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ABSTRACT. Let Θ be the supremum of the real parts of the zeros of the Riemann zeta
function. We demonstrate that Θ ≥ 3

4 . This disproves the Riemann Hypothesis, which asserts

that Θ = 1
2 .
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Introduction. The Riemann zeta function is a function of the complex variable s, defined
in the half-plane ℜ(s) > 1 by ζ(s) :=

∑∞
n=1 n

−s and in the whole complex plane by analytic
continuation. Euler noticed that for ℜ(s) > 1, ζ(s) can be expressed as a product

∏
p(1−p−s)−1

over the entire set of primes, which entails that ζ(s) ̸= 0 for ℜ(s) > 1. It can be shown that
ζ(s) extends to C as a meromorphic function with only a simple pole at s = 1, with residue
1. Define ρ to be a complex (non-real) zero of ζ. Let Λ(n) denote the von Mangoldt function,
which is equal to log p if n = pr for some prime p and r ∈ N, and 0 otherwise. The importance
of the ρ′s in the distribution of primes can be clearly seen from the Riemann explicit formula
ψ(x) :=

∑
n≤x Λ(n) = x −

∑
|ρ|≤x

xρ

ρ + O(log2 x). In the literature, ψ is sometimes referred to

as the Chebyshev ψ function after P.L. Chebyshev, who pioneered its study. It can be shown
that ψ(x) − x ≪ xb(log x)2 if ζ(s) ̸= 0 for ℜ(s) > b. In particular, the Riemann Hypothesis
(RH) is equivalent to the statement that b = 1

2 . For a far more thorough discussion of the RH,
the interested reader is kindly referred to [3].

Main results

Lemma 1 (Plancherel’s identity, [2, Theorem 5.4]). Suppose that

ν(s) =

∞∑
n=1

vnn
−s

is a Dirichlet series whose abscissa of convergence is c > 0. Let V (x) =
∑

n≤x vn. Then for

σ = ℜ(s) > c, one has

2π

∫ ∞

0

|V (x)|2x−2σ−1dx =

∫
R

∣∣∣ν(σ + it)

σ + it

∣∣∣2dt.
Definitions. Let: Λ be the von Mangoldt function, µ be the Mobius function and p be a
prime. Define θ(x) :=

∑
p≤x log p, ψ(x) :=

∑
n≤x Λ(n) =

∑∞
r=1 θ(x

1/r). Let γ = 0.57721 · · · be
the Euler-Mascheroni constant and s = σ+ it where σ, t ∈ R. Note that sometimes we shall take
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σ ∈ C, e.g. when considering complex-analytic continuations of some real-analytic functions of
σ. In all such cases, we shall make it clear that σ ∈ C. From now on, assume that σ ∈ R>1

unless specified otherwise. Let k1(s) =
1

s−1 − γ

K1(σ) =

∫
R

∣∣∣k1(σ + it)

σ + it

∣∣∣2dt = π((2σ2 − 3σ + 1)γ2 + (2− 2σ)γ + 1)

σ(2σ − 1)(σ − 1)
, (1)

q =
∑∞

n=2 µ(n)
ζ′

ζ (n), k2(s) = k1(s)− q and

K2(σ) =

∫
R

∣∣∣k2(σ + it)

σ + it

∣∣∣2dt = π((2σ2 − 3σ + 1)(γ + q)2 + (2− 2σ)(γ + q) + 1)

σ(2σ − 1)(σ − 1)
. (2)

From (1) and (2), note that the function K2(σ)−K1(σ) has a holomorphic (complex-analytic)
continuation to ℜ(σ) > 1

2 , though both K1 and K2 are C 7→ R functions. Define

α(s) := −ζ
′

ζ
(s) =

∞∑
n=1

Λ(n)n−s = s

∫ ∞

1

ψ(x)x−s−1dx (3)

and

β(s) := −
∞∑

n=1

µ(n)
ζ ′

ζ
(ns) =

∑
p

log p

ps
= s

∫ ∞

1

θ(x)x−s−1dx (4)

