 (6.41)
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First, note that

δ2 − 8 < δ2.

This implies that these two fixed points are always sinks. However, there are
two subcases.

δ2 − 8 < 0: The eigenvalues have a nonzero imaginary part.

δ2 − 8 ≥ 0: The eigenvalues are purely real.

In fig. 6.4 we sketch the local invariant manifold structure for these two
cases.

y

x

y

x

(a)

(b)

Figure 6.4: Local invariant manifold
structure of (6.36). The black dots indi-
cate equilibrium points. (a) δ2 − 8 ≥ 0,
(b) δ2 − 8 < 0

In fig. 6.5 we sketch the global invariant manifold structure for the two cases.
In the coming lectures we will learn how we can justify this figure. However,
note the role that the stable manifold of the saddle plays in defining the basins
of attractions of the two sinks.

Problem Set 6

1. Consider the Cr, r ≥ 1, autonomous vector field on R2:

ẋ = f (x),

with flow

φt(·),
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y

x

y

x

(a)

(b)

Figure 6.5: A sketch of the global in-
variant manifold structure of (6.36). The
black dots indicate equilibrium points.
(a) δ2 − 8 ≥ 0, (b) δ2 − 8 < 0

and let x = x̄ denote a hyperbolic saddle type equilibrium point for
this vector field. We denote the local stable and unstable manifolds
of this equilibrium point by:

Ws
loc(x̄), Wu

loc(x̄),

respectively. The global stable and unstable manifolds of x̄ are de-
fined by:

Ws(x̄) ≡
⋃
t≤0

φt (Ws
loc(x̄)) ,

Wu(x̄) ≡
⋃
t≥0

φt (Wu
loc(x̄))

(a) Show that Ws(x̄) and Wu(x̄) are invariant sets.

(b) Suppose that p ∈ Ws(x̄), show that φt(p) → x̄ at an exponential
rate as t→ ∞.

(c) Suppose that p ∈ Wu(x̄), show that φt(p) → x̄ at an exponential
rate as t→ −∞.

2. Consider the Cr, r ≥ 1, autonomous vector field on R2 having a
hyperbolic saddle point. Can its stable and unstable manifolds in-
tersect at an isolated point (which is not a fixed point of the vector
field) as shown in figure 6.6?
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hyperbolic �xed point

Possible intersection of the
stable and unstable 
manifolds of 
the hyperbolic 
�xed point?

Figure 6.6: Possible intersection of the
stable and unstable manifold of a hyper-
bolic fixed point?

3. Consider the following autonomous vector field on the plane:

ẋ = αx,

ẏ = βy + γxn+1, (6.42)

where α < 0, β > 0, γ is a real number, and n is a positive integer.

(a) Show that the origin is a hyperbolic saddle point.

(b) Compute and sketch the stable and unstable subspaces of the
origin.

(c) Show that the stable and unstable subspaces are invariant under
the linearized dynamics.

(d) Show the the flow generated by this vector field is given by:

x(t, x0) = x0eαt,

y(t, x0, y0) = eβt

(
y0 −

γxn+1
0

α(n + 1)− β

)
+

(
γxn+1

0
α(n + 1)− β

)
eα(n+1)t

(e) Compute the global stable and unstable manifolds of the origin
from the flow.

(f) Show that the global stable and unstable manifolds that you have
computed are invariant.

(g) Sketch the global stable and unstable manifolds and discuss how
they depend on γ and n.
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4. Suppose ẋ = f (x), x ∈ Rn is a Cr vector field having a hyperbolic
fixed point, x = x0, with a homoclinic orbit. Describe the homo-
clinic orbit in terms of the stable and unstable manifolds of x0.

5. Suppose ẋ = f (x), x ∈ Rn is a Cr vector field having hyperbolic
fixed points, x = x0 and x1, with a heteroclinic orbit connecting x0

and x1. Describe the heteroclinic orbit in terms of the stable and
unstable manifolds of x0 and x1.



7
Lyapunov’s Method and the LaSalle Invariance Principle

We will next learn a method for determining stability of equilibria
which may be applied when stability information obtained from the
linearization of the ODE is not sufficient for determining stability in-
formation for the nonlinear ODE. The book by LaSalle1 is an excellent 1 Joseph P LaSalle. The stability of dynam-

ical systems, volume 25. SIAM, 1976supplement to this lecture. This is Lyapunov’s method (or Lyapunov’s
second method, or the method of Lyapunov functions). 2We begin by 2 The original work of Lyapunov is

reprinted (Lyapunov ). An excellent
perspective of Lyapunov’s work is given
in Parks .

A.M. Lyapunov. General Problem of
the Stability Of Motion. Control Theory
and Applications Series. Taylor &
Francis, 1992. ISBN 9780748400621.
URL https://books.google.ie/books?

id=4tmAvU3_SCoC; and P. C. Parks. A.
M. Lyapunov’s stability theory—100

years on. IMA Journal of Mathematical
Control and Information, 9(4):275–303,
1992. doi: 10.1093/imamci/9.4.275.
URL http://imamci.oxfordjournals.

org/content/9/4/275.abstract

describing the framework for the method in the setting that we will
use.

We consider a general Cr, r ≥ 1 autonomous ODE

ẋ = f (x), x ∈ Rn, (7.1)

having an equilibrium point at x = x̄, i.e.,

f (x̄) = 0. (7.2)

For a scalar valued function defined on Rn

V : Rn → R,

x 7→ V(x), (7.3)

we define the derivative of (7.3) along trajectories of (7.1) by:

d
dt

V(x) = V̇(x) = ∇V(x) · ẋ,

= ∇V(x) · f (x). (7.4)

We can now state Lyapunov’s theorem on stability of the equilib-
rium point x = x̄.

Theorem 1. Consider the following Cr (r ≥ 1) autonomous vector field on
Rn:

ẋ = f (x), x ∈ Rn. (7.5)

https://books.google.ie/books?id=4tmAvU3_SCoC
https://books.google.ie/books?id=4tmAvU3_SCoC
http://imamci.oxfordjournals.org/content/9/4/275.abstract
http://imamci.oxfordjournals.org/content/9/4/275.abstract
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Let x = x̄ be an equilibrium point of (7.5) and let V : U → R be a C1

function defined in some neighborhood U of x̄ such that:

1. V(x̄) = 0 and V(x) > 0 if x 6= x̄.

2. V̇(x) ≤ 0 in U − {x̄}

Then x̄ is Lyapunov stable. Moreover, if

V̇(x) < 0 in U − {x̄}

then x̄ is asymptotically stable.

The function V(x) is referred to as a Lyapunov function.
We now consider an example.

Example 17.

ẋ = y,

ẏ = −x− εx2y, (x, y) ∈ R2, (7.6)

where ε is a parameter. It is clear that (x, y) = (0, 0) is an equilibrium point
of (7.6) and we want to determine the nature of its stability.

We begin by linearizing (7.6) about this equilibrium point. The matrix
associated with this linearization is given by:

A =

(
0 1
−1 0

)
, (7.7)

and its eigenvalues are ±i. Hence, the origin is not hyperbolic and therefore
the information provided by the linearization of (7.6) about (x, y) = (0, 0)
does not provide information about stability of (x, y) = (0, 0) for the nonlin-
ear system (7.6).

Therefore we will attempt to apply Lyapunov’s method to determine stabil-
ity of the origin.

We take as a Lyapunov function:

V(x, y) =
1
2
(x2 + y2). (7.8)

Note that V(0, 0) = 0 and V(x, y) > 0 in any neighborhood of the origin.
Moreover, we have:

V̇(x, y) =
∂V
∂x

ẋ +
∂V
∂y

ẏ,

= xy + y(−x− εx2y),

= −εx2y2,

≤ 0, for ε ≥ 0. (7.9)

Hence, it follows from Theorem 1 that the origin is Lyapunov stable3. 3 The obvious question that comes up at
this point is, how do I find the Lyapunov
function? We discuss this issue in Ap-
pendix C.
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Next we will introduce the LaSalle invariance principle4. Rather

4 The original paper is a technical report
that can be found on the internet ( ). See
also ).

Joseph P LaSalle. An invariance prin-
ciple in the theory of stability. Techni-
cal Report 66-1, Brown University, 1966;
Joseph P LaSalle. The stability of dynami-
cal systems, volume 25. SIAM, 1976; and
Itzhak Barkana. Defending the beauty
of the invariance principle. International
Journal of Control, 87(1):186–206, 2014

than focus on the particular question of stability of an equilibrium so-
lution as in Lyapunov’s method, the LaSalle invariance principle gives
conditions that describe the behavior as t → ∞ of all solutions of an
autonomous ODE.

We begin with an autonomous ODE defined on Rn:

ẋ = f (x), x ∈ Rn (7.10)

where f (x) is Cr, (r ≥ 1). Let φt(·) denote the flow generated by (7.10)
and let M ⊂ Rn denote a positive invariant set that is compact (i.e.
closed and bounded in this setting). Suppose we have a scalar valued
function

V : Rn → R, (7.11)

such that

V̇(x) ≤ 0 in M (7.12)

(Note the ‘’less than or equal to” in this inequality.)
Let

E =
{

x ∈ M | V̇(x) = 0
}

, (7.13)

and

M =

{
the union of all trajectories that start
in E and remain in E for all t ≥ 0

}
(7.14)

Now we can state LaSalle’s invariance principle.

Theorem 2. For all x ∈ M, φt(x)→ M as t→ ∞.

We will now consider an example.

Example 18. Consider the following vector field on R2:

ẋ = y,

ẏ = x− x3 − δy, (x, y) ∈ R2, δ > 0. (7.15)

This vector field has three equilibrium points–a saddle point at (x, y) = (0, 0)
and two sinks at (x, y) = (±, 1, 0).

Consider the function

V(x, y) =
y2

2
− x2

2
+

x4

4
, (7.16)

and its level sets:
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V(x, y) = C.

We compute the derivative of V along trajectories of (7.15):

V̇(x, y) =
∂V
∂x

ẋ +
∂V
∂y

ẏ,

= (−x + x3)y + y(x− x3 − δy).

= −δy2, (7.17)

from which it follows that

V̇(x, y) ≤ 0 on V(x, y) = C.

Therefore, for C sufficiently large, the corresponding level set of V bounds a
compact positive invariant set,M, containing the three equilibrium points of
(7.15).

Next we determine the nature of the set

E = {(x, y) ∈ M | V̇(x, y) = 0}. (7.18)

Using (7.17) we see that:

E = {(x, y) ∈ M | y = 0∩M}. (7.19)

The only points in E that remain in E for all time are:

M = {(±1, 0), (0, 0)}. (7.20)

Therefore it follows from Theorem 2 that given any initial condition inM,
the trajectory starting at that initial condition approaches one of the three
equilibrium points as t→ ∞.

Autonomous Vector Fields on the Plane; Bendixson’s Criterion and the
Index Theorem

Now we will consider some useful results that apply to vector fields
on the plane.

First we will consider a simple, and easy to apply, criterion that
rules out the existence of periodic orbits for autonomous vector fields
on the plane (e.g., it is not valid for vector fields on the two torus).

We consider a Cr, r ≥ 1 vector field on the plane of the following
form:

ẋ = f (x, y),

ẏ = g(x, y), (x, y) ∈ R2 (7.21)
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The following criterion due to Bendixson provides a simple, com-
putable condition that rules out the existence of periodic orbits in cer-
tain regions of R2.

Theorem 3 (Bendixson’s Criterion). If on a simply connected region D ⊂
R2 the expression

∂ f
∂x

(x, y) +
∂g
∂y

(x, y). (7.22)

is not identically zero and does not change sign then (7.21) has no periodic
orbits lying entirely in D.

Example 19. We consider the following nonlinear autonomous vector field
on the plane:

ẋ = y ≡ f (x, y),

ẏ = x− x3 − δy ≡ g(x, y), (x, y) ∈ R2, δ > 0. (7.23)

Computing (7.22) gives:

∂ f
∂x

+
∂g
∂y

= −δ. (7.24)

Therefore this vector field has no periodic orbits for δ 6= 0.

Example 20. We consider the following linear autonomous vector field on
the plane:

ẋ = ax + by ≡ f (x, y),

ẏ = cx + dy ≡ g(x, y), (x, y) ∈ R2, a, b, c, d ∈ R (7.25)

Computing (7.22) gives:

∂ f
∂x

+
∂g
∂y

= a + d. (7.26)

Therefore for a + d 6= 0 this vector field has no periodic orbits.

Next we will consider the index theorem. If periodic orbits exist, it
provides conditions on the number of fixed points, and their stability,
that are contained in the region bounded by the periodic orbit.

Theorem 4. Inside any periodic orbit there must be at least one fixed point.
If there is only one, then it must be a sink, source, or center. If all the fixed
points inside the periodic orbit are hyperbolic, then there must be an odd
number, 2n + 1, of which n are saddles, and n + 1 are either sinks or sources.
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Example 21. We consider the following nonlinear autonomous vector field
on the plane:

ẋ = y ≡ f (x, y),

ẏ = x− x3 − δy + x2y ≡ g(x, y), (x, y) ∈ R2, (7.27)

where δ > 0. The equilibrium points are given by:

(x, y) = (0, 0), (±1, 0).

The Jacobian of the vector field, denoted by A, is given by:

A =

(
0 1

1− 3x2 + 2xy −δ + x2

)
(7.28)

Using the general expression for the eigenvalues for a 2× 2 matrix A:

λ1,2 =
tr A

2
± 1

2

√
(tr A)2 − 4 det A,

we obtain the following expression for the eigenvalues of the Jacobian:

λ1,2 =
−δ + x2

2
± 1

2

√
(−δ + x2)2 + 4(1− 3x2 + 2xy) (7.29)

If we substitute the locations of the equilibria into this expression we obtain
the following values for the eigenvalues of the Jacobian of the vector field
evaluated at the respective equilibria:

(0, 0) λ1,2 = − δ
2 ±

1
2

√
δ2 + 4 (7.30)

(±1, 0) λ1,2 = −δ+1
2 ± 1

2

√
(−δ + 1)2 − 8 (7.31)

From these expressions we conclude that (0, 0) is a saddle for all values of δ

and (±1, 0) are

sinks for δ > 1
centers for δ = 1
sources for 0 < δ < 1

(7.32)

Now we will use Bendixson’s criterion and the index theorem to determine
regions in the phase plane where periodic orbits may exist. For this example
(7.22) is given by:

−δ + x2. (7.33)

Hence the two vertical lines x = −
√

δ and x =
√

δ divide the phase plane
into three regions where periodic orbits cannot exist entirely in one of these



lyapunov’s method and the lasalle invariance principle 81

regions (or else Bendixson’s criterion would be violated). There are two cases
to be considered for the location of these vertical lines with respect to the
equilibria: δ > 1 and 0 < δ < 1.

