Supporting Information

Indole-Catalyzed Bromolactonization in Lipophilic Solvent: a Solid-Liquid Phase Transfer Approach

Tao Chen, Thomas Jian Yao Foo, Ying-Yeung Yeung *

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

E-mail: chmyyy@nus.edu.sg; Fax: +65-6779-1691; *Tel:* +65-6516-7760

S2	General
S3-S16	Procedures and Physical Data
S17-S30	Figures S1 – S6
S31	References
S32-S52	¹ H and ¹³ C NMR spectra

Table of Contents

(A) General. All reactions were carried by standard procedures under atmosphere. Commercially available reagents from Alfa Aesar and Aldrich were used as received. Infrared spectra were recorded on a BIO-RAD FTS 165 FT-IR spectrophotometer and reported in wave numbers (cm-1). Melting points were determined on a BÜCHI B-540b melting point apparatus. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker ACF300 (300 MHz), Bruker DPX300 (300 MHz). Chemical shifts (δ) are reported in ppm relative to TMS (δ 0.00) for the ¹H NMR and to chloroform (δ 77.0) for the ¹³C NMR measurements. High resolution mass spectra were obtained on a Finnigan/MAT 95XL-T spectrometer. Analytical thin layer chromatography (TLC) was performed with Merck pre-coated TLC plates, silica gel 60F-254, layer thickness 0.25 mm. Flash chromatography separations were performed on Merk 60 (0.040-0.063 mm) mesh silica gel. Indole catalyst **1** and substrate **5** were prepared according to the literature procedure.^{1,2} (B) General Procedure for the Indole-Catalyzed Bromolactonization. To a mixture of alkenoic acid 5 (0.5 mmol, 1.0 equiv) and indole catalyst 1a (1 mg, 0.005 mmol, 0.01 equiv) in hexane (5 mL) at 25 °C was added *N*-bromosuccinimide (107 mg, 0.6 mmol, 1.2 equiv) in the absence of light. The resulting mixture was vigorously stirred at 25 °C and monitored by TLC. The reaction was quenched with saturated aqueous Na₂SO₃ (5 mL) and extracted with ethyl acetate (3 x 10 mL). The combined extracts were washed with brine (10 mL), dried with MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography to yield the corresponding lactone **6**.

Compound 6a (X = Br)

5-(Bromomethyl)-5-phenyldihydrofuran-2(3H)-one

Colorless oil.

IR (KBr): 2961, 1783, 1448, 1162, 1034, 932 cm⁻¹;

¹**H NMR** (300 MHz, CDCl₃): (δ, ppm) 7.43-7.32 (m, 5H), 3.74 (d, *J* = 11.3 Hz, 1H),

3.69 (d, *J* = 11.3 Hz, 1H), 2.88-2.75 (m, 2H), 2.61-2.47 (m, 2H);

¹³C NMR (75 MHz, CDCl₃): (δ, ppm) 175.47, 140.67, 128.79, 128.61, 124.84, 86.37,

40.98, 32.32, 29.00;

HRMS (ESI) calcd for $C_{11}H_{12}BrO_2 [M + H]^+$: 255.0015; found: 255.0018.

Compound 6a(X = I)

n

5-(Iodomethyl)-5-phenyldihydrofuran-2(3H)-one

Yellow oil.

IR (KBr): 2956, 1788, 1448, 1153, 1026, 929 cm⁻¹;

¹H NMR (300 MHz, CDCl₃): (δ, ppm) 7.39-7.30 (m, 5H), 3.62 (s, 2H), 2.80-2.43 (m,

4H);

¹³C NMR (75 MHz, CDCl₃): (δ, ppm) 175.18, 140.48, 128.65, 128.40, 124.69, 85.86,

33.77, 29.06, 16.28;

HRMS (ESI) calcd for $C_{11}H_{12}IO_2 [M + H]^+$: 302.9876; found: 302.9879.

Compound 6b

5-(Bromomethyl)-5-(4-chlorophenyl)dihydrofuran-2(3H)-one

Colorless oil.

