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A complete hierarchy of languages is introduced to defend the thesis
that ‘human language is a Turing complete language’. This com-
plete hierarchy discriminates languages on computability, meaning
mixability, generativity, decidability, and expressiveness. We show
that our thesis is true and, using the complete hierarchy, that our
thesis is more specific and then more significant than other truths
about human language. The complete hierarchy explains the evo-
lution of language on the assumption that it was driven by expres-
siveness, and consequently it explains that our language is complete
because complete languages are the most expressive languages.
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§1 Introduction
¶1 · In this paper we will defend a simple thesis:

Human language is a Turing complete language.

We start (in §2) by defining what is a (Turing) complete language (in §2.1), and by
showing that the thesis is true (in §2.2).
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¶2 · Next, in order to compare the thesis on completeness with other truths about human
language (which are listed in §3.1), we present a complete hierarchy of languages (in §3).
The complete hierarchy starts from zero (in §3.2), and then it goes to those languages with
unmixable meanings, resulting in asyntactic languages with words but without sentences
(in §3.3). Releasing the restriction on mixability, we get the syntactic languages, where
the sentence meaning is calculated from the meanings of its words. Syntactic languages
can be finite (in §3.4) or unbounded. Unbounded languages need a generative procedure,
so they are also known as generative languages. When the number of words is unbounded,
but the ways of mixing words is bounded, we have the finitary languages (in §3.5). When
both the number of words and the number of ways of mixing them are unbounded, but we
require that every sentence is meaningful, we get the decidable languages (in §3.6). And
releasing every requirement, we have the computable languages (in §3.7). Till this point,
every new kind of language has properly included the previous one, and correspondingly
every new kind of language was strictly more expressive than the previous one. However,
as every language is computable, statements about computable languages are nonspecific
and consequently uninteresting. Fortunately, there is a very interesting subset of the
computable languages: the complete languages. The complete languages (in §3.8) are
some syntactic, generative, and non-decidable languages that are strictly more expressive
than any non-complete language. In fact, anything expressible in any language can be
expressed in a complete language. And once the complete hierarchy is completed, we
finish the section by drawing its Euler diagram (in §3.9).
¶3 · After having defined the complete hierarchy, it will be time to explore it (in §4).
Firstly, we compare the complete hierarchy with the classical one by Chomsky (in §4.1).
Next we show that the complete hierarchy can be used as a framework for the evolution
of language, just by assuming that an individual who is able to express more meanings
has more survival opportunities (in §4.2). Then, while we were adapting the concept
of recursion to the complete hierarchy (in §4.3), we find another concept, ‘hierarchical
language’, which cannot be adapted because it is independent of expressiveness. And
lastly (in §4.4), we explain why the best definition of human language is our thesis,
‘human language is complete’: because it also says implicitly that human language is
generative, unbounded, recursive, syntactic, and computable.
¶4 · Finally, we conclude with a summary (in §5).

§2 Turing completeness

§2.1 Definition
¶1 · A Turing complete device is a device that can be programmed to execute any com-
putable function, save for time or tape limitations, where ‘tape’ is an abbreviation for
‘external memory’. Not every computing device is Turing complete. For instance, while
a full-programmable computer is Turing complete, an arithmetic calculator, which is one
that can only compute the four arithmetic operations, is not Turing complete.
¶2 · Each Turing (1936) machine implements a computable function, where the Turing ma-
chine is the canonical model for computing devices, resulting that each piece of hardware
implements a computable function. And the universal Turing machine is the canonical
model for Turing complete devices, resulting that Turing completeness is the capacity of
some hardware devices to calculate by software whatever hardware can calculate.
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¶3 · The language used to program a Turing complete device is a Turing complete lan-
guage, or a complete language for short. In other words, a language is complete if and
only if any computable function can be expressed and calculated in it. In this second
definition we have abstracted away the computer, but we should not forget that there is
no language without a computing device.
¶4 · You can find more details on Turing completeness in Casares (TC).