In Fig. 7.1 we show three possibilities (they do not exhaust all possible
cases) for the existence of periodic orbits that would satisfy Bendixson’s cri-
terion in the case δ > 1. However, (b) is not possible because it violates the
index theorem.

y

x

(a)

y

x

(b)
y

x

(c)

δ√x = x = - δ√

Figure 7.1: The case δ > 1. Possibilities
for periodic orbits that satisfy Bendix-
son’s criterion. However, (b) is not possi-
ble because it violates the index theorem.

In Fig. 7.2 we show three possibilities (they do not exhaust all possible
cases) for the existence of periodic orbits that would satisfy Bendixson’s crite-
rion in the case 0 < δ < 1. However, (e) is not possible because it violates the
index theorem.

Problem Set 7

1. Consider the following autonomous vector field on the plane:

ẋ = y,

ẏ = x− x3 − δy, δ ≥ 0, (x, y) ∈ R2.

Use Lyapunov’s method to show that the equilibria (x, y) = (±1, 0)
are Lyapunov stable for δ = 0 and asymptotically stable for δ > 0.
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y

x

(d)

y

x

(e)
y

x

(f)

δ√x = x = - δ√

Figure 7.2: The case 0 < δ < 1. Pos-
sibilities for periodic orbits that satisfy
Bendixson’s criterion. However, (e) is
not possible because it violates the index
theorem.

2. Consider the following autonomous vector field on the plane:

ẋ = y,

ẏ = −x− εx2y, ε > 0, (x, y) ∈ R2.

Use the LaSalle invariance principle to show that

(x, y) = (0, 0),

is asymptotically stable.

3. Consider the following autonomous vector field on the plane:

ẋ = y,

ẏ = x− x3 − αx2y, α > 0, (x, y) ∈ R2,

use the LaSalle invariance principle to describe the fate of all trajec-
tories as t→ ∞.
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4. Consider the following autonomous vector field on the plane:

ẋ = y,

ẏ = x− x3 + αxy, (x, y) ∈ R2,

where α is a real parameter. Determine the equilibria and discuss
their linearized stability as a function of α.

5. Consider the following autonomous vector field on the plane:

ẋ = ax + by,

ẏ = cx + dy, (x, y) ∈ R2, (7.34)

where a, b, c, d ∈ R. In the questions below you are asked to give
conditions on the constants a, b, c, and d so that particular dynam-
ical phenomena are satisfied. You do not have to give all possible
conditions on the constants in order for the dynamical condition to
be satisfied. One condition will be sufficient, but you must justify
your answer.

• Give conditions on a, b, c, d for which the vector field has no
periodic orbits.

• Give conditions on a, b, c, d for which all of the orbits are peri-
odic.

• Using

V(x, y) =
1
2
(x2 + y2)

as a Lyapunov function, give conditions on a, b, c, d for which
(x, y) = (0, 0) is asymptotically stable.

• Give conditions on a, b, c, d for which x = 0 is the stable man-
ifold of (x, y) = (0, 0) and y = 0 is the unstable manifold of
(x, y) = (0, 0).

6. Consider the following autonomous vector field on the plane:

ẋ = y,

ẏ = −x− x2y
2

, (x, y) ∈ R2. (7.35)

• Determine the linearized stability of (x, y) = (0, 0).
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• Describe the invariant manifold structure for the linearization of
(7.35) about (x, y) = (0, 0).

• Using V(x, y) = 1
2 (x2 + y2) as a Lyapunov function, what can

you conclude about the stability of the origin? Does this agree
with the linearized stability result obtained above? Why or why
not?

• Using the LaSalle invariance principle, determine the fate of a
trajectory starting at an arbitrary initial condition as t → ∞?
What does this result allow you to conclude about stability of
(x, y) = (0, 0)?



8
Bifurcation of Equilibria, I

We will now study the topic of bifurcation of equilibria of

autonomous vector fields, or ‘’what happens as an equilibrium
point loses hyperbolicity as a parameter is varied?” We will study
this question through a series of examples, and then consider what the
examples teach us about the ‘’general situation” (and what this might
be).

Example 22 (The Saddle-Node Bifurcation). Consider the following non-
linear, autonomous vector field on R2:

ẋ = µ− x2,

ẏ = −y, (x, y) ∈ R2 (8.1)

where µ is a (real) parameter. The equilibrium points of (8.1) are given by:

(x, y) = (
√

µ, 0), (−√µ, 0). (8.2)

It is easy to see that there are no equilibrium points for µ < 0, one equilibrium
point for µ = 0, and two equilibrium points for µ > 0.

The Jacobian of the vector field evaluated at each equilibrium point is given
by:

(
√

µ, 0) :

(
−2
√

µ 0
0 −1

)
, (8.3)

from which it follows that the equilibria are hyperbolic and asymptotically
stable for µ > 0, and nonhyperbolic for µ = 0.

(−√µ, 0) :

(
2
√

µ 0
0 −1

)
(8.4)

from which it follows that the equilibria are hyperbolic saddle points for µ > 0,
and nonhyperbolic for µ = 0. We emphasize again that there are no equilib-
rium points for µ < 0.
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As a result of the ‘’structure” of (8.1) we can easily represent the behavior
of the equilibria as a function of µ in a bifurcation diagram. That is, since the
x and y components of (8.1) are ‘’decoupled”, and the change in the number
and stability of equilibria us completely captured by the x coordinates, we can
plot the x component of the vector field as a function of µ, as we show in Fig.
8.1.

μ

x Figure 8.1: Bifurcation diagram for (8.1)
in the µ − x plane. The curve of equi-
libria is given by µ = x2. The dashed
line denotes the part of the curve corre-
sponding to unstable equilibria, and the
solid line denotes the part of the curve
corresponding to stable equilibria.

In Fig. 8.2 we illustrate the bifurcation of equilibria for (8.1) in the x− y
plane.

y

x

μ < 0

y

x

μ = 0

y

x

μ > 0

Figure 8.2: Bifurcation diagram for (8.1)
in the x− y plane for µ < 0, µ = 0, and
µ > 0. Compare with Fig. 8.1.

This type of bifurcation is referred to as a saddle-node bifurcation (occa-
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sionally it may also be referred to as a fold bifurcation or tangent bifurcation,
but these terms are used less frequently).

The key characteristic of the saddle-node bifurcation is the following. As a
parameter (µ) is varied, the number of equilibria change from zero to two, and
the change occurs at a parameter value corresponding to the two equilibria
coalescing into one nonhyperbolic equilibrium.

µ is called the bifurcation parameter and µ = 0 is called the bifurcation
point.

Example 23 (The Transcritical Bifurcation). Consider the following non-
linear, autonomous vector field on R2:

ẋ = µx− x2,

ẏ = −y, (x, y) ∈ R2, (8.5)

where µ is a (real) parameter. The equilibrium points of (8.5) are given by:

(x, y) = (0, 0), (µ, 0). (8.6)

The Jacobian of the vector field evaluated at each equilibrium point is given
by:

(0, 0)

(
µ 0
0 −1

)
(8.7)

(µ, 0)

(
−µ 0
0 −1

)
(8.8)

from which it follows that (0, 0) is asymptotically stable for µ < 0, and a
hyperbolic saddle for µ > 0, and (µ, 0) is a hyperbolic saddle for µ < 0 and
asymptotically stable for µ > 0. These two lines of fixed points cross at µ = 0,
at which there is only one, nonhyperbolic fixed point.

In Fig. 8.3 we show the bifurcation diagram for (8.5) in the µ− x plane.

μ

x Figure 8.3: Bifurcation diagram for (8.5)
in the µ − x plane. The curves of equi-
libria are given by µ = x and x = 0. The
dashed line denotes unstable equilibria,
and the solid line denotes stable equilib-
ria.

In Fig. 8.4 we illustrate the bifurcation of equilibria for (8.5) in the x− y
plane for µ < 0, µ = 0, and µ > 0.
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y

x

μ < 0

y

x

μ = 0

y

x

μ > 0

Figure 8.4: Bifurcation diagram for (8.1)
in the x− y plane for µ < 0, µ = 0, and
µ > 0. Compare with Fig. 8.3.

This type of bifurcation is referred to as a transcritical bifurcation.
The key characteristic of the transcritical bifurcation is the following. As

a parameter (µ) is varied, the number of equilibria change from two to one,
and back to two, and the change in number of equilibria occurs at a parameter
value corresponding to the two equilibria coalescing into one nonhyperbolic
equilibrium.

Example 24 (The (Supercritical) Pitchfork Bifurcation). Consider the fol-
lowing nonlinear, autonomous vector field on R2:

ẋ = µx− x3,

ẏ = −y, (x, y) ∈ R2, (8.9)

where µ is a (real) parameter. The equilibrium points of (8.9) are given by:

(x, y) = (0, 0), (
√

µ, 0), (−√µ, 0) (8.10)

The Jacobian of the vector field evaluated at each equilibrium point is given
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by:

(0, 0)

(
µ 0
0 −1

)
(8.11)

(±√µ, 0)

(
−2µ 0

0 −1

)
(8.12)

from which it follows that (0, 0) is asymptotically stable for µ < 0, and
a hyperbolic saddle for µ > 0, and (±√µ, 0) are asymptotically stable for
µ > 0, and do not exist for µ < 0. These two curves of fixed points pass
through zero at µ = 0, at which there is only one, nonhyperbolic fixed point.

In Fig. 8.5 we show the bifurcation diagram for (8.9) in the µ− x plane.

μ

x Figure 8.5: Bifurcation diagram for (8.9)
in the µ − x plane. The curves of equi-
libria are given by µ = x2, and x = 0.
The dashed line denotes unstable equi-
libria, and the solid line denotes stable
equilibria.

In Fig. 8.6 we illustrate the bifurcation of equilibria for (8.9) in the x− y
plane for µ < 0, µ = 0, and µ > 0.

Example 25 (The (Subcritical) Pitchfork Bifurcation). Consider the fol-
lowing nonlinear, autonomous vector field on R2:

ẋ = µx + x3,

ẏ = −y, (x, y) ∈ R2, (8.13)

where µ is a (real) parameter. The equilibrium points of (8.9) are given by:

(x, y) = (0, 0), (
√
−µ, 0), (−

√
−µ, 0). (8.14)

The Jacobian of the vector field evaluated at each equilibrium point is given
by:

(0, 0)

(
µ 0
0 −1

)
(8.15)

(±√−µ, 0)

(
−2µ 0

0 −1

)
(8.16)

from which it follows that (0, 0) is asymptotically stable for µ < 0, and
a hyperbolic saddle for µ > 0, and (±√−µ, 0) are hyperbolic saddles for
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y

x

μ < 0

y

x

μ = 0

y

x

μ > 0

Figure 8.6: Bifurcation diagram for (8.9)
in the x− y plane for µ < 0, µ = 0, and
µ > 0. Compare with Fig. 8.5.

µ < 0, and do not exist for µ > 0. These two curves of fixed points pass
through zero at µ = 0, at which there is only one, nonhyperbolic fixed point.

In Fig. 8.7 we show the bifurcation diagram for (8.13) in the µ− x plane.

μ

x Figure 8.7: Bifurcation diagram for (8.13)
in the µ − x plane. The curves of equi-
libria are given by µ = −x2, and x =
0. The dashed curves denotes unstable
equilibria, and the solid line denotes sta-
ble equilibria.

In Fig. 8.8 we illustrate the bifurcation of equilibria for (8.9) in the x− y
plane for µ < 0, µ = 0, and µ > 0.

We note that the phrase supercritical pitchfork bifurcation is also re-
ferred to as a soft loss of stability and the phrase subcritical pitchfork
bifurcation is referred to as a hard loss of stability. What this means
is the following. In the supercritical pitchfork bifurcation as µ goes
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y
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μ = 0
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x

μ > 0

y

x

μ < 0
Figure 8.8: Bifurcation diagram for (8.13)
in the x− y plane for µ < 0, µ = 0, and
µ > 0. Compare with Fig. 8.7.

from negative to positive the equilibrium point loses stability, but as
µ increases past zero the trajectories near the origin are bounded in
how far away from the origin they can move. In the subcritical pitch-
fork bifurcation the origin loses stability as µ increases from negative
to positive, but trajectories near the unstable equilibrium can become
unbounded.

It is natural to ask the question,

‘’what is common about these three examples of bifurca-
tions of fixed points of one dimensional autonomous vec-
tor fields?” We note the following.

• A necessary (but not sufficient) for bifurcation of a fixed point is
nonhyperbolicity of the fixed point.

• The ‘’nature” of the bifurcation (e.g. numbers and stability of fixed
points that are created or destroyed) is determined by the form of
the nonlinearity.

But we could go further and ask what is in common about these
examples that could lead to a definition of the bifurcation of a fixed
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point for autonomous vector fields? From the common features we
give the following definition.

Definition 21 (Bifurcation of a fixed point of a one dimensional au-
tonomous vector field). We consider a one dimensional autonomous vector
field depending on a parameter, µ. We assume that at a certain parameter
value it has a fixed point that is not hyperbolic. We say that a bifurcation
occurs at that ‘’nonhyperbolic parameter value” if for µ in a neighborhood of
that parameter value the number of fixed points and their stability changes1. 1 Consider this definition in the context

of our examples (and pay particular at-
tention to the transcritical bifurcation).Finally, we finish the discussion of bifurcations of a fixed point of

one dimensional autonomous vector fields with an example showing
that a nonhyperbolic fixed point may not bifurcate as a parameter is
varied, i.e. non-hyperbolicity is a necessary, but not sufficient, condi-
tion for bifurcation.