IR (KBr)): 2961, 1783, 1492, 1417, 1160, 1012 cm⁻¹;

¹**H NMR** (300 MHz, CDCl₃): (δ , ppm) 7.40-7.33 (m, 4H), 3.70 (d, J = 11.3 Hz, 1H),

3.65 (d, *J* = 11.3 Hz, 1H), 2.84-2.72 (m, 2H), 2.61-2.49 (m, 2H);

¹³C NMR (75 MHz, CDCl₃): (δ, ppm) 175.10, 139.20, 134.70, 129.00, 126.41, 85.93,

40.55, 32.34, 28.93;

HRMS (ESI) calcd for C₁₁H₉BrClO₂ [M - H]⁻: 286.9480; found: 286.9489.

Compound 6c

5-(Bromomethyl)-5-(p-tolyl)dihydrofuran-2(3H)-one

Colorless oil.

IR (KBr)): 2959, 1779, 1514, 1161, 1040, 931 cm⁻¹;

¹**H NMR** (300 MHz, CDCl₃): (δ, ppm) 7.29 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.2 Hz,

2H), 3.73 (d, J = 11.3 Hz, 1H), 3.67 (d, J = 11.3 Hz, 1H), 2.85-2.73 (m, 2H),

2.59-2.49 (m, 2H), 2.36 (s, 3H);

¹³C NMR (75 MHz, CDCl₃): (δ, ppm) δ 175.58, 138.56, 137.65, 129.45, 124.80, 86.43, 41.03, 32.27, 29.05, 21.01;

HRMS (ESI) calcd for C₁₂H₁₂BrO₂ [M - H]⁻: 267.0026; found: 267.0015.

Compound 6d

5-(Bromomethyl)-5-(4-trifluoromethoxyphenyl)dihydrofuran-2(3H)-one

Colorless oil.

IR (KBr)): 3033, 1770, 1509, 1256, 1164, 1012 cm⁻¹;

¹H NMR (300 MHz, CDCl₃): (δ, ppm) 7.48-7.44 (m, 2H), 7.27-7.24 (m, 2H), 3.72 (d,

J = 11.3 Hz, 1H), 3.66 (d, *J* = 11.3 Hz, 1H), 2.87-2.74 (m, 2H), 2.64-2.51 (m, 2H);

¹³C NMR (75 MHz, CDCl₃): (δ, ppm) 175.05, 149.30, 139.38, 126.66, 121.20, 118.64,

85.87, 40.58, 32.41, 28.96;

HRMS (ESI) calcd for C₁₂H₉BrF₃O₃ [M - H]⁻: 336.9693; found: 336.9679.

Compound 6e

5-(Bromomethyl)-5-(4-cyanophenyl)dihydrofuran-2(3H)-one

IR (KBr)): 2960, 2233, 1789, 1175, 1050, 847 cm⁻¹;

¹**H NMR** (300 MHz, CDCl₃): (δ, ppm) 7.74-7.70 (m, 2H), 7.57-7.53(m, 2H), 3.71 (d,

J = 11.3 Hz, 1H), 3.66 (d, *J* = 11.3 Hz, 1H), 2.88-2.75 (m, 2H), 2.63-2.51 (m, 2H);

¹³C NMR (75 MHz, CDCl₃): (δ, ppm) 174.59, 145.81, 132.64, 125.90, 118.01, 112.81,

85.69, 39.93, 32.44, 28.76;

HRMS (ESI) calcd for C₁₂H₉BrNO₂ [M - H]⁻: 277.9822; found: 277.9814.

Compound 6f

5-(Bromomethyl)-5-(2-chlorophenyl)dihydrofuran-2(3H)-one

Yellow oil.

IR (KBr)): 2965, 1790, 1470, 1418, 1158, 1009 cm⁻¹;

¹**H NMR** (300 MHz, CDCl₃): (δ, ppm) 7.74-7.71 (m, 1H), 7.44-7.40 (m, 1H), 7.34-7.29 (m, 2H), 4.22 (d, *J* = 11.3 Hz, 1H), 3.81 (d, *J* = 11.3 Hz, 1H), 3.05-2.48 (m, 4H);

¹³C NMR (75 MHz, CDCl₃): (δ, ppm) 175.24, 138.21, 131.36, 130.07, 130.04, 127.51, 127.43, 86.44, 39.03, 31.72, 29.07;

HRMS (ESI) calcd for C₁₁H₉BrClO₂ [M - H]⁻: 286.9480; found: 286.9471.

