THE RIEMANN HYPOTHESIS IS FALSE
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ABSTRACT. Let © be the supremum of the real parts of the zeros of the Riemann zeta
function. We demonstrate that © > %. This disproves the Riemann Hypothesis, which asserts
that © = 5
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Introduction. The Riemann zeta function is a function of the complex variable s, defined
in the half-plane R(s) > 1 by ((s) := >_o—;n~* and in the whole complex plane by analytic
continuation. Euler noticed that for R(s) > 1, ((s) can be expressed as a product [[ (1 —p~)7L
over the entire set of primes, which entails that {(s) # 0 for R(s) > 1. It can be shown that
¢(s) extends to C as a meromorphic function with only a simple pole at s = 1, with residue
1. Define p to be a complex (non-real) zero of ¢. Let A(n) denote the von Mangoldt function,
which is equal to logp if n = p” for some prime p and r € N, and 0 otherwise. The importance
of the p's in the distribution of primes can be clearly seen from the Riemann explicit formula
V(@) =3, M) =2 -3 <, % + O(log® z). In the literature, v is sometimes referred to
as the Chebyshev 1 function after P.L.. Chebyshev, who pioneered its study. It can be shown
that ¢ (z) — z < zP(logz)? if ((s) # 0 for R(s) > b. In particular, the Riemann Hypothesis
(RH) is equivalent to the statement that b = % For a far more thorough discussion of the RH,
the interested reader is kindly referred to [3].

MAIN RESULTS

Lemma 1 (Plancherel’s identity, [2, Theorem 5.4]). Suppose that

oo
= E vn” ¢
n=1

is a Dirichlet series whose abscissa of convergence is ¢ > 0. Let V(z) = >
o =R(s) > ¢, one has
it)
R R
0 g + Zt

Definitions. Let: A be the von Mangoldt function, g be the Mobius function and p be a

prime. Define 0(z) := > _ logp,¢(x) := 30, ., A(n) = 3272, 0(z'/"). Let v = 0.57721 - be
the Euler-Mascheroni constant and s = o+t where o,t € R. Note that sometimes we shall take

V. Then for

n<zx
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o € C, e.g. when considering complex-analytic continuations of some real-analytic functions of
o. In all such cases, we shall make it clear that o € C. From now on, assume that o € Ry
unless specified otherwise. Let &y (s) =

/ ‘kl a—|—zt 7r((202 — 30+ 1)y +(2—20)y+1)

o+it N o(20 —1)(oc—1) ’ (1)

g =02, pn) % (n), ka(s) = ka(s) — g and

ko(o 4 it) |2 7((20%2 =30+ 1) (v + ¢)> + (2 —=20)(y +q) + 1)
/‘ 2cr—|—zt ‘dt: 020 —1)(c —1) . @

From (1) and (2), note that the function Ks(0) — K7 (o) has a holomorphic (complex-analytic)
continuation to ®(c) > %, though both K; and Kj are C — R functions. Define

'——gszoo nyn *=s h x)z " tdx
a(s) = () = A~ =5 [ v(@aa Q)
and
3 gns = logp_s h )z 5 e
- L) =30 = | o @
2, p.28], hence ¢ = — [[*(¢(z) — O(z))z~?dz. Let
o):=2m /100 P2 (x)z™2 e — Ky (o), (5)
glo) :=2m /100 0 (z)x~2 "o — Ky(o) (6)
and -
ho) = f(o) —g(o) = 2”/1 (¥?(2) — 0*(2))2™*" 1z + Ka(0) — Ki(0). (7)
Theorem 1. The function h(c) has a holomormphic continuation to R(c) > 2 and also a

stmple pole at o = %.

Proof. By the Prime Number Theorem, we know [2, p.179] that there exists some constant d > 0

such that ¥(y) = y(1 + O(e~¥V!°e¥)) uniformly for y > 1. Note that 8(y) = ¥(y) + O(\/y) [2,

p.49]. Hence () — 0(z) = 0(/x) + O(x'/3) = \/z(1 4+ O(e~4V1°e)) uniformly for x > 1. Thus

VP (x) = 0%(x) = (¥(2) = 0(2)) (Y (@) + 0(x)) = 20°*(1 + E()) (8)

uniformly for > 1, where E(z) < e~4V1°82  Inserting (8) into the integral on the extreme
right-hand side of (7) yields

3\ -1
ho)=2m(0—7)  +(Kalo) = (o)) + Alo), (9)

where A(0) := 4 [ 227291 B(z)dz < 1 uniformly for o > 3. Since the function Ks(o) —
K1(0) has a holomorphic continuation to ®(c) > 1, the claim follows from (9). O
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Theorem 2. Let © € [%, 1] be the supremum of the real parts of the zeros of (. If © < 1,
then h(c) has a holomorphic continuation to R(o) > 6.