Example 26. We consider the one dimensional autonomous vector field:

ẋ = µ− x3, x ∈ R, (8.17)

where µ is a parameter. This vector field has a nonhyperbolic fixed point at
x = 0 for µ = 0. The curve of fixed points in the µ− x plane is given by
µ = x3, and the Jacobian of the vector field is −3x2, which is strictly negative
at all fixed points, except the nonhyperbolic fixed point at the origin.

In fig. 8.9 we plot the fixed points as a function of µ.

μ

x Figure 8.9: Bifurcation diagram for
(8.17).

We see that there is no change in the number or stability of the fixed points
for µ > 0 and µ < 0. Hence, no bifurcation.

Problem Set 8

1. Consider the following autonomous vector fields on the plane de-
pending on a scalar parameter µ. Verify that each vector field has
a fixed point at (x, y) = (0, 0) for µ = 0. Determine the linearized
stability of this fixed point. Determine the nature (i.e. stability and
number) of the fixed points for µ in a neighborhood of zero. (In
other words, carry out a bifurcation analysis.) Sketch the flow in a
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neighborhood of each fixed point for values of µ corresponding to
changes in stability and/or numbers of fixed points.

(a)

ẋ = µ + 10x2,

ẏ = x− 5y.

(b)

ẋ = µx + 10x2,

ẏ = x− 2y.

(c)

ẋ = µx + x5,

ẏ = −y.





9
Bifurcation of Equilibria, II

We have examined fixed points of one dimensional autonomous vector
fields where the matrix associated with the linearization of the vector
field about the fixed point has a zero eigenvalue.

It is natural to ask ‘’are there more complicated bifur-
cations, and what makes them complicated?”. If one thinks
about the examples considered so far, there are two possibilities that
could complicate the situation. One is that there could be more than
one eigenvalue of the linearization about the fixed point with zero
real part (which would necessarily require a consideration of higher
dimensional vector fields), and the other would be more complicated
nonlinearity (or a combination of these two). Understanding how di-
mensionality and nonlinearity contribute to the ‘’complexity” of a bi-
furcation (and what that might mean) is a very interesting topic, but
beyond the scope of this course. This is generally a topic explored in
graduate level courses on dynamical systems theory that emphasize
bifurcation theory. Here we are mainly just introducing the basic ideas
and issues with examples that one might encounter in applications.
Towards that end we will consider an example of a bifurcation that
is very important in applications–the Poincaré-Andronov-Hopf bifur-
cation (or just Hopf bifurcation as it is more commonly referred to).
This is a bifurcation of a fixed point of an autonomous vector field
where the fixed point is nonhyperbolic as a result of the Jacobian hav-
ing a pair of purely imaginary eigenvalues, ±i ω, ω 6= 0. Therefore
this type of bifurcation requires (at least two dimensions), and it is
not characterize by a change in the number of fixed points, but by the
creation of time dependent periodic solutions. We will analyze this
situation by considering a specific example. References solely devoted
to the Hopf bifurcation are the books of Marsden and McCracken1 and 1 J.E. Marsden and M. McCracken. The

Hopf bifurcation and its applications. Ap-
plied mathematical sciences. Springer-
Verlag, 1976. ISBN 9780387902005.
URL https://books.google.cl/books?

id=KUHvAAAAMAAJ

Hassard, Kazarinoff, and Wan2.

2 Brian D Hassard, Nicholas D Kazari-
noff, and Y-H Wan. Theory and applica-
tions of Hopf bifurcation, volume 41. CUP
Archive, 1981

We consider the following nonlinear autonomous vector field on the
plane:

https://books.google.cl/books?id=KUHvAAAAMAAJ
https://books.google.cl/books?id=KUHvAAAAMAAJ
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ẋ = µx−ωy + (ax− by)(x2 + y2),

ẏ = ωx + µy + (bx + ay)(x2 + y2), (x, y) ∈ R2, (9.1)

where we consider a, b, ω as fixed constants and µ as a variable pa-
rameter. The origin, (x, y) = (0, 0) is a fixed point, and we want to con-
sider its stability. The matrix associated with the linearization about
the origin is given by: (

µ −ω

ω µ

)
, (9.2)

and its eigenvalues are given by:

λ1,2 = µ± iω. (9.3)

Hence, as a function of µ the origin has the following stability proper-
ties: 

µ < 0 sink
µ = 0 center
µ > 0 source

(9.4)

The origin is not hyperbolic at µ = 0, and there is a change in stability
as µ changes sign. We want to analyze the behaviour near the origin,
both in phase space and in parameter space, in more detail.

Towards this end we transform (9.1) to polar coordinates using the
standard relationship between cartesian and polar coordinates:

x = r cos θ, y = r sin θ (9.5)

Differentiating these two expressions with respect to t, and substitut-
ing into (9.1) gives:

ẋ = ṙ cos θ − rθ̇ sin θ = µr cos θ −ωr sin θ

+ (ar cos θ − br sin θ)r2, (9.6)

ẏ = ṙ sin θ + rθ̇ cos θ = ωr cos θ + µr sin θ

+ (br cos θ + ar sin θ)r2, (9.7)

from which we obtain the following equations for ṙ and θ̇:

ṙ = µr + ar3, (9.8)

rθ̇ = ωr + br3, (9.9)

where (9.8) is obtained by multiplying (9.6) by cos θ and (9.7) by sin θ

and adding the two results, and (9.9) is obtained by multiplying (9.6)
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by − sin θ and (9.7) by cos θ and adding the two results. Dividing both
equations by r gives the two equations that we will analyze:

ṙ = µr + ar3, (9.10)

θ̇ = ω + br2. (9.11)

Note that (9.10) has the form of the pitchfork bifurcation that we stud-
ied earlier. However, it is very important to realize that we are dealing
with the equations in polar coordinates and to understand what they
reveal to us about the dynamics in the original cartesian coordinates.
To begin with, we must keep in mind that r ≥ 0.

Note that (9.10) is independent of θ, i.e. it is a one dimensional,
autonomous ODE which we rewrite below:

ṙ = µr + ar3 = r(µ + ar2). (9.12)

The fixed points of this equation are:

r = 0, r =
√
−µ

a
≡ r+. (9.13)

(Keep in mind that r ≥ 0.) Substituting r+ into (9.10) and (9.11) gives:

˙r+ = µr+ + a(r)+3
= 0,

θ̇ = ω + b
(
−µ

a

)
(9.14)

The θ component can easily be solved (using r+ =
√
− µ

a ), after which
we obtain:

θ(t) =
(

ω− µb
a

)
t + θ(0). (9.15)

Therefore r does not change in time at r = r+ and θ evolves linearly
in time. But θ is an angular coordinate. This implies that r = r+

corresponds to a periodic orbit3. 3 At this point it is very useful to ‘’pause”
and think about the reasoning that led to
the conclusion that r = r+ is a periodic
orbit.

Using this information, we analyze the behavior of (9.12) by con-
structing the bifurcation diagram. There are two cases to consider:
a > 0 and a < 0.

In figure 9.1 we sketch the zeros of (9.12) as a function of µ for a > 0.
We see that a periodic orbit bifurcates from the nonhyperbolic fixed
point at µ = 0. The periodic orbit is unstable and exists for µ < 0. In
Fig. 9.2 we illustrate the dynamics in the x− y phase plane.

In figure 9.3 we sketch the zeros of (9.12) as a function of µ for a < 0.
We see that a periodic orbit bifurcates from the nonhyperbolic fixed
point at µ = 0. The periodic orbit is stable in this case and exists for
µ > 0. In Fig. 9.4 we illustrate the dynamics in the x− y phase plane.
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μ

r Figure 9.1: The zeros of (9.12) as a func-
tion of µ for a > 0.

y

x

μ = 0

y

x

μ > 0

y

x

μ < 0 Figure 9.2: Phase plane as a function of
µ in the x− y plane for a > 0.

μ

r Figure 9.3: The zeros of (9.12) as a func-
tion of µ for a < 0.

In this example we have seen that a nonhyperbolic fixed point of a
two dimensional autonomous vector field, where the nonhyperbolicity
arises from the fact that the linearization at the fixed point has a pair of
pure imaginary eigenvalues, ±iω, can lead to the creation of periodic
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y

x

μ = 0

y

x

μ > 0

y

x

μ < 0
Figure 9.4: Phase plane as a function of
µ in the x− y plane for a < 0.

orbits as a parameter is varied. This is an example of what is generally
called the Hopf bifurcation. It is the first example we have seen of
the bifurcation of an equilibrium solution resulting in time-dependent
solutions.

At this point it is useful to summarize the nature of the conditions
resulting in a Hopf bifurcation for a two dimensional, autonomous
vector field. To begin with, we need a fixed point where the Jaco-
bian associated with the linearization about the fixed point has a pair
of pure imaginary eigenvalues. This is a necessary condition for the
Hopf bifurcation. Now just as for bifurcations of fixed points of one
dimensional autonomous vector fields (e.g., the saddle-node, transcrit-
ical, and pitchfork bifurcations that we have studied in the previous
chapter) the nature of the bifurcation for parameter values in a neigh-
bourhood of the bifurcation parameter is determined by the form of
the nonlinearity of the vector field4. We developed the idea of the 4 It would be very insightful to think

about this statement in the context of the
saddle-node, transcritical, and pitchfork
bifurcations that we studied in the pre-
vious chapter.

Hopf bifurcation in the context of (9.1), and in that example the sta-
bility of the bifurcating periodic orbit was given by the sign of the
coefficient a (stable for a < 0, unstable for a > 0). In the example
the stability coefficient was evident from the simple structure of the
nonlinearity. In more complicated examples, i.e. more complicated
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nonlinear terms, the determination of the stability coefficient is more
algebraically intensive. Explicit expressions for the stability coefficient
are given in many dynamical systems texts. For example, it is given
in Guckenheimer and Holmes5 and Wiggins6. The complete details of 5 John Guckenheimer and Philip J

Holmes. Nonlinear oscillations, dynami-
cal systems, and bifurcations of vector fields,
volume 42. Springer Science & Business
Media, 2013

6 Stephen Wiggins. Introduction to applied
nonlinear dynamical systems and chaos, vol-
ume 2. Springer Science & Business Me-
dia, 2003

the calculation of the stability coefficient are carried out in 7. Problem

7 Brian D Hassard, Nicholas D Kazari-
noff, and Y-H Wan. Theory and applica-
tions of Hopf bifurcation, volume 41. CUP
Archive, 1981

2 at the end of this chapter explores the nature of the Hopf bifurca-
tion, e.g. the number and stability of bifurcating periodic orbits, for
different forms of nonlinearity.

Next, we return to the examples of bifurcations of fixed points in
one dimensional vector fields and give two examples of one dimen-
sional vector fields where more than one of the bifurcations we dis-
cussed earlier can occur.

Example 27. Consider the following one dimensional autonomous vector
field depending on a parameter µ:

ẋ = µ− x2

2
+

x3

3
, x ∈ R. (9.16)

The fixed points of this vector field are given by:

µ =
x2

2
− x3

3
, (9.17)

and are plotted in Fig. 9.5.

μ

x Figure 9.5: Fixed points of (9.16) plotted
in the µ− x plane.

The curve plotted is where the vector field is zero. Hence, it is positive
to the right of the curve and negative to the left of the curve. From this we
conclude the stability of the fixed points as shown in the figure.
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There are two saddle node bifurcations that occur where dµ
dx (x) = 0. These

are located at

(x, µ) = (0, 0),
(

1,
1
6

)
. (9.18)

Example 28. Consider the following one dimensional autonomous vector
field depending on a parameter µ:

ẋ = µx− x3

2
+

x4

3
,

= x
(

µ− x2

2
+

x3

3

)
(9.19)

The fixed points of this vector field are given by:

µ =
x2

2
− x3

3
, (9.20)

and

x = 0, (9.21)

and are plotted in the µ− x plane in Fig. 9.6.

μ

x Figure 9.6: Fixed points of (9.19) plotted
in the µ− x plane.

In this example we see that there is a pitchfork bifurcation and a saddle-
node bifurcation.

Problem Set 9
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1. Consider the following autonomous vector field on the plane:

ẋ = µx− 3y− x(x2 + y2)3,

ẏ = 3x + µy− y(x2 + y2)3,

where µ is a parameter. Analyze possible bifurcations at (x, y) =

(0, 0) for µ in a neighborhood of zero. (Hint: use polar coordinates.)

2. These exercises are from the book of Marsden and McCracken8. 8 J.E. Marsden and M. McCracken. The
Hopf bifurcation and its applications. Ap-
plied mathematical sciences. Springer-
Verlag, 1976. ISBN 9780387902005.
URL https://books.google.cl/books?

id=KUHvAAAAMAAJ

Consider the following vector fields expressed in polar coordinates,
i.e. (r, θ) ∈ R+ × S1, depending on a parameter µ. Analyze the
stability of the origin and the stability of all bifurcating periodic
orbits as a function of µ.

(a)

ṙ = −r(r− µ)2,

θ̇ = 1.

(b)

ṙ = r(µ− r2)(2µ− r2)2,

θ̇ = 1.

(c)

ṙ = r(r + µ)(r− µ),

θ̇ = 1.

(d)

ṙ = µr(r2 − µ),

θ̇ = 1.

(e)

ṙ = −µ2r(r + µ)2(r− µ)2,

θ̇ = 1.

3. Consider the following vector field:

ẋ = µx− x3

2
+

x5

4
, x ∈ R,

where µ is a parameter. Classify all bifurcations of equilibria and, in
the process of doing this, determine all equilibria and their stability
type.

https://books.google.cl/books?id=KUHvAAAAMAAJ
https://books.google.cl/books?id=KUHvAAAAMAAJ
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Center Manifold Theory

This chapter is about center manifolds, dimensional re-
duction, and stability of fixed points of autonomous vec-
tor fields.1 We begin with a motivational example. 1 Expositions of center manifold theory

are mostly found in advanced dynami-
cal systems textbooks. It is likely true
that all such expositions have their roots
in the monographs of Henry and Carr
. The monograph of Henry is a bit ob-
scure, but it is a seminal work in the
field. The monograph of Carr is a real
jewel. All of the theorems in this chap-
ter are taken from Carr, where the proofs
can also be found.