§2.2 Truth
¶1 · The thesis ‘Human language is a complete language’ is true because we can express
and calculate any computable function in English, save for time or tape limitations and
slips, where a ‘slip’ is a human error of execution. We are sure because Turing (1936)
explains how to express and calculate any computable function in English.
¶2 · English is not the only human language, but we can extend the conclusion to other
natural languages. Any language in which it is possible to explain how Turing machines
work precisely is a complete language. How precisely? To pass this test, any person
who speaks that language, after hearing the explanation, has to be able to imitate the
calculation of any Turing machine on any data exactly, save for time or tape limitations
and slips. In most natural languages, if not in all, it is possible to explain how Turing
machines work to this level of detail, and therefore most natural languages, if not all,
are complete. In addition, assuming that any human baby reared in an English speaking
community will acquire English, being English a complete language, is assuming that the
human brain is a Turing complete device, because otherwise it could not implement a
complete language. This means that the native language of the human brain is a complete
language, even if some natural languages were not complete.
¶3 · You can find more details on the complete language thesis in Casares (UG).

§3 A hierarchy of languages

§3.1 Comparison
¶1 · A truth can be trivial, uninteresting, irrelevant or just a consequence of something
more significant. Regarding language, we are defending here that completeness is the
characteristic feature of human language, instead of syntax, or instead of recursion, which
may seem more obvious characteristics. Then, our task now will be to compare the
respective worth of these truths on human language: human language is syntactic, human
language is generative, human language is unbounded, human language is hierarchical,
human language is computable, human language is recursive, and human language is
complete. In order to do this comparison, we will firstly present a series of languages.

§3.2 Null (L0)
¶1 · At the bottom of the hierarchy of languages we find no language. We will call any
language that has only one unmixable meaning a null language L0. Having only one
meaning, there is no need to select a meaning, and then there is no information to
transmit, according to the theory of communication by Shannon (1948).
¶2 · Every language requires a computing device and, in the case of a null language L0,
the computer is a mechanism that always behaves the same way, so we will say that it has
only one behaviour. It is then something that we will not usually consider a computing
device, as a light bulb, for example, or a washing machine with a single program.
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§3.3 Asyntactic (La)
¶1 · An asyntactic language La is a language with a finite number of unmixable meanings.
In this case, a meaning is equivalent to a word.
¶2 · The typical computing device implementing an asyntactic language La is a machine
that can behave in a finite number of ways, when each way is selected by pressing a
different button. An example is a washing machine with three washing programs that
are selected by pressing one out of three buttons: one for the light program, another
for the medium program, and the third for the strong program. Here, the button is the
word, and the corresponding machine behaviour is its meaning. Another three-meaning
asyntactic language is the vervet monkeys language, see Seyfarth et al. (1980).
¶3 · Every null language is an asyntactic language, because number one is a finite number,
so the set of all asyntactic languages {La} includes the set of all null languages {L0}. In
fact, the set of null languages is a proper subset of the asyntactic languages, {L0} ⊂ {La},
because there are asyntactic languages with more than one meaning, as shown by the
three programs washing machine and the vervet monkeys languages.
¶4 · It is more important that asyntactic languages are strictly more expressive than null
languages, noted {La} ≻ {L0}, or {L0} ≺ {La}. This is because, given any null language
with its only meaning m0, we can always construct an asyntactic language that is more
expressive: that with, at least, meanings m0 and m1, for any meaning m1 such that
m1 ̸= m0. It can always be more expressive, hence the ‘strictly’. Quantitatively, going
from a null language L0 to an asyntactic one La, the number of meanings grows from 1
to w, where w is the number of meanings, or words, of the asyntactic language.

