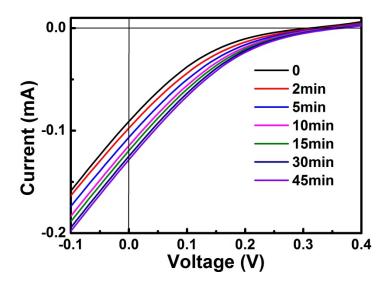

Supporting Information for

Photo-Induced Doping in Graphene/Silicon Heterostructures


Xiao-Juan Wang, †,‡ Liping Zou,† Dong Li,† Qichong Zhang,† Fengli Wang† and Zengxing Zhang*,†

[†]Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China [‡]School of Physics and Electronics, Henan University, Kaifeng 475004, China

* E-mail: <u>zhangzx@tongji.edu.cn</u>

Figure S1. The I-V curves of a typical Gr/n-Si heterostructure under the white light illumination with different irradiation time in nitrogen. The results show that the photovoltaic properties of the Gr/n-Si junction enhance with the light irradiation time increasing, which are similar to the feature of the light I-V curves in air. The results should rule out the potential role of oxidation in air.

Figure S2. The I-V curves of a typical Gr/n-Si under the infrared light (808 nm) illumination with different irradiation time.

Figure S3. (a), (b) and (c) The barrier heights, the series resistances and the ideality factors of three Gr/n-Si heterostructures with different light irradiation time from 0 to 120 min, respectively. The light power is 1 mW. All of them have similar features.

Table SI Characteristics of the three Gr/*n*-Si heterostructures before and after irradiation for 120 min. The light power is 1 mW. All of them have similar features.

samples		Φ_B /eV	$R_S/\mathrm{k}\Omega$	n	Voc/V	<i>Isc</i> /mA	FF (%)	7(%)
1#	Before irradiation	0.807 ±0.005	0.865 ±0.055	2.639 ±0.095	0.322 ±0.001	0.245 ±0.008	13.773 ±0.101	1.082 ±0.093
	After irradiation	0.765 ± 0.005	0.548 ±0.050	3.150 ±0.100	0.340 ±0.001	0.414 ±0.011	16.624 ±0.104	2.343 ±0.115
2#	Before irradiation	0.811 ±0.005	0.865 ±0.060	2.503 ±0.105	0.351 ±0.001	0.251 ±0.009	17.682 ±0.096	2.074 ±0.091
	After irradiation	0.77 ± 0.005	0.525 ± 0.055	3.22 ±0.105	0.370 ±0.001	0.428 ±0.010	19.076 ±0.102	3.023 ±0.088
3#	Before irradiation	0.821 ±0.005	0.960 ±0.060	2.357 ±0.105	0.313 ±0.001	0.389 ±0.011	17.077 ±0.105	2.056 ±0.114
	After irradiation	0.781 ±0.006	0.519 ±0.055	3.170 ±0.110	0.344 ±0.001	0.537 ±0.012	18.520 ±0.113	3.368 ±0.116