D. Henry. Geometric Theory of Semi-
linear Parabolic Equations. Lecture Notes
in Mathematics. Springer Berlin Hei-
delberg, 1993. ISBN 9783540105572.
URL https://books.google.cl/books?

id=ID3vAAAAMAAJ; and Jack Carr. Ap-
plications of centre manifold theory, vol-
ume 35. Springer Science & Business
Media, 2012

Example 29. Consider the following linear, autonomous vector field on Rc×
Rs:

ẋ = Ax,

ẏ = By, (x, y) ∈ Rc ×Rs, (10.1)

where A is a c× c matrix of real numbers having eigenvalues with zero real
part and B is a s× s matrix of real numbers having eigenvalues with negative
real part. Suppose we are interested in stability of the nonhyperbolic fixed
point (x, y) = (0, 0). Then that question is determined by the nature of
stability of x = 0 in the lower dimensional vector field:

ẋ = Ax, x ∈ Rc. (10.2)

This follows from the nature of the eigenvalues of B, and the properties that x
and y are decoupled in (10) and that it is linear. More precisely, the solution
of (10) is given by: (

x(t, x0)

y(t, y0)

)
=

(
eAtx0

eBty0

)
. (10.3)

From the assumption of the real parts of the eigenvalues of B having negative
real parts, it follows that:

lim
t→∞

eBty0 = 0.

In fact, 0 is approached at an exponential rate in time. Therefore it follows
that stability, or asymptotic stability, or instability of x = 0 for (10.2) implies
stability, or asymptotic stability, or instability of (x, y) = (0, 0) for (10).

https://books.google.cl/books?id=ID3vAAAAMAAJ
https://books.google.cl/books?id=ID3vAAAAMAAJ


104 ordinary differential equations

It is natural to ask if such a dimensional reduction procedure holds for
nonlinear systems. This might seem unlikely since, in general, nonlinear
systems are coupled and the superposition principle of linear systems does not
hold. However, we will see that this is not the case.

Invariant manifolds lead to a form of decoupling that re-
sults in a dimensional reduction procedure that gives, essen-
tially, the same result as is obtained for this motivational linear example2.This 2 In fact, this is one of the main uses of

invariant manifolds. They can play an
essential role in developing dimensional
reduction schemes. The ‘’manifold” part
is important because it is desirable for
the reduced dimensional system to have
properties where the usual techniques of
calculus can be applied.

is the topic of center manifold theory that we now develop.

We begin by describing the set-up. It is important to realize that
when applying these results to a vector field, it must be in the follow-
ing form.

ẋ = Ax + f (x, y),

ẏ = By + g(x, y), (x, y) ∈ Rc ×Rs, (10.4)

where the matrices A and B are have the following properties:

A− c× c matrix of real numbers
having eigenvalues with zero real parts,

B− s× s matrix of real numbers
having eigenvalues with negative real parts,

and f and g are nonlinear functions. That is, they are of order two or
higher in x and y, which is expressed in the following properties:

f (0, 0) = 0, D f (0, 0) = 0,

g(0, 0) = 0, Dg(0, 0) = 0, (10.5)

and they are Cr, r as large as required (we will explain what this means
when we explicitly use this property later on).

With this set-up (x, y) = (0, 0) is a fixed point for (10.4) and we are
interested in its stability properties.

The linearization of (10.4) about the fixed point is given by:

ẋ = Ax,

ẏ = By, (x, y) ∈ Rc ×Rs. (10.6)

The fixed point is nonhyperbolic. It has a c dimensional invariant
center subspace and a s dimensional invariant stable subspace given
by:

Ec = {(x, y) ∈ Rc ×Rs | y = 0} , (10.7)

Es = {(x, y) ∈ Rc ×Rs | x = 0} , (10.8)
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respectively.
For the nonlinear system (10.4) there is a s dimensional, Cr passing

through the origin and tangent to Es at the origin. Moreover, trajecto-
ries in the local stable manifold inherit their behavior from trajectories
in Es under the linearized dynamics in the sense that they approach
the origin at an exponential rate in time.

Similarly, there is a c dimensional Cr local center manifold that
passes through the origin and is tangent to Ec are the origin. Hence,
the center manifold has the form:

Wc(0) = {(x, y) ∈ Rc ×Rs | y = h(x), h(0) = 0, Dh(0) = 0} , (10.9)

which is valid in a neighborhood of the origin, i.e. for |x| sufficiently
small3. 3 At this point it would be insightful to

consider (10.9) and make sure you un-
derstand how it embodies the geomet-
rical properties of the local center mani-
fold of the origin that we have described.

We illustrate the geometry in Fig. 10.1.

Es

E

c

W   ((0,0))s

W   ((0,0))
loc

loc

c

Figure 10.1: The geometry of the stable
and center manifolds near the origin.

The application of the center manifold theory for analyzing the be-
havior of trajectories near the origin is based on three theorems:

• existence of the center manifold and the vector field restricted to the
center manifold,

• stability of the origin restricted to the center manifold and its rela-
tion to the stability of the origin in the full dimensional phase space,

• obtaining an approximation to the center manifold.

Theorem 5 (Existence and Restricted Dynamics). There exists a Cr center
manifold of (x, y) = (0, 0) for (10.4). The dynamics of (10.4) restricted to
the center manifold is given by:

u̇ = Au + f (u, h(u)), u ∈ Rc, (10.10)
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for |u| sufficiently small.

A natural question that arises from the statement of this theorem is
‘’why did we use the variable ‘u’ when it would seem that ‘x’ would be
the more natural variable to use in this situation”? Understanding the
answer to this question will provide some insight and understanding
to the nature of solutions near the origin and the geometry of the
invariant manifolds near the origin. The answer is that ‘’ x and y are
already used as variables for describing the coordinate axes in (10.4).
We do not want to confuse a point in the center manifold with a point
on the coordinate axis. A point on the center manifold is denoted
by (x, h(x)). The coordinate u denotes a parametric representation of
points along the center manifold. Moreover, we will want to compare
trajectories of (10.10) with trajectories in (10.4). This will be confusing
if x is used to denote a point on the center manifold. However, when
computing the center manifold and when considering the (i.e. (10.10))
it is traditional to use the coordinate ‘x’, i.e. the coordinate describing
the points in the center subspace. This does not cause ambiguities since
we can name a coordinate anything we want. However, it would cause
ambiguities when comparing trajectores in (10.4) with trajectories in
(10.10), as we do in the next theorem4. 4 If this long paragraph is confusing it

would be fruitful to spend some time
considering each point. There is some
useful insight to be gained.

Theorem 6. i) Suppose that the zero solution of (10.10) is stable (asymptot-
ically stable) (unstable), then the zero solution of (10.4) is also stable (asymp-
totically stable) (unstable). ii) Suppose that the zero solution of (10.10) is
stable. Then if (x(t), y(t)) is a solution of (10.4) with (x(0), y(0)) suffi-
ciently small, then there is a solution u(t) of (10.10) such that as t→ ∞

x(t) = u(t) +O(e−γt),

y(t) = h(u(t)) +O(e−γt), (10.11)

where γ > 0 is a constant.

Part i) of this theorem says that stability properties of the origin in
the center manifold imply the same stability properties of the origin
in the full dimensional equations. Part ii) gives much more precise
results for the case that the origin is stable. It says that trajectories
starting at initial conditions sufficiently close to the origin asymptoti-
cally approach a trajectory in the center manifold.

Now we would like to compute the center manifold so that we can
use these theorems in specific examples. In general, it is not possible to
compute the center manifold. However, it is possible to approximate
it to ‘’sufficiently high accuracy” so that we can verify the stability
results of Theorem 6 can be confirmed. We will show how this can be
done. The idea is to derive an equation that the center manifold must
satisfy, and then develop an approximate solution to that equation.
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We develop this approach step-by-step.
The center manifold is realized as the graph of a function,

y = h(x), x ∈ Rc, y ∈ Rs, (10.12)

i.e. any point (xc, yc), sufficiently close to the origin, that is in the
center manifold satisfies yc = h(xc). In addition, the center manfold
passes through the origin (h(0) = 0) and is tangent to the center sub-
space at the origin (Dh(0) = 0).

Invariance of the center manifold implies that the graph of the func-
tion h(x) must also be invariant with respect to the dynamics gener-
ated by (10.4). Differentiating (10.12) with respect to time shows that
(ẋ, ẏ) at any point on the center manifold satisfies:

ẏ = Dh(x)ẋ. (10.13)

This is just the analytical manifestation of the fact that

invariance of a surface with respect to a vector field im-
plies that the vector field must be tangent to the surface.5 5 It would be very insightful to think

about this statement in the context of
the examples from earlier chapters that
involved determining invariant sets and
invariant manifolds.

We will now use these properties to derive an equation that must
be satisfied by the local center manifold.

The starting point is to recall that any point on the local center
manifold obeys the dynamics generated by . Substituting y = h(x)
into gives:

ẋ = Ax + f (x, h(x)), (10.14)

ẏ = Bh(x) + g(x, h(x)), (x, y) ∈ Rc ×Rs. (10.15)

Substituting and into the invariance condition ẏ = Dh(x)ẋ gives:

Bh(x) + g(x, h(x)) = Dh(x) (Ax + f (x, h(x))) , (10.16)

or

Dh(x) (Ax + f (x, h(x)))− Bh(x)− g(x, h(x)) ≡ N (h(x) = 0. (10.17)

This is an equation for h(x). By construction, the solution implies in-
variance of the graph of h(x), and we seek a solution satisfying the
additional conditions h(0) = 0 and Dh(0) = 0. The basic result on ap-
proximation of the center manifold is given by the following theorem.

Theorem 7 (Approximation). Let φ : Rc → Rs be a C1 mapping with

φ(0) = 0, Dφ(0) = 0,
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such that

N (φ(x)) = O(|x|q) as x→ 0,

for some q > 1. Then

|h(x)− φ(x)| = O(|x|q) as x → 0.

The theorem states that if we can find an approximate solution of
(10.17) to a specified degree of accuracy, then that approximate solu-
tion is actually an approximation to the local center manifold, to the
same degree of accuracy6. 6 This answers the question of why we

said that the original vector field, (10.4),
was Cr , ‘’r as large as required”. r will
need to be as large as needed in order to
obtain a sufficiently accurate approxima-
tion to the local center manifold. ‘’Suf-
ficiently accurate” is determined by our
ability to deduce stability properties of
the zero solution of the vector field re-
stricted to the center manifold.

We now consider some examples showing how these results are
applied.

Example 30. We consider the following autonomous vector field on the plane:

ẋ = x2y− x5,

ẏ = −y + x2, (x, y) ∈ R2. (10.18)

or, in matrix form:(
ẋ
ẏ

)
=

(
0 0
0 −1

)(
x
y

)
+

(
x2y− x5

x2

)
. (10.19)

We are interested in determining the nature of the stability of (x, y) = (0, 0).
The Jacobian associated with the linearization about this fixed point is:(

0 0
0 −1

)
,

which is nonhyperbolic, and therefore the linearization does not suffice to
determine stability.

The vector field is in the form of (10.4)

ẋ = Ax + f (x, y),

ẏ = By + g(x, y), (x, y) ∈ R×R, (10.20)

where

A = 0, B = −1, f (x, y) = x2y− x5, g(x, y) = x2. (10.21)

We assume a center manifold of the form:

y = h(x) = ax2 + bx3 +O(x4), (10.22)

which satisfies h(0) = 0 (‘’passes through the origin”) and Dh(0) = 0
(tangent to Ec at the origin). A center manifold of this type will require the
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vector field to be at least C3 (hence, the meaning of the phrase Cr, r as large
as necessary).

Substituting this expression into the equation for the center manifold (10.17)
(using (10.21)) gives:

(2ax+ 3b2 +O(x3))(ax4 + bx5 +O(x6)− x5)+ ax2 + bx3 +O(x4)− x2 = 0.
(10.23)

In order for this equation to be satisfied the coefficients on each power of x
must be zero. Through third order this gives:

x2 : a− 1 = 0⇒ a = 1,

x3 : b = 0. (10.24)

Substituting these values into (10.22) gives the following expression for the
center manifold through third order:

y = x2 +O(x4). (10.25)

Therefore the vector field restricted to the center manifold is given by:

ẋ = x4 +O(x5). (10.26)

Hence, for x sufficiently small, ẋ is positive for x 6= 0, and therefore the origin
is unstable. We illustrate the flow near the origin in Fig. 10.2.

E s

E

c

W   ((0,0))s

W   ((0,0))
loc

c

= Figure 10.2: The flow near the origin for
(10.19).

Example 31. We consider the following autonomous vector field on the plane:

ẋ = xy,

ẏ = −y + x3, (x, y) ∈ R2, (10.27)
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or, in matrix form:(
ẋ
ẏ

)
=

(
0 0
0 −1

)(
x
y

)
+

(
xy
x3

)
(10.28)

We are interested in determining the nature of the stability of (x, y) = (0, 0).
The Jacobian associated with the linearization about this fixed point is:(

0 0
0 −1

)
.

which is nonhyperbolic, and therefore the linearization does not suffice to
determine stability.

The vector field is in the form of (10)

ẋ = Ax + f (x, y),

ẏ = By + g(x, y), (x, y) ∈ R×R, (10.29)

where

A = 0, B = −1, f (x, y) = xy, g(x, y) = x3. (10.30)

We assume a center manifold of the form:

y = h(x) = ax2 + bx3 +O(x4) (10.31)

which satisfies h(0) = 0 (‘’passes through the origin”) and Dh(0) = 0
(tangent to Ec at the origin). A center manifold of this type will require the
vector field to be at least C3 (hence, the meaning of the phrase Cr, r as large
as necessary).

Substituting this expression into the equation for the center manifold (10.17)
(using (10.30)) gives:

(2ax + 3b2 +O(x3))(ax3 + bx4 +O(x5)) + ax2 + bx3 +O(x4)− x3 = 0.
(10.32)

In order for this equation to be satisfied the coefficients on each power of x
must be zero. Through third order this gives:

x2 : a = 0,

x3 : b− 1 = 0⇒ b = 1. (10.33)

Substituting these values into (10.31) gives the following expression for the
center manifold through third order:

y = x3 +O(x4). (10.34)
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Therefore the vector field restricted to the center manifold is given by:

ẋ = x4 +O(x5). (10.35)

Since ẋ is positive for x sufficiently small. the origin is unstable. We
illustrate the flow near the origin in Fig. 10.3.