[2, p.28], hence q = −
∫∞
1

(ψ(x)− θ(x))x−2dx. Let

f(σ) : = 2π

∫ ∞

1

ψ2(x)x−2σ−1dx−K1(σ), (5)

g(σ) : = 2π

∫ ∞

1

θ2(x)x−2σ−1dx−K2(σ) (6)

and

h(σ) := f(σ)− g(σ) = 2π

∫ ∞

1

(ψ2(x)− θ2(x))x−2σ−1dx+K2(σ)−K1(σ). (7)

Theorem 1. The function h(σ) has a holomormphic continuation to ℜ(σ) > 3
4 and also a

simple pole at σ = 3
4 .

Proof. By the Prime Number Theorem, we know [2, p.179] that there exists some constant d > 0

such that ψ(y) = y(1 + O(e−d
√
log y)) uniformly for y ≥ 1. Note that θ(y) = ψ(y) + O(

√
y) [2,

p.49]. Hence ψ(x)− θ(x) = θ(
√
x)+O(x1/3) =

√
x(1+O(e−d

√
log x)) uniformly for x ≥ 1. Thus

ψ2(x)− θ2(x) = (ψ(x)− θ(x))(ψ(x) + θ(x)) = 2x3/2(1 + E(x)) (8)

uniformly for x ≥ 1, where E(x) ≪ e−d
√
log x. Inserting (8) into the integral on the extreme

right-hand side of (7) yields

h(σ) = 2π
(
σ − 3

4

)−1

+ (K2(σ)−K1(σ)) +A(σ), (9)

where A(σ) := 4π
∫∞
1
x

3
2−2σ−1E(x)dx ≪ 1 uniformly for σ ≥ 3

4 . Since the function K2(σ) −
K1(σ) has a holomorphic continuation to ℜ(σ) > 1

2 , the claim follows from (9). □
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Theorem 2. Let Θ ∈ [ 12 , 1] be the supremum of the real parts of the zeros of ζ. If Θ < 1,
then h(σ) has a holomorphic continuation to ℜ(σ) > Θ.

Proof. Let ρ denote a complex (non-real) zero of ζ. By Lemma 12.1 of [2], we know that for
σ > Θ and s ̸= 1, one has

−α(s) =
∑

|ℑ(s)−ℑ(ρ)|≤1

1

s− ρ
+O(log |2s|) (10)

as ℑ(s) → ±∞. Let T ∈ R>0. Define N(T ) to be the number of those ρ with |ℑ(ρ)| ≤ T . By
Theorem 9.2 of [1], we know that N(T + 1)−N(T ) ≪ log(T + 1). Hence for fixed σ > Θ, one
has ∑

|ℑ(s)−ℑ(ρ)|≤1

1

s− ρ
≪

∑
|ℑ(s)−ℑ(ρ)|≤1

1 ≪ log |2s| (11)

as ℑ(s) → ±∞. For fixed σ > 1
2 and n ≥ 2, note that∣∣∣µ(n)ζ ′

ζ
(ns)

∣∣∣ ≤ ∣∣∣ζ ′
ζ
(ns)

∣∣∣ ≤ ∞∑
m=1

Λ(m)m−nσ ≪ 2−nσ (12)

as n → ∞. Combining (12) with (11) and (10) reveals that both α(s) and β(s) are ≪ log |2s|
for fixed σ ∈ R>Θ and s ̸= 1. Notice that this bound also holds for fixed σ ∈ C,ℜ(σ) > Θ and
s ̸= 1. Note that ψ(y) = 0 = θ(y) for every y ∈ [0, 1]. Thus by Lemma 1, we have

f(σ) = 2π

∫ ∞

1

ψ2(x)x−2σ−1dx−K1(σ) =

∫
R

|α(σ + it)|2 − |k1(σ + it)|2

|σ + it|2
dt (13)

and

g(σ) = 2π

∫ ∞

1

θ2(x)x−2σ−1dx−K2(σ) =

∫
R

|β(σ + it)|2 − |k2(σ + it)|2

|σ + it|2
dt (14)

for σ > 1. Let

α0(s) :=
|α(s)|2 − |k1(s)|2

|s|2
and

β0(s) :=
|β(s)|2 − |k2(s)|2

|s|2
.

