Supporting information for:

Reaction Coordinate of Incipient Methane Clathrate Hydrate Nucleation

Brian C. Barnes,^{†,§} Brandon C. Knott,^{‡,§} Gregg T. Beckham,^{*,‡} David T. Wu,^{*,†,¶} and Amadeu K. Sum^{*,†}

Center for Hydrate Research, Chemical & Biological Engineering Department, Colorado School of Mines, Golden, CO, National Renewable Energy Laboratory, Golden, CO, and Chemistry and Geochemistry Department, Colorado School of Mines, Golden, CO

E-mail: Gregg.Beckham@nrel.gov; dwu@mines.edu; asum@mines.edu

^{*}To whom correspondence should be addressed

[†]Center for Hydrate Research, Chemical & Biological Engineering Department

[‡]National Renewable Energy Laboratory

[¶]Chemistry and Geochemistry Department

[§]Contributed equally to this work

Figure S1: MCG-1 results for 200 multi-microsecond MD trajectories at P = 500 bar, T = 255 K. At the plateau for MCG-1 values in the mid-400s, hydrate is spanning the entire simulation cell in all directions and the gas phase is essentially depleted. The variation in induction times is consistent with a stochastic process.

Figure S2: Diffusivity along the MCG-1 reaction coordinate. Analysis was performed on the initial 1 ns of MD trajectories from the p_B histogram test. Linear regression after initial 250 ps transient is shown in blue.