E s

E

c

W   ((0,0))s

W   ((0,0))
loc

c

= Figure 10.3: The flow near the origin for
(10.27).

Problem Set 10

1. Consider the following autonomous vector field on the plane:

ẋ = x2y− x3,

ẏ = −y + x3, (x, y) ∈ R2.

Determine the stability of (x, y) = (0, 0) using center manifold the-
ory7. 7 When the equation restricted to the

center manifold is one dimensional, then
stability can be deduced from the sign of
the one dimensional vector field near the
origin.

2. Consider the following autonomous vector field on the plane:

ẋ = x2,

ẏ = −y + x2, (x, y) ∈ R2.

Determine the stability of (x, y) = (0, 0) using center manifold the-
ory. Does the fact that solutions of ẋ = x2 ‘’blow up in finite time”
influence your answer (why or why not)?

3. Consider the following autonomous vector field on the plane:

ẋ = −x + y2,

ẏ = −2x2 + 2xy2, (x, y) ∈ R2.
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Show that y = x2 is an invariant manifold. Show that there is a
trajectory connecting (0, 0) to (1, 1), i.e. a heteroclinic trajectory.

4. Consider the following autonomous vector field on R3:

ẋ = y,

ẏ = −x− x2y,

ż = −z + xz2, (x, y, z) ∈ R3.

Determine the stability of (x, y, z) = (0, 0, 0) using center manifold
theory8. 8 In this problem the vector field re-

stricted to the center manifold is two
dimensional. The only techniques we
learned for determining stability of a
nonhypebolic fixed points for vector
fields with more than one dimension
was Lyapunov’s method and the LaSalle
invariance principle.

5. Consider the following autonomous vector field on R3:

ẋ = y,

ẏ = −x− x2y + zxy,

ż = −z + xz2, (x, y, z) ∈ R3.

Determine the stability of (x, y, z) = (0, 0, 0) using center manifold
theory.

6. Consider the following autonomous vector field on R3:

ẋ = y,

ẏ = −x + zy2,

ż = −z + xz2, (x, y, z) ∈ R3.

Determine the stability of (x, y, z) = (0, 0, 0) using center manifold
theory.



A
Jacobians, Inverses of Matrices, and Eigenvalues

In this appendix we collect together some results on Jacobians and
inverses and eigenvalues of 2× 2 matrices that are used repeatedly in
the material.

First, we consider the Taylor expansion of a vector valued function
of two variables, denoted as follows:

H(x, y) =

(
f (x, y)
g(x, y)

)
, (x, y) ∈ R2. (A.1)

More precisely, we will need to Taylor expand such functions through
second order:

H(x0 + h, y0 + k) = H(x0, y0) + DH(x0, y0)

(
h
k

)
+O(2). (A.2)

The Taylor expansion of a scalar valued function of one variable should
be familiar to most students at this level. Possibly there is less famil-
iarity with the Taylor expansion of a vector valued function of a vector
variable. However, to compute this we just Taylor expand each com-
ponent of the function (which is a scalar valued function of a vector
variable) in each variable, holding the other variable fixed for the ex-
pansion in that particular variable, and then we gather the results for
each component into matrix form.

Carrying this procedure out for the f (x, y) component of (A.1) gives:

f (x0 + h, y0 + k) = f (x0, y0 + k) +
∂ f
∂x

(x0, y0 + k)h +O(h2),

= f (x0, y0) +
∂ f
∂y

(x0, y0)k +O(k2) +
∂ f
∂x

(xo, y0)h

+ O(hk) +O(h2). (A.3)

The same procedure can be applied to g(x, y). Recombining the terms
back into the vector expresson for (A.1) gives:
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H(x0 + h, y0 + k) =

(
f (x0, y0)

g(x0, y0)

)

+

( ∂ f
∂x (x0, y0)

∂ f
∂y (x0, y0)

∂g
∂x (x0, y0)

∂g
∂y (x0, y0)

)(
h
k

)
+O(2).

(A.4)

Hence, the Jacobian of (A.1) at (x0, y0) is:( ∂ f
∂x (x0, y0)

∂ f
∂y (x0, y0)

∂g
∂x (x0, y0)

∂g
∂y (x0, y0)

)
, (A.5)

which is a 2× 2 matrix of real numbers.
We will need to compute the inverse of such matrices, as well as its

eigenvalues.
We denote a general 2× 2 matrix of real numbers:

A =

(
a b
c d

)
, a, b, c, d ∈ R. (A.6)

It is easy to verify that the inverse of A is given by:

A−1 =
1

ad− bc

(
d −b
−c a

)
. (A.7)

Let I denote the 2× 2 identity matrix. Then the eigenvalues of A are
the solutions of the characteristic equation:

det (A− λI) = 0. (A.8)

where ‘’det” is notation for the determinant of the matrix. This is a
quadratic equation in λ which has two solutions:

λ1,2 =
tr A

2
± 1

2

√
(tr A)2 − 4 det A, (A.9)

where we have used the notation:

tr A ≡ trace A = a + d, det A ≡ determinant A = ad− bc.



B
Integration of Some Basic Linear ODEs

In this appendix we collect together a few common ideas related to
solving, explicitly, linear inhomogeneous differential equations. Our
discussion is organized around a series of examples.

Example 32. Consider the one dimensional, autonomous linear vector field:

ẋ = ax, x, a ∈ R. (B.1)

We often solve problems in mathematics by transforming them into simpler
problems that we already know how to solve. Towards this end, we introduce
the following (time-dependent) transformation of variables:

x = ueat. (B.2)

Differentiating this expression with respect to t, and using (B.1), gives the
following ODE for u:

u̇ = 0, (B.3)

which is trivial to integrate, and gives:

u(t) = u(0), (B.4)

and it is easy to see from (36) that:

u(0) = x(0). (B.5)

Using (36), as well as (B.4) and (B.5), it follows that:

x(t)e−at = u(t) = u(0) = x(0), (B.6)

or

x(t) = x(0)eat. (B.7)
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Example 33. Consider the following linear inhomogeneous nonautonomous
ODE (due to the presence of the term b(t)):

ẋ = ax + b(t), a, x ∈ R, (B.8)

where b(t) is a scalar valued function of t, whose precise properties we will
consider a bit later. We will use exactly the same strategy and change of
coordinates as in the previous example:

x = ueat. (B.9)

Differentiating this expression with respect to t, and using (B.8), gives:

u̇ = e−atb(t). (B.10)

(Compare with (B.3).) Integrating (B.10) gives:

u(t) = u(0) +
∫ t

0
e−at′b(t′)dt′. (B.11)

Now using (B.9) (with the consequence u(0) = x(0)) with (B.11) gives:

x(t) = x(0)eat + eat
∫ t

0
e−at′b(t′)dt′. (B.12)

Finally, we return to the necessary properties of b(t) in order for this
unique solution of (B.8) to ‘’make sense”. Upon inspection of (B.12) it is
clear that all that is required is for the integrals involving b(t) to be well-
defined. Continuity is a sufficient condition.

Example 34. Consider the one dimensional, nonautonomous linear vector
field:

ẋ = a(t)x, x ∈ R, (B.13)

where a(t) is a scalar valued function of t whose precise properties will be con-
sidered later. The similarity between (B.1) and (B.13) should be evident. We
introduce the following (time-dependent) transformation of variables (com-
pare with (36)):

x = ue
∫ t

0 a(t′)dt′ . (B.14)

Differentiating this expression with respect to t, and substituting (B.13) into
the result gives:

ẋ = u̇e
∫ t

0 a(t′)dt′ + ua(t)e
∫ t

0 a(t′)dt′ ,

= u̇e
∫ t

0 a(t′)dt′ + a(t)x, (B.15)
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which reduces to:

u̇ = 0. (B.16)

Integrating this expression, and using (B.14), gives:

u(t) = u(0) = x(0) = x(t)e−
∫ t

0 a(t′)dt′ , (B.17)

or

x(t) = x(0)e
∫ t

0 a(t′)dt′ . (B.18)

As in the previous example, all that is required for the solution to be well-
defined is for the integrals involving a(t) to exist. Continuity is a sufficient
condition.

Example 35. Consider the one dimensional inhomogeneous nonautonomous
linear vector field:

ẋ = a(t)x + b(t), x ∈ R, (B.19)

where a(t), b(t) are scalar valued functions whose required properties will be
considered at the end of this example. We make the same transformation as
(B.14):

x = ue
∫ t

0 a(t′)dt′ , (B.20)

from which we obtain:

u̇ = b(t)e−
∫ t

0 a(t′)dt′ . (B.21)

Integrating this expression gives:

u(t) = u(0) +
∫ t

0
b(t′)e−

∫ t′
0 a(t

′′
)dt
′′

dt′ . (B.22)

Using gives:

x(t)e−
∫ t

0 a(t′)dt′ = x(0) +
∫ t

0
b(t′)e−

∫ t′
0 a(t

′′
)dt
′′

dt′, (B.23)

or

x(t) = x(0)e
∫ t

0 a(t′)dt′ + e
∫ t

0 a(t′)dt′
∫ t

0
b(t′)e−

∫ t′
0 a(t

′′
)dt
′′

dt′. (B.24)

As in the previous examples, that all that is required is for the integrals in-
volving a(t) and b(t) to be well-defined. Continuity is a sufficient condition.

The previous examples were all one dimensional. Now we will
consider two n dimensional examples.
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Example 36. Consider the n dimensional autonomous linear vector field:

ẋ = Ax, x ∈ Rn, (B.25)

where A is a n× n matrix of real numbers. We make the following transfor-
mation of variables (compare with ):

x = eAtu. (B.26)

Differentiating this expression with respect to t, and using (B.25), gives:

u̇ = 0. (B.27)

Integrating this expression gives:

u(t) = u(0). (B.28)

Using (B.26) with (B.28) gives:

u(t) = e−Atx(t) = u(0) = x(0), (B.29)

from which it follows that:

x(t) = eAtx(0). (B.30)

Example 37. Consider the n dimensional inhomogeneous nonautonomous
linear vector field:

ẋ = Ax + g(t), x ∈ Rn, (B.31)

where g(t) is a vector valued function of t whose required properties will
be considered later on. We use the same transformation as in the previous
example:

x = eAtu. (B.32)

Differentiating this expression with respect to t, and using (B.31), gives:

u̇ = e−Atg(t), (B.33)

from which it follows that:

u(t) = u(0) +
∫ t

0
e−At′g(t′)dt′, (B.34)

or, using (B.32):

x(t) = eAtx(0) + eAt
∫ t

0
e−At′g(t′)dt′. (B.35)



C
Solutions of Some Second Order ODEs arising in Appli-
cations: Newton’s Equations

In this appendix we will illustrate some of the issues associated with
the solutions of second order ODEs in the setting of a class of sec-
onder order ODEs arising in a familiar physical setting–the classical
mechanical motion of a particle of constant mass m in one dimension
as described by Newton’s equations. By “the motion of a particle in
one dimension” we mean that the particle is restricted to lie on a (one
dimensional) curve. If you think hard about this statement you might
think that the motion of all particles is one dimensional since the mo-
tion traces out a curve in space. Actually, this is true. However, in
order to take advantage of this you must know the curve, i.e., know
the motion. In practice, this is usually what we are trying to find out.
The situations we have in mind here are when the forces on a parti-
cle are always acting so that at each point of a known curve they are
tangential to that curve. In particular, the “curve” of interest may be
a straight line. In this case, the forces act only in the direction of this
straight line. We could also consider particles constrained to move in
a circle, as well as other curves.

We will denote the generic coordinate describing the position of the
particle by “s”. For a particle moving horizontally in the x direction, s
would just be x. For a particle falling under the influence of gravity s
would be the typical vertical coordinate, z. For a simple pendulum the
particle would be constrained to move in a circle and s would be an
angular coordinate, where the angle is measure from some fixed (say
vertical) line.

Assuming constant mass, Newton’s second law of motion becomes:

m
d2s
dt2 = F. (C.1)

This is an example of a second order ODE, and all we now need to
do is “solve it” to obtain the motion, s(t). However, we are getting
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a bit ahead of ourselves, because there is the problem of specifying
the right-hand-side of (C.1), the F. This requires an understanding of
the physics of the system under consideration. But first, we want to
consider some strictly mathematical issues associated with (C.1).

. In order to specify a solution of a second order ODE uniquely we
require two constants (which generally will have physical meaning).
Why is this? Here is an argument that is not generally found in text-
books, but it is pretty straightforward. Suppose s(t) is a solution of
(C.1) and we are interested in the solution near t = t0. So we could
consider a Taylor expansion near t0:

s(t + t0) = s(t0) +
ds
dt
(t0)t +

1
2

d2s
dt2 (t0)t2 +

1
6

d3s
dt3 (t0)t3 + · · · , (C.2)

and the Taylor coefficients are just the derivatives of s(t) evaluated at
t0. Now in what sense does the equation (C.1) provide the information
to completely specify (C.2)? Here, ‘’completely specify” would mean
to completely specify all of the Taylor coefficients. Equation (C.1) pro-
vides us with the second derivative of s(t), we can repeatedly differ-
entiate it to obtain all the higher order derivatives. However, it tells us
nothing about s(t0) and ds

dt (t0). These we must specify separately. If
t0 is the initial time we say that we must specify initial conditions; the
initial position, s(t0), and the initial velocity, ṡ(t0). 1 1 In this appendix we will assume that

all quantities have sufficient regularity
properties, e.g., continuity, differentia-
bility, in order for the necessary math-
ematical operations, e.g. differentiation,
integration, to be valid.

Now for what type of forces can we actually solve (C.1) analytically
(as opposed to using a computer)? This depends on the “functional
form” of the force, i.e., how it depends on s, ṡ and t. We summarize
the results in Table C.1, and then provide some detailed calculations
backing up the claims.

Force Function Solvability of Newton’s Equations

F = constant yes
F = F(t) yes
F = F(ṡ) yes
F = F(s) yes

F = F(ṡ, t) generally no, except for special cases
F = F(s, t) generally no, except for special cases

F = F(s, ṡ, t) generally no, except for special cases

Table C.1: Examples of mathematical
forms of forces for Newton’s equations
in one dimension.