§3.4 Finite (Lf)
¶1 · A finite language Lf is a language with a finite number of meanings. As now some
meanings can be mixed, we can get a new meaning by mixing some mixable meanings.
Suppose, for example, that we take two mixable meanings, let us call them m1 and m2,
each one with its corresponding word, let us call them w1 and w2. Then the easiest way
to represent the meaning that results from mixing m1 and m2 will be the sentence w1w2.
With words and sentences, this language is syntactic.
¶2 · To keep the number of meanings finite, the number of unmixable meanings and the
number of mixable meanings have to be finite, and the ways of mixing meanings, also
known as operations, have to be decidable and finite in number.
¶3 · A simple case of finite language Lf that is not asyntactic is that implemented by a
washing machine where you can select independently: one out of four program times, one
out of three temperatures of the water, and whether to apply a fast or a slow final spin
cycle. This language has 4+ 3+ 2 = 9 words (buttons), 4× 3× 2 = 24 well-formed word
combinations, also known as sentences, and then 24 meanings (behaviours).
¶4 · To my knowledge, except human language, there are not syntactic natural languages,
although we can find precursors of finite combinatorial morphology, for example, in the
language of the Campbell’s monkeys, see Ouattara et al. (2009).
¶5 · Words are atomic (= indivisible) mixable meanings, but only sentences have full
meaning. Following this convention, if a separate word has full meaning, then that single
word by itself makes a sentence. Then, any unmixable meaning results in a word that
makes a sentence by itself, as some interjections do. Usually, in human natural languages,
most words are mixable meanings, though they can include some archaic unmixable
meanings.
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¶6 · Every asyntactic language is finite, but not the converse, {La} ⊂ {Lf}, because Lf
meanings are not restricted to be unmixable, as La meanings are. Asyntactic languages
equate a meaning to a word, so they do not need sentences, while finite syntactic languages
equate a meaning to a sentence because there are mixable meanings in these languages.
¶7 · Finite languages are strictly more expressive than asyntactic languages, {Lf} ≻ {La}.
Proof: given any asyntactic language, we can construct a finite language which is more
expressive; just let that each meaning of the asyntactic language results in a one-word
sentence in the finite one, and then add a pair of mixable meanings to the finite language.
Quantitatively, going from an asyntactic to a finite syntactic language, the number of
meanings typically increases exponentially, because the number of meanings in a syntactic
language results from multiplying the number of mixable meanings, so, for example, given
w words, we can make w2 pairs, w3 triplets, and, in general, wn n-tuples.

§3.5 Finitary (Lℵ)
¶1 · Releasing the requirement of finiteness we get the unbounded languages. To go
beyond finiteness, a generative procedure is required, so unbounded languages are also
known as generative languages. As in practice the infinite is out of reach, whenever a
generative process is involved we should be aware that it works save for time or tape
limitations.
¶2 · The simplest case is when the set of words is infinite, but the number of ways of
mixing them is finite. A finitary language Lℵ is any language that has an unbounded
set of words, and a bounded number of operations per sentence, where an operation is a
decidable way of mixing words, and a word is an atomic meaning. Mathematically, an
operation is a decidable function, and in linguistics it is a verb, typically.
¶3 · With just one mixable meaning, the number one represented by the symbol I, and
one mixing operation, string concatenation, we can already express any natural number
in bijective base one.

S → ‘N ’

N → ϵ | N I

In this language, the string ‘IIIII’ means the number five, and ‘’ means zero. Though being
very simple, this finitary language is not finite, and then it already needs a generative
procedure, and astronomically big numbers will meet time and tape limitations.
¶4 · A more interesting finitary language Lℵ that is not finite is the language implemented
by a basic arithmetic calculator.

S → N ON =

N → D | ND

D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
O → + | − | × | ÷

Using any standard definition of the arithmetic operations O on the decimal natural
numerals N , we can express and calculate any addition, subtraction, multiplication or
division of two numbers in this language. For example, 3 + 4 and 2× 7.
¶5 · Every finite language is finitary, but some finitary languages are not finite, that is,
{Lf} ⊂ {Lℵ}. This is because a finitary language is a finite language but with one
requirement released.
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¶6 · Finitary languages are strictly more expressive than finite languages, {Lℵ} ≻ {Lf}.
Proof: given any finite language, we can always build a finitary language that includes the
finite one completely and, in addition, all the natural numbers. Quantitatively, going from
a finite to a generative language, the number of meanings typically increases infinitely,
because it goes from a finite to an infinite enumerable number (ℵ0).

§3.6 Decidable (LD)
¶1 · A decidable language LD is any language in which every sentence has a final meaning.
In other words, there are not paradoxes in decidable languages, where a paradox is a
sentence that never reaches a definitive meaning, because its calculation gets stuck in
an infinite loop. While in finitary languages the number of operations in a sentence is
bounded, in decidable languages this condition is released.
¶2 · The language implemented by a reverse Polish notation arithmetic calculator, or
RPNA language for short, is a decidable language LD that is not finitary.

S → N, | S N O | S S O

N → D | ND

D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
O → + | − | × | ÷

Using any standard definition of the arithmetic operations O on the decimal natural nu-
meralsN , we can express any unconditional arithmetic calculation in this language.

