Supporting information

Mesoporous organosilica nanoparticles containing superacid and click functionalities leading to cooperativity in biocidal coatings

Julia Gehring[†], David Schleheck[‡], Bastian Trepka[†], Sebastian Polarz^{†*}

[†] Department of Chemistry; University of Konstanz, D-78457 Konstanz, Germany

[‡] Department of Biology; University of Konstanz, D-78457 Konstanz, Germany

* Corresponding author. Email: sebastian.polarz@uni-konstanz.de

Figure S1: Characterization of the novel PMO precursor (3) 1,3-bis-tri(isopropoxysilyl)-thiophenol.

NMR data

¹ H NMR in CDCl₃

¹³C NMR in *CDCl*₃

 29 Si NMR in CDCl_3

ESI-MS data

Black: Experimental data

Grey: Simulated spectrum for 1,3-bis-tri(isopropoxysilyl)-thiophenol

NMR data

²⁹Si MAS NMR

¹³C MAS NMR

Figure S3: Collected data for UKON-2j nanoparticles prepared via the aerosol-assisted route.

(a) Experimental set-up used for the EISA preparation of mesoporous particles of the UKON-type.

(b) N_2 physisorption data of UKON-SH np; BET 670m²/g; pore diameter: 3.4 nm.

(c) TEM data of UKON-2j np; scale bar = 100 nm

(d) SEM data of UKON-2j; scale bar = $1\mu m$

(f) EDX data of UKON-2j np: Si:S 2:1

(h)²⁹Si MAS NMR data of UKON-2j np

Figure S4: Investigation of the pre-hydrolysis using NMR spectroscopy.

¹ H NMR data in MeOD of 1,5-bis-tri(isopropoxysilyl)-thiophenol (3)

Black: before hydrolysis

Grey: after 3 h of hydrolysis

¹ H NMR data in MeOD of 1,5-bis-tri(isopropoxysilyl)-benzene-3-sulfonyl chloride (2) Black: before hydrolysisin MeOD (MeOD hydrolyzed compound (2) within minutes!) Grey: after 10 min of hydrolysis

(a) PMO materials in powder form.

TEM data of UKON (SH-PhSi2O3)0.5(SO3H-PhSi2O3)0.5

FT-IR data of UKON (SH-PhSi2O3)0.5(SO3H-PhSi2O3)0.5

Black: UKON-2j np

Light grey: UKON-2i np

Dark grey: of UKON (SH-PhSi2O3)0.5(SO3H-PhSi2O3)0.5

SAXS data

UKON (SH-PhSi2O3)1-x(SO3H-PhSi2O3)x synthesized with Pluronic P123

- (a) UKON -2j
- (b) UKON (SH-PhSi2O3)0.75(SO3H-PhSi2O3)0.25
- (c) UKON (SH-PhSi2O3)0.5(SO3H-PhSi2O3)0.5
- (d) UKON (SH-PhSi2O3)0.25(SO3H-PhSi2O3)0.75
- *(e)* UKON-2i

UKON (SH-PhSi2O3)1-x(SO3H-PhSi2O3)x synthesized with Pluronic F127

- (a) UKON -2j
- (b) UKON (SH-PhSi2O3)0.75(SO3H-PhSi2O3)0.25
- (c) UKON (SH-PhSi2O3)0.5(SO3H-PhSi2O3)0.5
- (d) UKON (SH-PhSi2O3)0.25(SO3H-PhSi2O3)0.75
- (e) UKON-2i

N₂ physisorption

UKON (SH-PhSi2O3)1-x(SO3H-PhSi2O3)x synthesized with Pluronic P123

- (a) UKON (SH-PhSi2O3)0.75(SO3H-PhSi2O3)0.25
- (b) UKON (SH-PhSi2O3)0.5(SO3H-PhSi2O3)0.5
- (c) UKON (SH-PhSi2O3)0.25(SO3H-PhSi2O3)0.75

UKON (SH-PhSi2O3)1-x(SO3H-PhSi2O3)x synthesized with Pluronic F127

- (a) UKON (SH-PhSi2O3)0.25(SO3H-PhSi2O3)0.75
- (b) UKON (SH-PhSi2O3)0.5(SO3H-PhSi2O3)0.5
- (c) UKON (SH-PhSi2O3)0.75(SO3H-PhSi2O3)0.25

UKON (SH-PhSi2O3)0.75(SO3H-PhSi2O3)0.25 (light grey)	Si:S 2:1
UKON (SH-PhSi2O3)0.5(SO3H-PhSi2O3)0.5 (grey)	Si:S 2:1.1
UKON (SH-PhSi2O3)0.25(SO3H-PhSi2O3)0.75 (black)	Si:S 2:0.9

(b) Nanoparticles obtained via the aerosol approach.

SH100 material (UKON-2j): see S-3

SH50 material:

 N_2 physisorption data: BET 350 m²/g; pore diameter: 8.6 nm

TEM data; scale bar = 100 nm

²⁹Si MAS

TEM:

 N_2 physisorption isotherm and BJH pore-size distribution function:

solid-state ¹³C-NMR:

black graph ≅ UKON-2i powder

grey graph ≅ UKON-2i nanoparticles

Figure S6: Silver ion Ag⁺ loading and release.

TGA UKON-2i np

UKON-2i (black) remaining mass 45%

UKON-2i @Ag⁺ (grey) remaining mass 55%

TGA UKON-2j np

UKON-2j (black) remaining mass 52% vs

UKON-2j @Ag⁺ (grey) remaining mass 61%

Table of Ag^{\dagger} content on different PMO materials

SH [%]	SO ₃ H [%]	ratio S: Ag day 0	ratio S: Ag day 5	Ag release EDX [%]	Ag release ISE [mg/l*m²]
100	0	1: 0.9	1: 0.8	22	0.2
75	25	1: 0.65	1: 0.35	56	0.03
50	50	1:0.6	1: 0.3	50	1.8
25	75	1:0.8	1: 0.3	63	2.5
0	100	1: 0.95	1:0.1	90	12.04

EDX of bifunctional PMO hosting Ag⁺:

EDX spectra after adsorption of Ag^+ in different mesoporous materials: stirring in water for 9

red graphj \cong Ag⁺ @ UKON-2j

black graph \cong Ag⁺ @ SH50

blue graph \cong Ag⁺ @ UKON-2i

The broad signal at 32° 2θ originates from the amorphous organosilica matrix.

SO₃H100 before washing:

SO₃H100 after washing:

SiO₂ particles before washing:

SiO₂ particles after washing:

Figure S10: SEM/EDX data for immobilization of SH50 particles on stainless steel surfaces.

scale bar = 100 nm

Figure S12: Biological experiments.

Pictures of MIC test

Ag⁰@SH50 nanoparticles

Ag⁰@SH100 nanoparticle

References Supporting Information:

1. Gehring, J.; Schleheck, D.; Luka, M.; Polarz, S., Aerosol-Synthesis of Mesoporous Organosilica Nanoparticles with Highly Reactive, Superacidic Surfaces Comprising Sulfonic Acid Entities. *Adv. Funct. Mater.* **2014**, *24*, 1140-1150.