Supporting Information

Mononuclear and Tetranuclear Compounds of Yttrium and Dysprosium ligated by a Salicylic Schiff-Base Derivative: Synthesis, Photoluminescence and Magnetism

Munendra Yadav,¹ Valeriu Mereacre,¹ Sergei Lebedkin,² Manfred M. Kappes,^{*2,3} Annie K. Powell,^{*1,2}and Peter W. Roesky^{*1}

¹Institut für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany. ²Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Postfach 3640, D-76021 Karlsruhe, Germany. ³Institut für Physikalische Chemie, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131 Karlsruhe (Germany)

AUTHOR EMAIL ADDRESS <u>Manfred.Kappes@kit.edu</u>; <u>annie.powell@kit.edu</u>; <u>roesky@kit.edu</u>

Photoluminescence (PL) data

Figure S1. Combined visible and near-infrared emission spectra (shown on the same intensity scale) of solid complex **4** recorded at 20 K and excitation wavelength 400 nm. The narrow emission lines can be assigned to f-f transitions of Dy(III) ions.

Figure S2. Near-infrared emission spectra of solid complex **4** recorded at 20 K and 290 K. The excitation wavelength is 400 nm. The emission lines can be assigned to f-f transitions of Dy(III) ions.

Magnetic data

Figure S3. Hysteresis loop of 4 recorded at 2.0 K and (inset) expansion of hysteresis to highlight it at low field.

Figure S4.In- (χ ') and out-of-phase (χ '') ac susceptibility of **4** in zero field as a function of temperature at frequencies from 1 Hz to 1500 Hz.

Figure S5.Arrhenius plot and linear fit of the maxima at high and low temperatures.

Figure S6. Temperature dependence of χT for compound 5at 1000 Oe. Inset: molar magnetization versus field at 2 - 5 K.