×

+ 2

4 3

(4 + 3)× 2

4, 3 + 2×

2× (3 + 4)

2, 3, 4 +×

×

2 +

3 4
¶3 · The precise demarcation of decidable languages, which is the boundary separating
decidable from non-decidable languages, is not itself decidable, as a consequence of the
halting problem, defined by Davis (1958), page 70. In spite of this, we can show that
some languages are decidable. For example, any finitary language is decidable, because
the restriction to a bounded number of operations in a sentence precludes any loop, and
then any infinite loop. Primitive recursion is also decidable, because all of its loops do
decrease a variable and there is a bottom, which is 0, so they are never infinite.
¶4 · Every finitary language is decidable, as just seen above, but some decidable languages
are not finitary, as shown by the RPNA language, and then {Lℵ} ⊂ {LD}.
¶5 · Decidable languages are strictly more expressive than finitary languages, that is,
{LD} ≻ {Lℵ}. For example, in the finitary language of the basic calculator we can
compute 3 + 4 and 2 × 7, but we cannot compute 2 × (3 + 4), as we can do in the
decidable language of the RPNA calculator. Proof: given any finitary language, we can
build a decidable one that includes the finitary language completely, and then add a
generative and decidable process to compose operations.
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§3.7 Computable (LT )

¶1 · Releasing all the requirements, that is, those on the mixability of meanings, those on
the finitude of words, those on the finitude of operations, and those on the existence of
meaningless sentences, we get the computable languages. A computable language LT is
any language that any computing device can implement. And particularly any Turing
machine, and then a computable language can also be called a Turing language LT .

¶2 · That ‘every language is computable’ is a consequence of Church’s (1935) thesis, which
we assume. Under Church’s thesis, every effectively calculable language is computable,
meaning that actually, that is, disregarding whatever is impossible to implement, every
language is computable. Therefore, under Church’s thesis, the universe of languages is
the set of computable languages, UL = {LT}.
¶3 · Every decidable language is computable, but some computable languages are not
decidable, {LD} ⊂ {LT}. This is because every language, and then every decidable
language, is computable, but there are computable languages with paradoxes, that is,
with infinite loops, and these languages are not decidable. Or, in Post (1944) form: there
are recursively enumerable sets that are not recursive.

¶4 · A paradox is a sentence that has not a definitive meaning, because its calculation
gets stuck in an infinite loop. Then, as paradoxes are meaningless, it could seem that
there is some decidable language that contains every meaning. This is not the case
as a consequence of the halting problem. Therefore, decidable languages are strictly
less expressive than computable languages, {LD} ≺ {LT}. Note that this result is
a reformulation of Gödel’s (1930) incompleteness theorem: there is not any decidable
language that contains every mathematically meaningful truth.

§3.8 Complete (LC)

¶1 · Please pay attention now, because the next step is of a different kind. Till now, we
were releasing requirements step by step and, as a result, we were getting more expres-
sive languages on each step. And, after releasing every requirement, we have reached
the computable languages. However, as every language is computable, statements about
computable languages are nonspecific and then uninteresting. In particular, computable
languages include the most expressive languages, but also those that do not need expres-
sions, as the null languages, and also every language in between. For example, in the
RPNA computable language, we can calculate (((1 × 2) × 3) × 4) × 5, but we cannot
express:

n, r := 2, 1; while n < 6 {r :=×n; n++}; return r.

This translates to English as: firstly assign values 2 and 1 to variables n and r, respec-
tively; then and while the value of variable n is less than 6, keep multiplying the value of
variable r by the value of variable n, and increasing the value of variable n by one; and
finally return the value of variable r.

¶2 · So now, instead of releasing a requirement, we will impose a new one. A complete
language LC is any language that has the maximum expressiveness. This definition is
equivalent to that in §2.1, because being able to execute any computable function is being
able to compute anything that any computer can compute, and then, as every language
needs a computer, anything that any language can express and calculate can be expressed
and calculated in a complete language LC .
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¶3 · As shown in the previous example, conditional loops are beyond the capabilities of
the RPNA computable language. It is also clear in the example that to take advantage
of conditional loops it is important to handle words with a variable meaning, such as
pronouns. And to handle these words that do not have a fixed meaning, the computing
device has to treat them as if they had any meaning, or even no meaning, that is, they
have to be computed independently of their meanings.