Everything was going fine until the last three rows of Table C.1, and
that requires some explanation.

There is an important distinction between linear and nonlinear ODEs.
The distinction being that solutions of linear ODEs are fairly simple,
while the solutions of nonlinear ODEs may be extremely complicated
(in ways that can be made mathematically precise).
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For these reasons it is important to understand from the outset
whether you are dealing with a linear or nonlinear ODE.

First, recall what we mean by a linear ODE. This means that F(s, ṡ, t)
is a linear function of s and ṡ, plus a function solely of t (which could
be constant), i.e.,

F(s, ṡ, t) = (a0 + a1(t))s + (b0 + b1(t))ṡ + c0 + c1(t), (C.3)

where a0, b0, c0 are constants, and a1(t), b1(t), c1(t) are functions of t.
So are Newton’s equations solvable with a force of the form of (C.3)?

No. The problem comes from the coefficients on the s and ṡ terms. If
they are constant (i.e., a1(t) = b1(t) = 0), then Newton’s equations can
always be solved.

So what is a nonlinear ODE? It is one that is not linear, according to
our definition above.

Now let’s turn to justifying Table C.1.

F = constant. Newton’s equations are:

m
d2s
dt2 = F = constant, s(t0) = s0, ṡ(t0) = v0,

and this is about the easiest differential equation that you could be
given to solve. To solve it, you just “integrate twice”, as we now show.

m
∫ t

t0

d
dτ

(
ds
dτ

(τ)

)
dτ =

∫ t

t0

Fdτ,

Performing the integrals gives:

ds
dt
(t) = v0 +

F
m
(t− t0).

Integrating this equation gives:

∫ t

t0

ds
dτ

(τ)dτ = v0

∫ t

t0

dτ +
F
m

∫ t

t0

(τ − t0)dτ.

Performing the integrals gives:

s(t) = s0 + v0(t− t0) +
F

2m
(t− t0)

2.

F = F(t). Newton’s equations are:

m
d2s
dt2 = F(t), s(t0) = s0, ṡ(t0) = v0,

and this is about the second easiest differential equation that you could
be given to solve. To solve it, you also integrate twice.
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m
∫ t

t0

d
dτ

(
ds
dτ

(τ)

)
dτ =

∫ t

t0

F(τ)dτ,

Performing the integrals gives:

ds
dt
(t) = v0 +

1
m

∫ t

t0

F(τ)dτ.

Integrating this expression gives:

∫ t

t0

ds
dτ′

(τ′)dτ′ = v0

∫ t

t0

dτ′ +
1
m

∫ t

t0

∫ τ′

t0

F(τ)dτdτ′,

or

s(t) = s0 + v0(t− t0) +
1
m

∫ t

t0

∫ τ′

t0

F(τ)dτdτ′.

F = F(ṡ). Newton’s equations are:

m
d2s
dt2 = F

(
ds
dt

)
, s(t0) = s0, ṡ(t0) = v0.

To solve this equation let

u =
ds
dt

, (C.4)

then Newton’s equations become:

m
du
dt

= F(u). (C.5)

We can solve this equation for u(t) (provided we can do the integrals
that arise), and then integrate u(t) with respect to t to get s(t).

More precisely, we solve for u(t) by rewriting (C.5) in the following
form:

m
∫ u(t)

u(t0)=v0

du
F(u)

=
∫ t

t0

dτ.

If this integral can be performed (which will depend on F(u)), then we
may be able to obtain u(t) = ds

dt (t). We integrate this expression from
t0 to t to obtain s(t).

F = F(s). Newton’s equations are given by:

m
d2s
dt2 = F(s), s(t0) = s0, ṡ(t0) = v0. (C.6)

Solving this equation requires a certain insight that, fortunately, others
have had earlier.
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Define the function:

V(s) = −
∫ s

c
F(s′)ds′, (C.7)

where c is any constant. Then Eq. (C.6) becomes:

m
d2s
dt2 = −dV

ds
(s), s(t0) = s0, ṡ(t0) = v0. (C.8)

Notice that:

d
dt

(m
2

ṡ2 + V(s)
)
= ṡ

(
ms̈ +

dV
ds

(s)
)
= 0. (C.9)

Now it is important to interpret this equation correctly. It says that a
solution of ms̈ + dV

ds (s) = 0 must also satisfy:

m
2

ṡ2 + V(s) = constant. (C.10)

The constant is determined by the initial conditions. This is a very im-
portant expression and later we will see how it is related to “energy”.

F = F(ṡ, t). If we let

ṡ = u,

then Newton’s equations become first order equations for the velocity:

mu̇ = F(u, t), u(t0) = v0.

If these equations could be solved then the velocity could be integrated
to give the position. Unfortunately, even though they are first order,
the general equation cannot be solved explicitly (although many “spe-
cial cases” are known that can be solved). However, it is true that all
linear first order equations can be solved, i.e., equations of the form:

mu̇ = a(t)u + b(t), u(t0) = v0, (C.11)

where a(t) and b(t) are continuous functions of t. Before demonstrat-
ing how this can be solved, let’s first simplify this equation by getting
rid of the annoying mass term (we can restore it later). We do this by
defining:

ā(t) ≡ a(t)
m

, b̄(t) ≡ b(t)
m

.

Then (C.11) becomes:

u̇ = ā(t)u + b̄(t), u(t0) = v0, (C.12)
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Now the “trick” to solving this equation is due to Johann Bernoulli.
He proposed to write the solution of (C.12) in the form u(t) = n(t)m(t).
Substituting this into (C.12) gives:

ṅm + ṁn = ā(t)nm + b̄(t), u(t0) = n(t0)m(t0) = v0. (C.13)

The solution of this equation can be obtained by breaking it into two
pieces, and solving each piece separately (why?):

ṅ = ā(t)n, solve for n, (C.14)

ṁ =
b̄(t)

n
, integrate to get m, with n substituted in from above.(C.15)

The solution of (C.14) is given by:

n(t) = n(t0)e
∫ t

t0
ā(τ)dτ . (C.16)

This is then substituted into (C.15), and integrated, to obtain:

m(t) = m(t0) +
1

n(t0)

∫ t

t0

b̄(τ)e−
∫ τ

t0
ā(τ′′)dτ′′dτ. (C.17)

To obtain u(t), we multiply n(t) and m(t) to obtain:

u(t) = n(t)m(t) = n(t0)m(t0)e
∫ t

t0
ā(τ)dτ

+ e
∫ t

t0
ā(τ)dτ

∫ t

t0

b̄(τ)e−
∫ τ

t0
ā(τ′′)dτ′′dτ,

(C.18)
and remember that

u(t0) = n(t0)m(t0).

This expression illustrates the fact that the general solution of (C.12) is
the sum of a solution to the homogeneous equation:

u̇ = ā(t)u,

which is the first term in the solution (C.18), and a particular solution
(the second term in the solution (C.18). A particular solution is just
any solution of:

u̇ = ā(t)u + b̄(t),

where you don’t worry about the initial conditions. The initial condi-
tions are then satisfied for the sum of the homogeneous plus particular
solution.
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F = F(s, t). Newton’s equations are:

m
d2s
dt2 = F(s, t), s(t0) = s0, ṡ(t0) = v0.

Equations of this type cannot generally be solved analytically, even if
they are linear. However, there is one class of systems of this form
which always have a solution: the linear, constant coefficient systems,
i.e., systems of the form:

m
d2s
dt2 = as + b(t),

where a is a real number and b(t) is a continuous function of t.

F = F(s, ṡ, t). Newton’s equations are:

m
d2s
dt2 = F(s, ṡ, t), s(t0) = s0, ṡ(t0) = v0.

Equations of this type cannot generally be solved analytically, even if
they are linear. However, there is one class of systems of this form
which always have a solution: the linear, constant coefficient systems,
i.e., systems of the form:

m
d2s
dt2 = aṡ + bs + c(t),

where a and b are real numbers and c(t) is a continuous function of t.





D
Finding Lyapunov Functions

Lyapunov’s method and the LaSalle invariance principle are very powe-
ful techniques, but the obvious question always arises, ‘’how do I find
the Lyapunov function? The unfortunate answer is that given an ar-
bitrary ODE there is no general method to find a Lyapunov function
appropriate for a given ODE for the application of these methods.

In general, to determine a Lyapunov function appropriate for a
given ODE the ODE must have a structure that lends itself to the
construction of the Lyapunov function. Therefore the next question
is ‘’what is this structure?” If the ODE arises from physical modelling
there may be an ‘’energy function” that is ‘’almost conserved”. What
this means is that when certain terms of the ODE are neglected the
resulting ODE has a conserved quantity, i.e. a scalar valued function
whose time derivative along trajectories is zero, and this conserved
quantity may be a candidate to for a Lyapunov function. If that sounds
vague it is because the construction of Lyapunov functions often re-
quires a bit of ‘’mathematical artistry”. We will consider this proce-
dure with some examples. Energy methods are important techniques
for understanding stability issues in science and engineering; see, for
example see the book by Langhaar1 and the article by Maschke2. 1 Henry Louis Langhaar. Energy methods

in applied mechanics. John Wiley & Sons
Inc, 1962

2 Bernhard Maschke, Romeo Ortega, and
Arjan J Van Der Schaft. Energy-based
Lyapunov functions for forced Hamil-
tonian systems with dissipation. IEEE
Transactions on automatic control, 45(8):
1498–1502, 2000

To begin, we consider Newton’s equations for the motion of a par-
ticle of mass m under a conservative force in one dimension:

mẍ = −dΦ
dx

(x), x ∈ R. (D.1)

Writing this as a first order system gives:

ẋ = y,

ẏ = − 1
m

dΦ
dx

(x). (D.2)

It is easy to see that the time derivative of the following function is
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zero

E =
my2

2
+ Φ(x), (D.3)

since

Ė = myẏ +
dΦ
dx

(x)ẋ,

= −y
dΦ
dx

(x) + y
dΦ
dx

(x) = 0. (D.4)

In terms of dynamics, the function (D.3) has the interpretation as
the conserved kinetic energy associated with (D.1).

Now we will consider several examples. In all cases we will simplify
matters by taking m = 1.

Example 38. Consider the following autonomous vector field on R2:

ẋ = y,

ẏ = −x− δy, δ ≥ 0, (x, y) ∈ R2. (D.5)

For δ = 0 (D.5) has the form of (D.1):

ẋ = y,

ẏ = −x, (x, y) ∈ R2. (D.6)

with

E =
y2

2
+

x2

2
. (D.7)

It is easy to verify that dE
dt = 0 along trajectories of (D.6).

Now we differentiate E along trajectories of (D.5) and obtain:

dE
dt

= −δy2. (D.8)

(D.6) has only one equilibrium point located at the origin. E is clearly positive
everywhere, except for the origin, where it is zero. Using E as a Lyapunov
function we can conclude that the origin is Lyapunov stable. If we use E
to apply the LaSalle invariance principle, we can conclude that the origin is
asymptotically stable. Of course, in this case we can linearize and conclude
that the origin is a hyperbolic sink for δ > 0.

Example 39. Consider the following autonomous vector field on R2:

ẋ = y,

ẏ = x− x3 − δy, δ ≥ 0, (x, y) ∈ R2. (D.9)
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For δ = 0 (D.9) has the form of (D.1):

ẋ = y,

ẏ = x− x3, (x, y) ∈ R2. (D.10)

with

E =
y2

2
− x2

2
+

x4

4
. (D.11)

It is easy to verify that dE
dt = 0 along trajectories of (D.10).

The question now is how we will use E to apply Lyapunov’s method or the
LaSalle invariance principle? (D.9) has three equilibrium points, a hyperbolic
saddle at the origin for δ ≥ 0 and hyperbolic sinks at (x, y) = (±1, 0) for
δ > 0 and centers for δ = 0. So linearization gives us complete information
for δ > 0. For δ = 0 linearization is sufficient to allow is to conclude that
the origin is a saddle. The equilibria (x, y) = (±1, 0) are Lyapunov stable
for δ = 0, but an argument involving the function E would be necessary in
order to conclude this. Linearization allows us to conclude that the equilibria
(x, y) = (±1, 0) are asymptotically stable for δ > 0.

The function E can be used to apply the LaSalle invariance principle to
conclude that for δ > 0 all trajectories approach one of the three equilibria as
t→ ∞.





E
Center Manifolds Depending on Parameters

In this appendix we describe the situation of center manifolds that
depend on a parameter. The theoretical framework plays an important
role in bifurcation theory.

As when we developed the theory earlier, we begin by describing
the set-up. As before, it is important to realize that when applying
these results to a vector field, it must be in the following form.

ẋ = Ax + f (x, y, µ),

ẏ = By + g(x, y, µ), (x, y, µ) ∈ Rc ×Rs ×Rp, (E.1)

where µ ∈ Rp is a vector of parameters and the matrices A and B are
have the following properties:

A− c× c matrix of real numbers
having eigenvalues with zero real parts,

B− s× s matrix of real numbers
having eigenvalues with negative real parts,

and f and g are nonlinear functions. That is, they are of order two or
higher in x, y and µ, which is expressed in the following properties:

f (0, 0, 0) = 0, D f (0, 0, 0) = 0,

g(0, 0, 0) = 0, Dg(0, 0, 0) = 0, (E.2)

and they are Cr, r as large as is required to compute an adequate
approximation the center manifold. With this set-up (x, y, µ) = (0, 0, 0)
is a fixed point for (E.1) and we are interested in its stability properties.

The conceptual ‘’trick” that reveals the nature of the parameter de-
pendence of center manifolds is to include the parameter µ as a new
dependent variable:1 1 At this point it may be useful to go back

to the first chapter and recall how non-
linearity of an ODE is defined in terms
of the dependent variable.
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ẋ = Ax + f (x, y, µ),

µ̇ = 0,

ẏ = By + g(x, y, µ), (x, y, µ) ∈ Rc ×Rs ×Rp, (E.3)

The linearization of (E.3) about the fixed point is given by:

ẋ = Ax,

µ̇ = 0,

ẏ = By, (x, y, µ) ∈ Rc ×Rs ×Rp. (E.4)

Even after increasing the dimension of the phase space by p dimen-
sions by including the parameters as new dependent variables, the
fixed point (x, y, µ) = (0, 0, 0) remains a nonhyperbolic fixed point. It
has a c + p dimensional invariant center subspace and a s dimensional
invariant stable subspace given by:

Ec = {(x, y, µ) ∈ Rc ×Rs ×Rp | y = 0} , (E.5)

Es = {(x, y, µ) ∈ Rc ×Rs ×Rp | x = 0, µ = 0} , (E.6)

respectively.
It should be clear that center manifold theory, as we have already

developed, applies to (E.3). Including the parameters, µ as additional
dependent variables has the effect of increasing the dimension of the
‘’center variables”, but there is also an important consequence. Since
µ are now dependent variables they enter in to the determination of the
nonlinear terms in the equations. In particular, terms of the form

x`i µm
j yn

k ,

now are interpreted as nonlinear terms, when `+ m + n > 1, for non-
negative integers `, m, n. We will see this in the example below.