Proof. Let p denote a complex (non-real) zero of (. By Lemma 12.1 of [2], we know that for
o> 0 and s # 1, one has

1
— = —— + O(log |2 10
a(s) > P (log [2s]) (10)
1S(s)=S(p)|<1
as §(s) = +oo. Let T € Ryg. Define N(T') to be the number of those p with |S(p)] < T. By
Theorem 9.2 of [1], we know that N(T' + 1) — N(T) < log(T + 1). Hence for fixed ¢ > O, one

has .
Z — < Z 1 < log|2s| (11)

se)-sI<t® P s st
as S(s) — +oo. For fixed o > § and n > 2, note that

s =[S

as n — oo. Combining (12) with (11) and (10) reveals that both «(s) and S(s) are < log|2s|
for fixed 0 € Ry and s # 1. Notice that this bound also holds for fixed o € C,R(c) > © and
s # 1. Note that ¢(y) = 0 = 0(y) for every y € [0, 1]. Thus by Lemma 1, we have

()

ns)‘ < i Alm)m™"7 <« 27" (12)
m=1

> 90— o +it)]* = |ki(o +it)]?
—9 2 201, — /|0‘ " 1
o) 7T/1 Ve (z)x x o Tt d (13)
and ) o
o) =25 [ P - Kafo) = [PIEIEBEE Iy
g 1
for o > 1. Let ) )
la(s)[* = [ki(s)|
aO(s) = ‘8‘2
e B(s)P — [Fa(s)
B[P — [ka(s
Bo(s) = |S|2 .
Note that -
s .
o) = 25 = [ (@) - e a. (15)

Since ¥ (x) — z < 2°(log22)? [2, p.430] and a(s) = (s —1)~! — v+ O(|s — 1|) around s = 1 [1,
p-20], notice that both sides of (15) are holomorphic for o > ©. Hence by the identity theorem
for holomorphic functions, the domain of (15) extends to o > © thus

/ (Y(z) — )z 3de = —1 — 7. (16)
1
Recall that ¢ = — [~ (¢(z) — 6(z))z~2dz. Combining this with (16) gives

/100(9(96) )z 2de=—-1—-y—q. (17)
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Since k1(s) = =25 — v and a(s) = s [~ ¥ (z)z~*"'dz, note that

. 2 0 . 2 o2 2
(Rl i) [ w@er ) ) (S((o i) [T u(@)ae i) ) - U
ag(o+it) =

o2 42
(18)
where

/00 Yz e = /00 Y(z)x™ 7 cos(tlog z)dx — i /OO Y(z)z™ 7 sin(tlog z)dw.
1 1 1

We know [2, p.430] that 1 (z) = z + O(2®(log 27)?) uniformly for # > 1. Hence by writing
Y(x) = z+ (¥ (x)—x) in the integrals in (18), it follows from (16) and (18) that ap(s) is regular at
s = 1 and has a holomorphic continuation to R(c) > ©. Since B(s) = s [, 0(z)z >~ dz, ko(s) =
ki(s) —q and 8(x) = = + O(z® (log 22)?) uniformly for z > 1 [2, p.430], one deduces by a similar
argument that Sy(s) is also regular at s = 1 and has a holomorphic continuation to (o) > O.
Let a1 (s) be the holomorphic continuation of ag(s) to R(o) > O, and let 51(s) be that of Sy(s).

2
For fixed o € C, recall that both ag(s) and So(s) are < (logl%l) for R(o) > © + ¢ for any

€ > 0. Since a uniformly absolutely convergent improper in‘lcelgral of a holomorphic function
is also holomorphic ', it follows that f(c) has a holomorphic continuation [, oy (o + it)dt to
R(o) > O, and g(o) has a holomorphic continuation [; 81(o + it)dt to R(o) > ©. Hence
h(c) = f(o) — g(o) also has a holomorphic continuation [, ai(o + it)dt — [, f1(o + it)dt to
R(c) > O. This completes the proof O

Corollary 1. Let © be as defined in Theorem 2. Then © > %.

Proof. Suppose that © < 3 and let 0 < § < 2 — ©. Then by Theorem 2, h(c) must have a

holomorphic continuation to R(o) > %— 9, contradicting Theorem 1. Thus our supposition must
be false, so we are done. O

This disproves the Riemann hypothesis, which asserts that © = %
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