¶4 · The ability of using words without meaning could seem unimportant, but those words
allow us to ask questions. Suppose, for example, that I say to you: ‘who is reading the
book?’ Though the sentence is syntactically complete, it uses the interrogative pronoun
‘who’, which is a word without a fixed meaning, and then its semantics is not complete,
so I am asking you to complete its meaning. In that case you can answer just ‘Inés’,
which is perhaps not as syntactically complete as ‘Inés is reading the book’, but anyway
your short answer completes the semantics exactly as if the full answer were said.

¶5 · To work with words independently of their meanings, complete languages need a
peculiar type of words: functional words, as ‘while’ in the loop example. The meaning
of these functional words is just syntactical, as they work on syntactic structures, or on
words independently of their meanings, conforming to some functional semantics. And
not every functional semantics goes.

¶6 · By the equivalent definition in §2.1, a complete language LC is any language in which
any computable function can be expressed and calculated. Therefore, for any language
to be complete, it has to fulfil two requirements.
◦ Syntactic requirement for completion: the number of its syntactic structures has to
be infinite enumerable, or bigger. Turing (1936) showed that the number of Turing
machines, and then the number of computable functions, is infinite enumerable, so
this requirement grants us that we can assign a different syntactic structure to each
and every computable function.

◦ Semantic requirement for completion: the Turing complete device, taking any such
syntactic structure expressing a computable function, has to calculate that function.
Therefore, its functional semantics has to be designed precisely to make this happen.

¶7 · As some computable functions are partial, it is possible to express infinite loops in
every complete language, and then in any complete language there are paradoxes. And
conversely, if it is not possible to express any paradox in a language, then that language
is not complete. Therefore, no complete language is decidable, {LC} ∩ {LD} = ∅.
¶8 · As a consequence of Gödel (1930) numberings, full reference is a property of every
complete language, see Casares (TC). And using self reference, included in full reference,
it is easy to concoct a paradox: ‘this sentence is false’. Theorem :-) In every language
that is expressive enough to mean ‘this sentence is false’, there is a paradox. Then,
the sentence “ ‘this sentence is false’ is a paradox” is true in English, but it cannot be
expressed in any decidable language. This shows that English is not decidable.

¶9 · Some (or rather most) computable languages are not complete. For example, the
RPNA language implemented by the reverse Polish notation arithmetic calculator is
computable, but it is not complete. The RPNA language is not complete because all of
its well-formed expressions are decidable, that is, because we can not express any paradox
in it as it is not possible to express infinite loops in it. However, the converse is true,
that is, every complete language is computable, because every language is computable,
see §3.7. Therefore, {LC} ⊂ {LT}.
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¶10·By definition, complete languages are the most expressive languages, meaning that
everything that can be expressed in any language can also be expressed in a complete
language. Then, complete languages are more expressive than, or equally expressive to,
computable languages, {LC} ⪰ {LT}. They are not always more expressive because
some computable languages are complete, {LT} ∩ {LC} = {LC} ̸= ∅.

§3.9 Complete hierarchy
¶1 · So there is a progression in expressiveness

{L0} ≺ {La} ≺ {Lf} ≺ {Lℵ} ≺ {LD} ≺ {LT} ⪯ {LC}

which is not replicated in inclusiveness

{L0} ⊂ {La} ⊂ {Lf} ⊂ {Lℵ} ⊂ {LD} ⊂ {LT} ⊃ {LC}

because there is an inversion in the last step, from computability to completeness.
¶2 · Because of the inversion, the hierarchy of languages is defined by expressiveness, and
not by inclusiveness, which instead, together with UL = {LT} and {LC} ∩ {LD} = ∅,
draws the following Euler diagram.

L0

La

Lf

Lℵ

LD

LT

LC

Null L0

Asyntactic La

Finite Lf
Finitary Lℵ
Decidable LD

Computable LT

Complete LC

Syntactic LT\a
Generative LT\f

Languages

¶3 · We will extend our notation using set difference, where A\B is the set of the elements
in set A but not in set B:

{LA\B} = {LA} \ {LB}.

For example, using this convention, Lf\a is a finite language that is not asyntactic, so it
is a finite syntactic language.
¶4 · And now we can express that {LC} ≻ {LT\C}, and that

{L0} ≺ {La\0} ≺ {Lf\a} ≺ {Lℵ\f} ≺ {LD\ℵ} ≺ {L(T\C)\D} ≺ {LC}.