Now we consider the information that center manifold theory pro-
vides us near the origin of (E.3).

1. In a neighborhood of the origin there exists a Cr center manifold
that is represented as the graph of a function over the center vari-
ables, h(x, µ), it passes through the origin (h(0, 0) = 0) and is tan-
gent to the center subspace at the origin (Dh(0, 0) = 0)

2. All solutions sufficiently close to the origin are attracted to a trajec-
tory in the center manifold at an exponential rate.

3. The center manifold can be approximated by a power series expan-
sion.
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It is significant that the center manifold is defined in a neighbor-
hood of the origin in both the x and µ coordinates since µ = 0 is a
bifurcation value. This means that all bifurcating solutions are contained
in the center manifold. This is why, for example, that without loss of
generality bifurcations from a single zero eigenvalue can be described
by a parametrized family of one dimensional vector fields2. 2 This is a very significant statement and

it explains why ‘’bifurcation problems”
are amenable to dimensional reduction.
In particular, and understanding of the
nature of bifurcation of equilibria for au-
tonomous vector fieldscan be reduced to
a lower dimensional problem, where the
dimension of the problem is equal to
the number of eigenvalues with zero real
part.

Example 40. We now consider an example which was exercise 1b from Prob-
lem Set 8.

ẋ = µx + 10x2,

µ̇ = 0,

ẏ = x− 2y, (x, y) ∈ R2, µ ∈ R. (E.7)

The Jacobian associated with the linearization about (x, µ, y) = (0, 0, 0) is
given by:  0 0 0

0 0 0
1 0 −2

 . (E.8)

It is easy to check that the eigenvalues of this matrix are 0, 0, and −2 (as
we would have expected). Each of these eigenvalues has an eigenvector. It
is easily checked that two eigenvectors corresponding to the eigenvalue 0 are
given by:  2

0
1

 , (E.9)

 0
1
0

 , (E.10)

and an eigenvector corresponding to the eigenvalue −2 is given by: 0
0
1

 . (E.11)

From these eigenvectors we form the transformation matrix

T =

 2 0 0
0 1 0
1 0 1

 (E.12)
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with inverse

T−1 =

 1
2 0 0
0 1 0
− 1

2 0 1

 . (E.13)

The transformation matrix, T, defines the following transformation of the
dependent variables of (E.7):

 x
µ

y

 = T

 u
µ

v

 =

 2 0 0
0 1 0
1 0 1


 u

µ

v

 =

 2u
µ

u + v

 . (E.14)

It then follows that the transformed vector field has the form:

 u̇
µ̇

v̇

 =

 0 0 0
0 0 0
0 0 −2


 u

µ

v

+ T−1

 µ(2u) + 10(2u)2

0
0

 ,

(E.15)
or

 u̇
µ̇

v̇

 =

 0 0 0
0 0 0
0 0 −2


 u

µ

v

+

 1
2 0 0
0 1 0
− 1

2 0 1


 2µu + 40u2

0
0

 ,

(E.16)
or

u̇ = µu + 20u2,

µ̇ = 0,

v̇ = −2v− µu− 20u2 (E.17)



F
Dynamics of Hamilton’s Equations

In this appendix we give a brief introduction to some of the character-
istics and results associated with Hamiltonian differential equations
(or, Hamilton’s equations or Hamiltonian vector fields). The Hamilto-
nian formulation of Newton’s equations reveals a great deal of struc-
ture about dynamics and it also gives rise to a large amount of deep
mathematics that is the focus of much contemporary research. .

Our purpose here is not to derive Hamilton’s equations from New-
ton’s equations. Discussions of that can be found in many textbooks
on mechanics (although it is often considered ‘’advanced mechanics”).
For example, a classical exposition of this topic can be found in the
classic book of Landau1, and more modern expositions can be found in 1 LD Landau and EM Lifshitz. Classical

mechanics, 1960Abraham and Marsden2 and Arnold3. Rather, our approach is to start
2 Ralph Abraham and Jerrold E Mars-
den. Foundations of mechanics. Ben-
jamin/Cummings Publishing Company
Reading, Massachusetts, 1978

3 V. I. Arnol’d. Mathematical methods of
classical mechanics, volume 60. Springer
Science & Business Media, 2013

with Hamilton’s equations and to understand some simple aspects and
consequences of the special structure associated with Hamilton’s equa-
tions. Towards this end, our starting point will be Hamilton’s equa-
tions. Keeping with the simple approach throughout these lectures,
our discussion of Hamilton’s equations will be for two dimensional
systems.

We begin with a scalar valued function defined on R2

H = H(q, p), (q, p) ∈ R2. (F.1)

This function is referred to as the Hamiltonian. From the Hamiltonian,
Hamilton’s equations take the following form:

q̇ =
∂H
∂p

(q, p),

ṗ = −∂H
∂q

(q, p), (q, p) ∈ R2. (F.2)

The form of Hamilton’s equations implies that the Hamiltonian is con-
stant on trajectories. This can be seen from the following calculation:
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dH
dt

=
∂H
∂q

q̇ +
∂H
∂p

ṗ,

=
∂H
∂q

∂H
∂p
− ∂H

∂p
∂H
∂q

= 0. (F.3)

Furthermore, this calculation implies that the level sets of the Hamil-
tonian are invariant manifolds. We denote the level set of the Hamil-
tonian as:

HE =
{
(q, p) ∈ R2 |H(q, p) = E

}
(F.4)

In general, the level set is a curve (or possibly an equilibrium point).
Hence, in the two dimensional case, the trajectories of Hamilton’s
equations are given by the level sets of the Hamiltonian.

The Jacobian of the Hamiltonian vector field (F.2), denoted J, is
given by:

J(q, p) ≡


∂2 H
∂q∂p

∂2 H
∂p2

− ∂2 H
∂q2 − ∂2 H

∂p∂q

 , (F.5)

at an arbitrary point (q, p) ∈ R2. Note that the trace of J(q, p), denoted
trJ(q, p), is zero. This implies that the eigenvalues of J(q, p), denoted
by λ1,2, are given by:

λ1,2 = ±
√
−det J(q, p), (F.6)

where detJ(q, p) denotes the determinant of J(q, p). Therefore, if (q0, p0)

is an equilibrium point of (F.1) and detJ(q0, p0) 6= 0, then the equilib-
rium point is a center for detJ(q0, p0) > 0 and a saddle for detJ(q0, p0) <

0. 4 4 Constraints on the eigenvalues of the
matrix associated with the linearization
of a Hamiltonian vector field at a fixed
point in higher dimensions are described
in Abraham and Marsden or Wiggins .

Ralph Abraham and Jerrold E
Marsden. Foundations of mechanics.
Benjamin/Cummings Publishing Com-
pany Reading, Massachusetts, 1978; and
Stephen Wiggins. Introduction to applied
nonlinear dynamical systems and chaos,
volume 2. Springer Science & Business
Media, 2003

Next we describe some examples of two dimensional, linear au-
tonomous Hamiltonian vector fields.

Example 41. The Hamiltonian Saddle
We consider the Hamiltonian:

H(q, p) =
λ

2

(
p2 − q2

)
=

λ

2
(p− q) (p + q) , (q, p) ∈ R2 (F.7)

with λ > 0. From this Hamiltonian, we derive Hamilton’s equations:

q̇ =
∂H
∂p

(q, p) = λp,

ṗ = −∂H
∂q

(q, p) = λq, (F.8)
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or in matrix form: (
q̇
ṗ

)
=

(
0 λ

λ 0

)(
q
p

)
. (F.9)

The origin is a fixed point, and the eigenvalues associated with the lineariza-
tion are given by ±λ. Hence, the origin is a saddle point.The value of the
Hamiltonian at the origin is zero. We also see from (F.7) that the Hamilto-
nian is zero on the lines p− q = 0 and p + q = 0. These are the unstable and
stable manifolds of the origin, respectively. The phase portrait is illustrated in
Fig. F.1.

p

q

E > 0

E > 0

E < 0E < 0

Figure F.1: The phase portrait of the lin-
ear Hamiltonian saddle. The stable man-
ifold of the origin is given by p− q = 0
and the unstable manifold of the origin
is given by p + q = 0.

The flow generated by this vector field is given in Chapter 2, Problem Set 2,
problem 6.

Example 42 (The Hamiltonian Center). We consider the Hamiltonian:

H(q, p) =
ω

2

(
p2 + q2

)
, (q, p) ∈ R2 (F.10)

with ω > 0. From this Hamiltonian, we derive Hamilton’s equations:

q̇ =
∂H
∂p

(q, p) = ωp,

ṗ = −∂H
∂q

(q, p) = −ωq, (F.11)

or, in matrix form: (
q̇
ṗ

)
=

(
0 ω

−ω 0

)(
q
p

)
(F.12)

The level sets of the Hamiltonian are circles, and are illustrated in Fig. F.2.



138 ordinary differential equations

p

q

Figure F.2: The phase portrait for the lin-
ear Hamiltonian center.

The flow generated by this vector field is given in Chapter 2, Problem Set 2,
problem 5.

We will now consider two examples of bifurcation of equilibria in
two dimensional Hamiltonian systems. Bifurcation associated with
one zero eigenvalue (as we studied in Chapter 8) is not possible since,
following (F.6), if there is one zero eigenvalue the other eigenvalue
must also be zero. We will consider examples of the Hamiltonian
saddle-node and Hamiltonian pitchfork bifurcations. Discussions of
the Hamiltonian versions of these bifurcations can also be found in
Golubitsky et al.5. 5 Martin Golubitsky, Ian Stewart, and

Jerrold Marsden. Generic bifurcation
of hamiltonian systems with symmetry.
Physica D: Nonlinear Phenomena, 24(1-3):
391–405, 1987

Example 43 (Hamiltonian saddle-node bifurcation). We consider the
Hamiltonian:

H(q, p) =
p2

2
− λq +

q3

3
, (q, p) ∈ R2. (F.13)

where λ is considered to be a parameter that can be varied. From this Hamil-
tonian, we derive Hamilton’s equations:

q̇ =
∂H
∂p

= p,

ṗ = −∂H
∂q

= λ− q2. (F.14)

The fixed points for (F.14) are:

(q, p) = (±
√

λ, 0), (F.15)
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from which it follows that there are no fixed points for λ < 0, one fixed
point for λ = 0, and two fixed points for λ > 0. This is the scenario for a
saddle-node bifurcation.

Next we examine stability of the fixed points. The Jacobian of (F.14) is
given by: (

0 1
−2q 0

)
. (F.16)

The eigenvalues of this matrix are:

λ1,2 = ±
√
−2q.

Hence (q, p) = (−
√

λ, 0) is a saddle, (q, p) = (
√

λ, 0) is a center, and
(q, p) = (0, 0) has two zero eigenvalues. The phase portraits are shown in
Fig. F.3.

q

p

p

q

λ > 0

λ < 0

λ = 0

p

q

Figure F.3: The phase portraits for the
Hamiltonian saddle-node bifurcation.

Example 44 (Hamiltonian pitchfork bifurcation). We consider the Hamil-
tonian:

H(q, p) =
p2

2
− λ

q2

2
+

q4

4
, (F.17)

where λ is considered to be a parameter that can be varied. From this Hamil-
tonian, we derive Hamilton’s equations:
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q̇ =
∂H
∂p

= p,

ṗ = −∂H
∂q

= λq− q3. (F.18)

The fixed points for (F.18) are:

(q, p) = (0, 0), (±
√

λ, 0), (F.19)

from which it follows that there is one fixed point for λ < 0, one fixed point
for λ = 0, and three fixed points for λ > 0. This is the scenario for a pitchfork
bifurcation.

Next we examine stability of the fixed points. The Jacobian of (F.18) is
given by: (

0 1
λ− 3q2 0

)
. (F.20)

The eigenvalues of this matrix are:

λ1,2 = ±
√

λ− 3q2.

Hence (q, p) = (0, 0) is a center for λ < 0, a saddle for λ > 0 and has two
zero eigenvalues for λ = 0. The fixed points (q, p) = (

√
λ, 0) are centers for

λ > 0. The phase portraits are shown in Fig. F.4.

We remark that, with a bit of thought, it should be clear that in two
dimensions there is no analog of the Hopf bifurcation for Hamiltonian
vector fields similar to to the situation we analyzed earlier in the non-
Hamiltonian context. There is a situation that is referred to as the
Hamiltonian Hopf bifurcation, but this notion requires at least four
dimensions, see Van Der Meer6. 6 Jan-Cees Van Der Meer. The Hamilto-

nian Hopf bifurcation. Springer, 1985In Hamiltonian systems a natural bifurcation parameter is the value
of the level set of the Hamiltonian, or the ‘’energy”. From this point
of view perhaps a more natural candidate for a Hopf bifurcation in
a Hamiltonian system is described by the Lyapunov subcenter theo-
rem, see Kelley7. The setting for this theorem also requires at least 7 Al Kelley. On the liapounov subcenter

manifold. Journal of mathematical analysis
and applications, 18(3):472–478, 1967

four dimensions, but the associated phenomena occur quite often in
applications.
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q

p

p

q

λ > 0

λ < 0

λ = 0

p

q

Figure F.4: The phase portraits for the
Hamiltonian pitchfork bifurcation.