Compound 6g

5-(Bromomethyl)-5-(3-methoxyphenyl)dihydrofuran-2(3H)-one

Colorless oil.

IR (KBr)): 2961, 1790, 1602, 1458, 1245, 1160, 1038 cm⁻¹;

¹H NMR (300 MHz, CDCl₃): (δ, ppm) 7.34-7.26 (m, 1H), 6.96-6.86 (m, 3H), 3.81 (s, 3H), 3.73 (d, J = 11.3 Hz, 1H), 3.68 (d, J = 11.3 Hz, 1H), 2.86-2.70 (m, 2H), 2.64-2.46 (m, 2H);
¹³C NMR (75 MHz, CDCl₃): (δ, ppm) 175.51, 159.81, 142.30, 129.91, 117.01, 113.83, 110.85, 86.30, 55.3, 40.93, 32.35, 29.02;

HRMS (ESI) calcd for C₁₂H₁₂BrO₃ [M - H]⁻: 282.9974; found: 282.9975.

Compound 6h

5-(Bromomethyl)-5-(naphthalen-2-yl)dihydrofuran-2(3H)-one

Colorless oil.

IR (KBr)): 3058, 1771, 1600, 1157, 1035, 932 cm⁻¹;

¹**H NMR** (300 MHz, CDCl₃): (δ, ppm) 7.94 -7.82 (m, 4H), 7.56-7.50 (m, 2H), 7.43

(dd, *J* = 8.6, 2.0 Hz, 1H), 3.80 (s, 2H), 2.94-2.47 (m, 4H);

¹³C NMR (75 MHz, CDCl₃): (δ, ppm) 175.53, 137.70, 132.89, 132.76, 128.84,

128.20, 127.54, 126.78, 124.14, 122.25, 86.50, 40.74, 32.29, 28.98;

HRMS (ESI) calcd for C₁₅H₁₂BrO₂ [M - H]⁻: 303.0026; found: 303.0015.

Compound 6i

5-(Bromomethyl)-5-methyldihydrofuran-2(3H)-one

Colorless oil.

IR (KBr): 2979, 1771, 1455, 1382, 1168, 1075 cm⁻¹;

¹**H NMR** (300 MHz, CDCl₃): (δ, ppm) 3.53 (d, *J* = 10.8 Hz, 1H), 3.46 (d, *J* = 10.9 Hz,

1H), 2.77-2.56 (m, 2H), 2.42-2.32 (m, 1H), 2.12-2.02 (m, 1H), 1.56 (s, 3H);

¹³C NMR (75 MHz, CDCl₃): (δ, ppm) 175.77, 84.01, 39.43, 31.49, 29.14, 25.35;

HRMS (ESI) calcd for $C_6H_{10}BrO_2 [M + H]^+$: 192.9859; found: 192.9861.

Compound 6j

5-(Bromomethyl)oxolan-2-one

Colorless oil.

IR (KBr): 2924, 2852, 1774, 1338, 1167, 1022 cm⁻¹;

¹**H NMR** (300 MHz, CDCl₃): (δ, ppm) 4.77-4.69 (m, 1H), 3.58-3.49 (m, 2H),

2.70-2.36 (m, 3H), 2.16-2.04 (m, 1H);

¹³C NMR (75 MHz, CDCl₃): (δ, ppm) 176.15, 77.78, 34.06, 28.28, 26.07;

HRMS (ESI) calcd for $C_5H_8BrO_2 [M + H]^+$: 178.9702; found: 178.9710.

Compound 6k

6-(bromomethyl)-6-phenyltetrahydro-2H-pyran-2-one

Colorless oil.

IR (KBr): 2951, 1731, 1494, 1358 cm⁻¹

¹**H NMR** (300 MHz, CDCl₃): (δ, ppm) 7.44-7.31 (m, 5H), 3.68 (d, *J* = 11.2 Hz, 1H),

3.63 (d, *J* = 11.2 Hz, 1H), 2.56-2.31 (m, 4H), 1.89-1.78 (m, 1H), 1.68-1.50 (m, 1H);

¹³C NMR (75 MHz, CDCl₃): (δ, ppm) 170.41, 140.23, 128.95, 128.48, 125.33, 85.08,

41.48, 30.00, 29.03, 16.16;

MS (ESI) calcd for $C_{12}H_{12}BrO_2[M - H]^-$: 267.0021; found : 267.1

Compound 6l+6l'

(+/-) 5-Bromo-1-oxaspiro[3.5]nonan-2-one

and (+/-) 3a-Bromohexahydrobenzofuran-2(3H)-one

Colorless oil.