This hierarchy is complete because it spans from the null languages L0, where no expres-
sion is needed, to the complete languages LC , where everything can be expressed.
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¶5 · We can read this hierarchy in several ways. From the syntactical point of view, we
have three main classes of languages:
◦ The null languages L0, which neither need words nor sentences.
◦ The non-null asyntactic languages La\0, which do not need sentences, and for which
a meaning is equivalent to a word.

◦ All other languages LT\a are syntactic. A syntactic language LT\a is any that is not
asyntactic. Syntactic languages need sentences and words, where a word is an atomic
meaning, a sentence is a mix of words, and only sentences have full meaning.

¶6 · We can also read the hierarchy from the generative point of view, and then we find
two main classes of languages.
◦ The finite languages are Lf .
◦ And the unbounded languages are the rest, LT\f . The unbounded languages need a
generative process, so a generative language LT\f is any that is not finite.

§4 Discussion

§4.1 Chomsky hierarchy
¶1 · It seems appropriate to compare the hierarchy presented here with the classical one
by Chomsky (1959). We will refer to his paper throughout this subsection.
¶2 · Chomsky starts without any restriction, so his type 0 language T0 is any generated by
any Turing machine, see page 143, that is, a type 0 language T0 is a computable language
LT . Therefore, {T0} = {LT} = UL.
¶3 · Chomsky starts without any restriction and in each step he adds a new restriction,
and then his hierarchy goes in the opposite direction to the one presented in this paper.

{T0} ⊃ {T1} ⊃ {T2} ⊃ {T3}

Direction is not important. What is relevant is that his hierarchy is based on inclusiveness,
instead of being based on expressiveness, as it is our complete hierarchy.
¶4 · In his theorem 3, page 143, Chomsky states that each type 1 language T1 is decidable,
but not conversely, see note 7a, and then {T1} ⊂ {LD}.
¶5 · The last type of languages in Chomsky hierarchy is type 3, T3, which are the regular,
or finite state languages, see his theorem 6, page 150. As these regular languages are
generative LT\f , we have that {Lf} ⊂ {T3}.
¶6 · In summary:
◦ Chomsky hierarchy does not include our languages L0, La, and Lf , because they are
not generative.

◦ Chomsky hierarchy does not include our complete language LC , because his hierarchy
is inclusive and blind to language expressiveness.

◦ His type 0 is our computable language, T0 = LT , and his other types, T1, T2, and T3,
take the place of our finitary language Lℵ.

◦ Our decidable language LD is between his types T0 and T1.
¶7 · Therefore, we can combine Chomsky hierarchy and the complete hierarchy, as follows.

{L0} ⊂ {La} ⊂ {Lf} ⊂ {T3} ⊂ {T2} ⊂ {T1} ⊂ {LD} ⊂ {T0} = {LT} ⊃ {LC}
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L0