G
A Brief Introduction to the Characteristics of Chaos

In this appendix we will describe some aspects of the phenomenon
of chaos as it arises in ODEs. Chaos is one of those notable topics
that crosses disciplinary boundaries in mathematics, science, and en-
gineering and captures the intrigue and curiousity of the general pub-
lic. Numerous popularizations and histories of the topic, from differ-
ent points of view, have been written; see, for example the books by
Lorenz1, Diacu and Holmes2, Stewart3, and Gleick4. 1 Edward N. Lorenz. The essence of chaos.

University of Washington Press, Seattle,
1993

2 Florin Diacu and Philip Holmes. Celes-
tial encounters: the origins of chaos and sta-
bility. Princeton University Press, 1996

3 Ian Stewart. Does God play dice?: The new
mathematics of chaos. Penguin UK, 1997

4 James Gleick. Chaos: Making a New Sci-
ence (Enhanced Edition). Open Road Me-
dia, 2011

Our goal here is to introduce some of the key characteristics of chaos
based on notions that we have already developed so as to frame possi-
ble future directions of studies that the student might wish to pursue.
Our discussion will be in the setting of a flow generated by an au-
tonomous vector field.

The phrase ‘’chaotic behavior” calls to mind a form of randomness
and unpredictability. But keep in mind, we are working in the setting
of , i.e., our ODE satisfies the criteria for existence and uniqueness of
solutions. Therefore specifying the initial condition exactly implies that
the future evolution is uniquely determined, i.e. there is no ‘’random-
ness or unpredictability”. The key here is the word ‘’exactly”. Chaotic
systems have an intrinsic property in their dynamics that can result in
slight perturbations of the initial conditions leading to behavior, over
time, that is unlike the behavior of the trajectory though the original
initial condition. Often it is said that a chaotic system exhibits sen-
sitive dependence on initial conditions. Now this is a lot of words
for a mathematics course. Just like when we studied stability, we will
give a mathematical definition of sensitive dependence on initial con-
ditions, and then consider the meaning of the definition in the context
of specific examples.

As mentioned above, we consider an autonomous, Cr, r ≥ 1 vector
field on Rn:

ẋ = f (x), x ∈ Rn, (G.1)
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and we denote the flow generated by the vector field by φt(·), and we
assume that it exists for all time. We let Λ ⊂ Rn denote an invariant
set for the flow. Then we have the following definition.

Definition 22 (Sensitive dependence on initial conditions). The flow
φt(·) is said to have sensitive dependence on initial conditions on Λ if there
exists ε > 0 such that, for any x ∈ Λ and any neighborhood U ⊂ Λ of x
there exists y ∈ U and t > 0 such that |φt(x)− φt(y)| > ε.

Now we consider an example and analyze whether or not sensitive
dependence on initial conditions is present in the example.

Example 45. Consider the autonomous linear vector field on R2:

ẋ = λx,

ẏ = −µy, (x, y) ∈ R2. (G.2)

with λ, µ > 0. This is just a standard ‘’saddle point”. The origin is a fixed
point of saddle type with its stable manifold given by the y axis (i.e. x = 0)
and its unstable manifold given by the x axis (i.e. y = 0). The flow generated
by this vector field is given by:

φt(x0, y0) =
(

x0eλt, y0e−µt
)

. (G.3)

Following the definition, sensitive dependence on initial conditions is de-
fined with respect to invariant sets. Therefore we must identify the invariant
sets for which we want to determine whether or not they possess the property
of sensitive dependence on initial condition.

The simplest invariant set is the fixed point at the origin. However, that
invariant set clearly does not exhibit sensitive dependence on initial condi-
tions.

Then we have the one dimensional stable (y axis) and unstable manifolds (x
axis). We can consider the issue of sensitive dependence on initial conditions
on these invariant sets. The stable and unstable manifolds divide the plane
into four quadrants. Each of these is an invariant set (with a segment of the
stable and unstable manifold forming part of their boundary), and the entire
plane (i.e. the entire phase space) is also an invariant set.

We consider the unstable manifold, y = 0. The flow restricted to the
unstable manifold is given by

φt(x0, 0) =
(

x0eλt, 0
)

. (G.4)

It should be clear the the unstable manifold is an invariant set that exhibits
sensitive dependence on initial conditions. Choose an arbitrary point on the
unstable manifold, x̄1. Consider another point arbitrarily close to x̄1, x̄2. Now
consider any ε > 0. We have

|φt(x̄1, 0)− φt(x̄2, 0)| = |x̄1 − x̄2|eλt. (G.5)
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Now since |x̄1 − x̄2| is a fixed constant, we can clearly find a t > 0 such that

|x̄1 − x̄2|eλt > ε. (G.6)

Therefore the invariant unstable manifold exhibits sensitive dependence on
initial conditions. Of course, this is not surprising because of the eλt term in
the expression for the flow since this term implies exponential growth in time
of the x component of the flow.

The stable manifold,x = 0, does not exhibit sensitive dependence on initial
conditions since the restriction to the stable manifold is given by:

φt(0, y0) =
(
0, y0e−µt) , (G.7)

which implies that neighboring points actually get closer together as t in-
creases.

Moreover, the term eλt implies that the four quadrants separated by the
stable and unstable manifolds of the origin also exhibit sensitive dependence
on initial conditions.

Of course, we would not consider a linear autonomous ODE on the plane
having a hyperbolic saddle point to be a chaotic dynamical system, even
though it exhibits sensitive dependence on initial conditions. Therefore there
must be something more to “chaos”, and we will explore this through more
examples.

Before we consider the next example we point out two features of this ex-
ample that we will consider in the context of other examples.

1. The invariant sets that we considered (with the exception of the fixed point
at the origin) were unbounded. This was a feature of the linear nature of
the vector field.

2. The ‘’separation of trajectories” occurred at an exponential rate. There was
no requirement on the ‘’rate of separation” in the definition of sensitive
dependence on initial conditions.

3. Related to these two points is the fact that trajectories continue to separate
for all time, i.e. they never again ‘’get closer” to each other.

Example 46. Consider the autonomous vector field on the cylinder:

ṙ = 0,

θ̇ = r, (r, θ) ∈ R+ × S1. (G.8)

The flow generated by this vector field is given by:

φt(r0, θ0) = (r0, r0 t + θ0) . (G.9)
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Note that r is constant in time. This implies that any annulus is an invariant
set. In particular, choose any r1 < r2. Then the annulus

A ≡
{
(r, θ) ∈ R+ × S1 | r1 ≤ r ≤ r2, θ ∈ S1

}
, (G.10)

is a bounded invariant set.
Now choose initial conditions in A, (r′1, θ1), (r′2, θ2), with r1 ≤ r′1 < r′2 ≤

r2. Then we have that:

|φt(r′1, θ1)− φt(r′2, θ2)| = |
(
r′1, r′1 t + θ1

)
−
(
r′2, r′2 t + θ2

)
|,

=
(
r′1 − r′2, (r′1 − r′2)t + (θ1 − θ2)

)
.

Hence we see that the distance between trajectories will grow linearly in time,
and therefore trajectories exhibit sensitive dependence on initial conditions.
However, the distance between trajectories will not grow unboundedly (as in
the previous example). This is because θ is on the circle. Trajectories will move
apart (in θ, but their r values will remain constant) and then come close, then
move apart, etc. Nevertheless, this is not an example of a chaotic dynamical
system.

Example 47. Consider the following autonomous vector field defined on the
two dimensional torus (i.e. each variable is an angular variable):

θ̇1 = ω1,

θ̇2 = ω2, (θ1, θ2) ∈ S1 × S1. (G.11)

This vector field is an example that is considered in many dynamical systems
courses where it is shown that if ω1

ω2
is an irrational number, then the trajec-

tory through any initial condition ‘’densely fills out the torus”. This means
that given any point on the torus any trajectory will get arbitrarily close to
that point at some time of its evolution, and this ‘’close approach” will hap-
pen infinitely often. This is the classic example of an ergodic system, and this
fact is proven in many textbooks, e.g. Arnold5 or Wiggins6. This behavior 5 V. I. Arnold. Ordinary differential equa-

tions. M.I.T. press, Cambridge, 1973.
ISBN 0262010372

6 Stephen Wiggins. Introduction to applied
nonlinear dynamical systems and chaos, vol-
ume 2. Springer Science & Business Me-
dia, 2003

is very different from the previous examples. For the case ω1
ω2

an irrational
number, the natural invariant set to consider is the entire phase space (which
is bounded).

Next we consider the issue of sensitive dependence on initial conditions.
The flow generated by this vector field is given by:

φt(θ1, θ2) = (ω1 t + θ1, ω2 t + θ2) . (G.12)

We choose two initial conditions, (θ1, θ2), (θ′1, θ′2). Then we have

|φt(θ1, θ2)− φt(θ
′
1, θ′2)| = | (ω1 t + θ1, ω2 t + θ2)−

(
ω1 t + θ′1, ω2 t + θ′2

)
|,

= |(θ1 − θ′1, θ2 − θ′2)|,
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and therefore trajectories always maintain the same distance from each other
during the course of their evolution.

Sometimes it is said that chaotic systems contain an infinite number
of unstable periodic orbits. We consider an example.

Example 48. Consider the following two dimensional autonomous vector
field on the cylinder:

ṙ = sin
π

r
,

θ̇ = r, (r, θ) ∈ R+ × S1.

Equilibrium points of the ṙ component of this vector field correspond to peri-
odic orbits. These equilibrium points are given by

r =
1
n

, n = 0, 1, 2, 3, . . . . (G.13)

Stability of the periodic orbits can be determined by computing the Jacobian of
the ṙ component of the equation and evaluating it on the periodic orbit. This
is given by:

−π

r2 cos
π

r
,

and evaluating this on the periodic orbits gives;

− π

n2 (−1)n.

Therefore all of these periodic orbits are hyperbolic and stable for n even and
unstable for n odd. This is an example of a two dimensional autonomous
vector field that contains an infinite number of unstable hyperbolic periodic
orbits in a bounded region, yet it is not chaotic.

Now we consider what we have learned from these four examples.
In example 45 we identified invariant sets on which the trajectories
exhibited sensitive dependence on initial conditions (i.e. trajectories
separated at an exponential rate), but those invariant sets were un-
bounded, and the trajectories also became unbounded. This illustrates
why boundedness is part of the definition of invariant set in the con-
text of chaotic systems.

In example 46 we identified an invariant set, A, on which all tra-
jectories were bounded and they exhibited sensitive dependence on
initial conditions, although they only separated linearly in time. How-
ever, the r coordinates of all trajectories remained constant, indicating
that trajectories were constrained to lie on circles (‘’invariant circles”)
within A.
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In example 47, for ω1
ω2

an irrational number, every trajectory densely
fills out the entire phase space, the torus (which is bounded). How-
ever, the trajectories did not exhibit sensitive dependence on initial
conditions.

Finally, in example 48 we gave an example having an infinite num-
ber of unstable hyperbolic orbits in a bounded region of the phase
space. We did not explicitly examine the issue of sensitive dependence
on initial conditions for this example.

So what characteristics would we require of a chaotic invariant set?
A combination of examples 45 and 47 would capture many manifesta-
tions of ‘’chaotic invariant sets”:

1. the invariant set is bounded,

2. every trajectory comes arbitrarily close to every point in the invari-
ant set during the course of its evolution in time, and

3. every trajectory has sensitive dependence on initial condition.

While simple to state, developing a unique mathematical frame-
work that makes these three criteria mathematically rigorous, and pro-
vides a way to verify them in particular examples, is not so straight-
forward.

Property 1 is fairly straightforward, once we have identified a candi-
date invariant set (which can be very difficult in explicit ODEs). If the
phase space is equipped with a norm, then we have a way of verifying
whether or not the invariant set is bounded.

Property 2 is very difficult to verify, as well as to develop a univer-
sally accepted definition amongst mathematicians as to what it means
for ‘’every trajectory to come arbitrarily close to every point in phase
space during the course of its evolution”. Its definition is understood
within the context of recurrence properties of trajectories. Those can
be studied from either the topological point of view (see Akin7). or 7 Ethan Akin. The general topology of dy-

namical systems, volume 1. American
Mathematical Soc., 2010

from the point of view of ergodic theory (see Katok and Hasselblatt8

8 Anatole Katok and Boris Hasselblatt.
Introduction to the modern theory of dynam-
ical systems, volume 54. Cambridge uni-
versity press, 1997

or Brin and Stuck9). The settings for both of these points of view

9 Michael Brin and Garrett Stuck. Intro-
duction to dynamical systems. Cambridge
University Press, 2002

utilize different mathematical structures (topology in the former case,
measure theory in the latter case). A book that describes how both of
these points of view are used in the application of mixing is Sturman
et al.10.

10 Rob Sturman, Julio M Ottino, and
Stephen Wiggins. The mathematical foun-
dations of mixing: the linked twist map as
a paradigm in applications: micro to macro,
fluids to solids, volume 22. Cambridge
University Press, 2006

Verifying that Property 3 holds for all trajectories is also not straight-
forward. What ‘’all” means is different in the topological setting (‘’open
set”, Baire category) and the ergodic theoretic setting (sets of ‘’full
measure”). What ‘’sensitive dependence on initial conditions” means
is also different in each setting. The definition we gave above was
more in the spirit of the topological point of view (no specific ‘’rate of
separation” was given) and the ergodic theoretic framework focuses
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on Lyapunov exponents (‘’Lyapunov’s first method”) and exponential
rate of separation of trajectories.

Therefore we have not succeeded in giving a specific example of
an ODE whose trajectories behave in a chaotic fashion. We have been
able to describe some of the issues, but the details will be left for other
courses (which could be either courses in dynamical systems theory
or ergodic theory or, ideally, a bit of both). But we have illustrated just
how difficult it can be to formulate mathematically precise definitions
that can be verified in specific examples.

All of our examples above were two dimensional, autonomous vec-
tor fields. The type of dynamics that can be exhibited by such sys-
tems is very limited, according to the Poincaré-Bendixson theorem (see
Hirsch et al.11 or Wiggins12). There are a number of variations of this 11 Morris W Hirsch, Stephen Smale, and

Robert L Devaney. Differential equations,
dynamical systems, and an introduction to
chaos. Academic press, 2012

12 Stephen Wiggins. Introduction to ap-
plied nonlinear dynamical systems and
chaos, volume 2. Springer Science &
Business Media, 2003

theorem, so we will leave the exploration of this theorem to the inter-
ested student.
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