IR (KBr): 2944, 2864, 1831, 1750, 1450, 1407 cm⁻¹

¹H NMR (500 MHz, CDCl₃): (δ, ppm): 4.67 (t, J = 4.6 Hz, 1H), 4.34 (dd, J₁ = 3.8 Hz, J₂ = 6.8 Hz, 4H), 3.43 (d, J = 16.4 Hz, 4H), 3.09 (d, J = 16.4 Hz, 4H), 3.03 (d, J = 17.1 Hz, 1H), 2.93 (d, J = 17.1 Hz, 1H), 2.34-2.17 (m, 10H), 2.06-1.84 (m, 12H), 1.78-1.68 (m. 9H), 1.65-1.48 (m. 14H);

¹³C NMR (125 MHz, CDCl₃): (δ, ppm) 173.32, 166.90, 84.37, 78.15, 58.84, 54.56, 46.99, 46.75, 37.17, 32.76, 32.49, 25.59, 22.28, 21.96, 21.39, 19.58;
HRMS (EI) calcd for C₈H₁₁⁷⁹BrO₂ [M]⁺: 217.9942; found: 217.9862.

Compound 6m

6-Bromohexahydro-2H-3,5-methanocyclopenta[b]furan-2-one

Colorless oil.

IR (KBr): 2986, 2889, 1768, 1452, 1344 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃): (δ, ppm) 4.92 (d, J = 5.0 Hz, 1H), 3.84 (d, J = 2.2 Hz,

1H), 3.23 (t, J = 4.4 Hz, 1H), 2.67 (d, J = 2.6 Hz, 1H), 2.56 (dd, J₁ = 4.4 Hz, J₂ = 11.2

Hz, 1H), 2.33 (dd, J = 1.1, $J_2 = 11,5$ Hz, 1H), 2.17-2.11(m, 1H), 1.81-1.73(m, 2H);

¹³C NMR (125 MHz, CDCl₃): (δ, ppm) 179.17, 87.63, 53.43, 45.85, 45.49, 37.52,

35.72, 33.94;

HRMS (EI) calcd for $C_8H_9^{79}BrO_2[M]^+$: 215.9786, found: 215.9791;

Compound 6n and 6n'

(5-(Bromomethyl)-5-phenyltetrahydrofuran-3-yl)methanol

Colorless oil.

IR (KBr): 3408, 2872, 1601 1447 cm⁻¹

¹H NMR (500 MHz, CDCl₃): (δ, ppm): 7.42-7.26 (m, 25H), 4.25 (dd, J₁ = 7.3 Hz, J₂ = 8.6 Hz, 1H), 4.06-4.03 (t, 4H), 3.86 (dd, J₁ = 6.7 Hz, J₂ = 8.7 Hz, 4H), 3.69 (d, J = 6.3 Hz, 8H), 3.66 (s, 8H), 3.60 (s, 2H), 3.50-3.40 (m, 2H), 2.80-2.72 (m, 1H), 2.64 (dd, J₁ = 8.7 Hz, J₂ = 12.9 Hz, 1H), 2.47-2.40 (m. 8H), 2.21-2.08 (m. 6H);
¹³C NMR (125 MHz, CDCl₃): (δ, ppm) 144.18, 143.06, 128.35, 128.32, 127.56, 127.45, 125.50, 125.42, 85.75, 85.45, 71.04, 70.55, 64.29, 64.10, 42.87, 42.48, 41.83, 41.55, 39.45, 39.06;

HRMS (ESI) calcd for $C_{12}H_{15}^{79}BrO_2 Na^+ [M+Na]^+$: 293.0148, found: 293.0140;

Compound 60 and 60'

(5-(1-Bromoethyl)-5-phenyltetrahydrofuran-3-yl)methanol

Colorless oil.