La

Lf
T3
T2
T1
LD LT = T0

LC

Null L0

Asyntactic La

Finite Lf
Regular T3

Context-free T2
Context-sensitive T1

Decidable LD

Computable LT = T0
Complete LC

Syntactic LT\a
Generative LT\f

Languages

§4.2 The complete hierarchy and evolution
¶1 · If human language is generative, which it is, and its syntax is decidable, which it is,
then Chomsky hierarchy is perfectly suited to study human language syntax as it is now.
For example, some interesting results by Stabler (2014) locate human grammar between
context-free T2 and context-sensitive T1 grammars. On the other hand, generative syntax
is not the whole of language and in our complete hierarchy we can go further.
¶2 · In one direction because, by including some non-generative languages, the complete
hierarchy can be used to locate the first steps in the evolution of human language. In
particular, protolanguage as proposed by Bickerton (1990) is a non-null asyntactic lan-
guage La\0. This is a convincing first step, because other animals communication systems
are also non-null asyntactic languages La\0. And a finite syntactic language Lf\a, as the
language proposed by Progovac (2015, 2016), would be a convincing exponentially more
expressive second step, {La\0} ≺ {Lf\a}.
¶3 · In the other direction because, by dealing with meanings, the complete hierarchy
deals with semantics, so it can discriminate paradoxes from meaningful sentences, and
most importantly, it can compare the expressiveness of languages, and thus it can identify
and denote the most expressive languages, which are the complete languages. In this case,
a complete language LC would be the last step in the evolution of human language.
¶4 · This evolutionary argument is valid under the assumption that there is a direct rela-
tionship between expressiveness and evolutionary fitness, at least in some environments.
This would mean that, in those environments, any individual who is able to express more
meanings would have more survival opportunities, which is a sensible possibility.
¶5 · If you find that meaning is a too imprecise concept to be of any value, you can restrict
meanings to solutions; the details are in Casares (BL). This restriction is feasible because
every solution is meaningful for its problem, and it could be wide enough considering
that, in the end, everything that we living beings do, we do it to keep us living, which is
to say that everything we do is to resolve the survival problem and its subproblems. If
you accept the restriction, then you have to accept that the survival problem is the final
source of every meaning. However, you can believe on the direct relationship between
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expressiveness and evolutionary fitness on other grounds, and that is all that is needed
here.

§4.3 Recursion
¶1 · There is a concept considered very close to language which was only mentioned briefly
when developing the complete hierarchy, and which is also alien to Chomsky hierarchy:
recursion. What is a recursive language?
¶2 · In mathematics, computing is equivalent to recursion, because Turing (1937) proved
that every recursive function is computable and every computable function is recursive,
see Casares (TC). As each Turing (1936) machine implements a computable function, and
the Turing machine is the mathematical model of a computing device, then each piece of
hardware implements a computable function. Therefore, the theorem says that, save for
time or tape limitations, the set of all functions that can be implemented by hardware is
equal to the set of all recursive functions.
¶3 · In computing, or at least for those following Post (1944), a recursively enumerable
set is a computable set, and a recursive set is a decidable set. With this distinction, he
could state that: “There exists a recursively enumerable set of positive integers which is
not recursive.” This means that, under Post definitions, human language is recursively
enumerable, but it is not recursive, because it is not decidable, since it contains paradoxes.
Therefore, under Post definitions, it is not true that human language is recursive, and
then here we will ignore his definitions.
¶4 · In linguistics, at least as defined by Watumull et al. (2014), a recursive function
has to be computable, hierarchical, and unbounded. In their definition, Watumull et al.
(2014) have introduced a new concept: hierarchical language. Of course, when they say
that human language is hierarchical, they do not mean that human language has to be in
any hierarchy, but that its syntactic structures have to be hierarchical. These hierarchical
structures, which are also known as trees, are in opposition to the linear structures, which
are also known as strings.
¶5 · In this paper, we have not yet dealt with the requirement of working on trees because
this requirement is orthogonal to the others. It happens that computer generated trees
can always be converted into strings by computable means in such a way that the original
trees can be recovered from those converted strings by computable means. In other words,
it is always possible to convert trees to strings and back by computing. Depending on the
problem, it can be more efficient to work on trees than to work on strings, or the other
way around, but it is always possible to do it either way. In fact, lambda-calculus, which
is one of the two main mathematical models of computing, uses trees, while the canonical
one by Turing (1936) uses strings, and they are equivalent, as proved by Turing (1937).
¶6 · As a consequence, there are complete languages that work on strings, and there are
complete languages that work on trees. The only syntactic requirement is that the number
of sentences of a complete language has to be infinite, see §3.8. And using the definition
of generative language in §3.9, there are also generative languages that work on strings
and generative languages that work on trees.
¶7 · The example used to illustrate the decidable languages in this paper, which was the
RPNA language presented in §3.6, works on trees. Or rather, using Chomsky (1959)
hierarchy, the RPNA language is context-free T2, and not a regular language T3 that
only works on strings. In any case, being computable, hierarchical, and unbounded, the
RPNA language is recursive for Watumull et al. (2014).
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¶8 · In summary: For Turing (1937) recursion is computing, and then a recursive language
would be a computable language LT , while for Watumull et al. (2014) a recursive language
would be a computable, unbounded (= not finite) language LT\f that is hierarchical. In
order to proceed, in what follows we will consider that a recursive language is a generative
language LT\f . This seems a just resolution, because it is one requirement away from
both parties involved: it detracts the hierarchical requirement from one party, and it adds
the generative requirement to the other. If you would ask me, I do personally prefer to
define a recursive language as a complete language LC , because it is only in a complete
language LC that each and every recursive function can be expressed and calculated.

