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What do we do?
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In multi-view settings we want to recover the missing
information due to object disocclusions in a reasonable and
cross-camera consistent way. Our approach uses object
background information and stereo consistency to inpaint
behind objects. In addition, our model converts a difficult
unsupervised problem into an easier supervised one. Making it
possible to train on larger stereo datasets.

Datasets

e Good quality, natural stereo datasets are very hard to come by.
e Random sampling of context-synthesis areas performs data
augmentation.

FlyingThings3D|4| containing a variety of objects flying around in
a randomised way.

Driving|4| naturalistic-looking dynamic street scene resembling
the KITTI dataset.

ry|5] 33 natural scenes.

How do we do 1t?
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What is new?

e Represent real objects
e More challenging as not necessarily
bounded
e Generate masks from object boundaries:
o context is the background around the
object
o synthesis is the hole behind the object

e Data augmentation:
o Random sampling of context-synthesis

o Sample from stereo view using
e Input to the nextwork

o0 RGB context
0 RGB stereo-context
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Problem

Solution

Novel view synthesis requires peeking
behind objects and trying to recover
information which is not present in an
image

Leverage information from
stereo-views

Stereo data is scarce

Perform data augmentation

areas Most inpainting approaches focus on

randomly shaped inpainting masks of

disparity limited complexity

Use geometrically-meaningful object
masks

Inpainting large and irregular

Use structure guided inpainting and
extra stereo-information

=om C Colour edges for structural guidance|3] problem
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non-bounded holes is a difficult

Completed image

e Enforce local consistency with a disparity loss.
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' @ Measures the consistency between inpainted patch in

/ one view and the GT in the other

e Better across all metrics.
e Competitive consistency in more challenging

problem.
Table 1. Quantitative results. Image quality & stereo consistency of different models. Bold is
best. » values are from their paper.
Dataset Model PSNRT SSIMT LPIPS| DispE (%))
. ; Shih et al.[1] 28.32  0.8589 0.0707 7.96
nne g3 ,
riyngTIngs D" g 3050 0.8643  0.0556  7.67
Shih et al.[ 1] 30.46 0969 0.1141 9.94
Driving Chen et al.[6]  22.38 0.959 1.79
Ma et al.[7]" 23.20 0.964 - 4.72
Ours 34.94 0977  0.0628 8.01

Qualitative results
Superior image quality:.
More challenging masks.
Sharp edges.

Visually pleasing.
Struggle with intricate unseen structures.

Baseline SaiNet (ours) Ground Truth Input Baseline SaiNet (ours)
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Conclusions

e Novel stereo-aware learned
inpainting model.

e Enforces stereo consistency

e Trained in a self-supervision fashion

e Uses geometrically meaningful
masks representing object
occlusions.

e Improvement over state-of-the-art
models by up to 50% PSNR.

e Good performance over several
diverse datasets.

e Possible future work: extend model to
cope with the challenges of
wide-baseline non-parallel cameras.
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