IR (KBr): 3415, 3024, 1677, 1376 cm⁻¹

¹**H NMR** (500 MHz, CDCl₃): (δ , ppm): 7.54-7.52 (m, 2H), 7.37-7.34 (m, 2H), 7.32-7.28 (m, 1H), 4.35 (q, J = 6.9 Hz, 1H), 3.94-3.91 (m, 1H), 3.81 (dd, $J_1 = 7.0$ Hz, $J_2 = 8.6$ Hz, 1H), 3.70-3.64 (m, 2H), 2.65 (dd, $J_1 = 7.6$ Hz, $J_2 = 12.6$ Hz, 1H), 2.40-2.31 (m, 1H), 2.07 (dd, $J_1 = 9.5$ Hz, $J_2 = 12.6$ Hz, 1H), 1.50 (q, J = 6.8 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃): (δ , ppm) 140.69, 127.86, 127.56, 127.05, 88.88, 70.33, 64.53, 57.41, 41.24, 38.43, 21.75;

HRMS (ESI) calcd for $C_{13}H_{17}^{79}BrO_2 Na^+ [M+Na]^+$: 307.0304, found: 307.0301;

Compound 6p

4-Bromo-5-methyl-5-phenyldihydrofuran-2(3H)-one

Yellow oil.

IR (KBr): 3000, 1788, 1496, 1379, 1197, 950 cm⁻¹;

¹**H** NMR (300 MHz, CDCl₃): (δ , ppm) 7.42-7.30 (m, 5H), 4.72 (dd, J = 6.7, 4 Hz,

1H), 3.13-2.86 (m, 2H), 1.86 (s, 3H);

¹³C NMR (75 MHz, CDCl₃): (δ, ppm) 172.28, 160.43, 139.17, 128.75, 128.25,

124.68, 119.18, 88.84, 26.23.

HRMS (EI) calcd for $C_{11}H_{11}BrO_2[M]^+$: 253.9942; found:253.9939.

Compound 6q

4-Bromo-5-(4-chlorophenyl)-5-methyldihydrofuran-2(3H)-one

White solid; mp 101–103 °C

IR (KBr): 2921, 1780, 1489, 1375 cm⁻¹;

S13

¹**H NMR** (500 MHz, CDCl₃): (δ , ppm) 7.37 (s, 4H), 4.63 (dd, J_1 = 4.9 Hz, J_2 = 7.0 Hz,

1H), 3.13-2.92 (m, 2H), 1.86 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): (δ, ppm) 172.44, 140.10, 134.59, 129.17, 125.66,

87.89, 51.60, 39.96, 27.29;

HRMS (EI) calcd for $C_{11}H_{10}^{79}Br^{35}ClO_2[M]^+$: 287.9553, found: 287.9561.

Compound 6r

4-Bromo-5-(4-bromophenyl)-5-methyldihydrofuran-2(3H)-one

White solid; mp 114–116 °C

IR (KBr): 2981, 1777, 1490, 1374 cm⁻¹;

¹**H** NMR (500 MHz, CDCl₃): (δ , ppm): 7.53 (d, J = 8.5, 2H), 7.31 (d, J = 8.5, 2H),

4.62 (dd, *J*₁ = 4.9 Hz, *J*₂ = 6.9 Hz, 1H), 3.13-2.92 (m, 2H), 1.85 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): (δ, ppm): 172.40, 140.65, 132.14, 125.96, 122.70,

87.90, 51.52, 39.96, 27.24;

HRMS (EI) calcd for $C_{11}H_{10}^{79}Br_2O_2[M]^+$: 331.9048, found: 331.9049.

Compound 6s

4-Bromo-5-(3-methoxyphenyl)-5-methyldihydrofuran-2(3H)-one

IR (KBr): 2976, 1699, 1376, 1331 cm⁻¹;

¹**H** NMR (500 MHz, CDCl₃): (δ , ppm): 7.31 (t, J = 8.0, 1H), 6.98-6.95 (m, 1H),

6.94-6.93 (m, 1H), 6.88-6.86 (m, 1H), 4.72 (dd, J_1 = 3.9 Hz, J_2 = 6.8 Hz, 1H), 3.81 (s,

3H); 3.13-2.89 (m, 2H), 1.86 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): (δ, ppm): 172.92, 159.99, 143.15, 130.11, 116.35,

113.57, 110.25, 88.24, 55.34, 52.50, 40.27, 27.61;

HRMS (EI) calcd for $C_{12}H_{13}^{-79}BrO_3[M]^+$: 284.0048, found: 284.0048.