§4.4 Human language is complete
¶1 · Finally, we can determine what is the best way to define our language. In §3.1 we
listed several truths about human language, which we repeat here, but now with their
corresponding nomenclature.
◦ Human language is syntactic LT\a.
◦ Human language is generative LT\f .
◦ Human language is unbounded LT\f .
◦ Human language is hierarchical.
◦ Human language is computable LT .
◦ Human language is recursive LT\f .
◦ Human language is complete LC .

After our analysis, we find that three of them are synonyms: generative, unbounded, and
recursive. And one, hierarchical, is out of the complete hierarchy. Then only four of the
truths will compete for the best definition of human language.
¶2 · As all are true, if one is more specific than another, then the more specific one makes
a better definition. For example, ‘human language is computable’ is less specific than
‘human language is generative’, because {LT} ⊃ {LT\f}, so the last definition is better.
In fact, every language is computable, so even other animals communication systems
qualify as computable languages.
¶3 · Therefore, after locating the four competing kind of languages, which are LT\a, LT\f ,
LT , and LC , in the Euler diagram (§3.9), the resolution is simple.

{LT} ⊃ {LT\a} ⊃ {LT\f} ⊃ {LC}

Complete languages are generative, generative languages are syntactic, and syntactic lan-
guages are computable, so ‘human language is complete’ is the most specific definition,
and then the best definition, out of those on discussion. In other words, saying that ‘hu-
man language is complete’, we are also saying implicitly that it is generative, unbounded,
recursive, syntactic, and computable.
¶4 · Being an orthogonal feature, all four kind of languages in our contest can be hierar-
chical or not, so we can be more specific: human language is complete and hierarchical.
Being orthogonal means that the reason why our language is hierarchical is not the reason
behind the complete hierarchy, which is expressiveness. If our evolutionary path was one
of increasing expressiveness, then the complete hierarchy, in which languages are ordered
by their expressiveness, models the evolution of our language, and thus it explains that
our language is complete because complete languages are the most expressive ones. But
that argument cannot explain why human language is hierarchical, because hierarchical
languages are not more expressive than non-hierarchical languages.

https://doi.org/10.6084/m9.figshare.21696713
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¶5 · Although the complete hierarchy cannot explain why our language is hierarchical, it
can explain why it is syntactic, generative, and complete. Each of these features would
be the mark of an evolutionary achievement. And the complete hierarchy suggests that
the evolution of human language could have gone through a series of phases of increasing
expressiveness: firstly non-null asyntactic La\0, next finite syntactic Lf\a, later generative
decidable LD\f , and finally complete LC .

Language Comment Expressiveness

La\0 Asyntactic Animal communication system w meanings
Lf\a Finite Syntactic or non-asyntactic wn meanings
LD\f Decidable Generative or non-finite ℵ0 meanings
LC Complete Non-decidable, but {LC\D} = {LC} All meanings

{La\0} ≺ {Lf\a} ≺ {LD\f} ≺ {LC}

§5 Conclusion
¶1 · We conclude that ‘human language is complete’ is a better definition for human
language than other possible definitions, as human language is generative, or unbounded,
or recursive, or syntactic, or computable, because these other definitions, while also true,
are less specific. In order to compare these possible definitions, we have developed a
complete hierarchy of languages, where these kind of languages and some others were
defined precisely, so they could be compared precisely.
¶2 · We can be more specific: ‘human language is complete and hierarchical’. However,
this additional specification about the hierarchical nature of human language is out of the
complete hierarchy, because the hierarchical feature cannot be defined using the discrim-
inating concepts of the complete hierarchy, which are computability, meaning mixability,
generativity, decidability, and expressiveness. Why human language is hierarchical has
to be explained using other reasons, probably non-linguistic reasons, it seems to me; see
Casares (SE), which points to problem solving reasons.
¶3 · Nevertheless, the complete hierarchy can explain why our language is syntactic, gener-
ative, and complete, since it provides a framework to locate some phases of the evolution
of human language that the classical hierarchy by Chomsky (1959) does not provide.
Explaining language evolution using the complete hierarchy requires us to assume that
evolutionary fitness has a direct relationship with expressiveness.
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