Note that

α(s)− s

s− 1
= s

∫ ∞

1

(ψ(x)− x)x−s−1dx. (15)

Since ψ(x)− x≪ xΘ(log 2x)2 [2, p.430] and α(s) = (s− 1)−1 − γ +O(|s− 1|) around s = 1 [1,
p.20], notice that both sides of (15) are holomorphic for σ > Θ. Hence by the identity theorem
for holomorphic functions, the domain of (15) extends to σ > Θ thus∫ ∞

1

(ψ(x)− x)x−2dx = −1− γ. (16)

Recall that q = −
∫∞
1

(ψ(x)− θ(x))x−2dx. Combining this with (16) gives∫ ∞

1

(θ(x)− x)x−2dx = −1− γ − q. (17)
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Since k1(s) =
1

s−1 − γ and α(s) = s
∫∞
1
ψ(x)x−s−1dx, note that

α0(σ+it) =

(
ℜ((σ + it)

∫∞
1
ψ(x)x−σ−1−itdx)

)2

+
(
ℑ((σ + it)

∫∞
1
ψ(x)x−σ−1−itdx)

)2

− (1−γσ+γ)2+(γt)2

(σ−1)2+t2

σ2 + t2
(18)

where∫ ∞

1

ψ(x)x−σ−1−itdx =

∫ ∞

1

ψ(x)x−σ−1 cos(t log x)dx− i

∫ ∞

1

ψ(x)x−σ−1 sin(t log x)dx.

We know [2, p.430] that ψ(x) = x + O(xΘ(log 2x)2) uniformly for x ≥ 1. Hence by writing
ψ(x) = x+(ψ(x)−x) in the integrals in (18), it follows from (16) and (18) that α0(s) is regular at
s = 1 and has a holomorphic continuation to ℜ(σ) > Θ. Since β(s) = s

∫∞
1
θ(x)x−s−1dx, k2(s) =

k1(s)− q and θ(x) = x+O(xΘ(log 2x)2) uniformly for x ≥ 1 [2, p.430], one deduces by a similar
argument that β0(s) is also regular at s = 1 and has a holomorphic continuation to ℜ(σ) > Θ.
Let α1(s) be the holomorphic continuation of α0(s) to ℜ(σ) > Θ, and let β1(s) be that of β0(s).

For fixed σ ∈ C, recall that both α0(s) and β0(s) are ≪
(

log |2s|
|s|

)2

for ℜ(σ) ≥ Θ + ε for any

ε > 0. Since a uniformly absolutely convergent improper integral of a holomorphic function
is also holomorphic 1, it follows that f(σ) has a holomorphic continuation

∫
R α1(σ + it)dt to

ℜ(σ) > Θ, and g(σ) has a holomorphic continuation
∫
R β1(σ + it)dt to ℜ(σ) > Θ. Hence

h(σ) = f(σ) − g(σ) also has a holomorphic continuation
∫
R α1(σ + it)dt −

∫
R β1(σ + it)dt to

ℜ(σ) > Θ. This completes the proof □

Corollary 1. Let Θ be as defined in Theorem 2. Then Θ ≥ 3
4 .

Proof. Suppose that Θ < 3
4 and let 0 < δ < 3

4 − Θ. Then by Theorem 2, h(σ) must have a

holomorphic continuation to ℜ(σ) > 3
4−δ, contradicting Theorem 1. Thus our supposition must

be false, so we are done. □

This disproves the Riemann hypothesis, which asserts that Θ = 1
2 .
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