Compound 11

Methyl 2-(chloromethyl)-1H-indole-3-carboxylate

Violet solid; mp 87-89 °C

IR (KBr): 2919, 1675, 1460, 1355 cm⁻¹;

¹H NMR (500 MHz, CDCl₃): (δ, ppm) 9.05 (s, 1H), 8.11-8.09 (m, 1H), 7.38-7.36 (m,

1H), 7.27-7.24 (m, 2H), 5.19 (s, 2H), 3.94 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): (δ, ppm) 165.73, 140.54, 134.81, 126.49, 123.60,

122.26, 121.85, 111.27, 105.18, 51.18, 37.96.

HRMS (EI) calcd for $C_{11}H_9CINO_2 [M-H]^-$: 222.0327, found: 222.0320.

(C) Procedure for the preparation compound 2. To a mixture of indole 1a (5 mmol, 945 mg, 1.0 equiv) in dichloromethane or chloroform (10 mL) at 25 °C was added *N*-bromosuccinimide (1.070 g, 6 mmol, 1.2 equiv). After 5 minutes, the solution was concentrated *in vacuo* at 25 °C followed by the addition of hexane (10 mL). The clear yellow solution of hexane containing species 2 was separated by filtration. The solvent was removed under reduced pressure to yield compound 2 in 95% yield as orange oil.

Compound 2

Methyl 3-bromo-2-methyl-3H-indole-3-carboxylate

IR (KBr): 2954, 1732, 1584, 1376, 965, 786 cm⁻¹;

¹**H NMR** (300 MHz, CDCl₃): (δ, ppm) 7.60-7.57 (m, 1H), 7.48-7.46 (m, 1H), 7.39-7.33 (m, 1H), 7.24-7.18 (m, 1H), 3.74 (s, 3H), 2.54 (s, 3H);

¹³C NMR (75 MHz, CDCl₃): (δ, ppm) 176.95, 166.25, 153.34, 136.24, 130.84, 126.71,

124.68, 120.86, 59.11, 54.01, 16.67;

DEPT-135 (75 MHz, CDCl₃): δ130.84, 126.71, 124.68, 120.86, 54.00, 16.66.

HRMS (ESI) calcd for $C_{11}H_{10}BrNNaO_2 [M + Na]^+$: 289.9787; found: 289.9791,

291.9769.

(D) Analysis of The Reactive Species 2

Figure S1. In situ Generation of Reactive Species 2 by Mixing 1a and NBS in CDCl₃

Figure S2. Comparison of ¹³C NMR Spectra of 1a and 2

DEPT-135

Figure S3. In situ Generation of Reactive Species 1a-I by Mixing 1a and NIS in

CDCl₃

DEPT135

(E) Studies of Indole Catalyst Analogues

Figure S4. Generation of Reactive Species from Analogues of 1a

Note: We attempted to prepare the **1-Br** species from catalyst analogues **1d-1g** using the procedure in Section (C). Both **1d** and **1e** could give the corresponding **1d-Br** and **1e-Br** species smoothly. 1f and its brominated species showed very low solubility in lipophilic solvent. For **1g**, it reacted with NBS to give the 3-bromoindole **1g-Br**. The Br in **1g-Br** was found to be inactive towards electrophilic bromination reaction.

S25

1d-Br¹H NMR, ¹³C NMR and DEPT135

S26

fl (ppm)

δ =70.00 ppm is quaternary carbon

S28

δ =58.95 ppm is quaternary carbon

Figure S5. Comparison of the catalytic ability of different catalysts

Figure S6. Generation of Reactive Species from Analogues of 1a

(F) References

- (1) Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.; Yeung, Y.-Y. J. Am. Chem. Soc. 2010, 132, 15474–15476.
- (2) Wuertz, S.; Rakshit, S.; Neumann, J. J.; Dröege, T.; Glorius, F. Angew. Chem. Int.
- Ed. 2008, 47, 7230–7233.

S34

S49

