Supporting Information for

Electronic Spectroscopy of Resonantly Stabilized Aromatic Radicals: 1-Indanyl and Methyl Substituted Analogues

Surajit Maity,* Mathias Steglich, John P. Maier*

Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH 4056, Basel, Switzerland

Scaling Factor: The scaling factors are determined as the ratio of experimental and calculated vibrational frequencies. The values for the D_0 and D_1 state of 1-indanyl radical are obtained at the B3LYP/6-311++g(2d,p) level of theory using the current set of data (Table S1). The average factor of 0.981±0.005 for the ground state is close to the Computational Chemistry Comparison and Benchmark Database (CCCBDB) value of 0.97.¹ For the D_1 state it is estimated as 0.966±0.008.

Table S1. Experimental and calculated vibrational frequencies (cm^{-1}) in $D_1(A'')$ and $D_0(A'')$ states of 1-indanyl radical (C₉H₉-A). Ratios of experimental and calculated values are given.

Vibration	Excited State			Ground State			
	$D_1(A'')$	Experiment	Ratio	$D_0(A'')$	Experiment ²	Ratio	
v_{31}	369	355	0.962	384	377	0.980	
v_{30}	506	490	0.968	536	529	0.987	
V ₂₉	562	537	0.956	593	583	0.983	
v_{28}	702	684	0.974	713	700	0.981	
v_{27}	792	755	0.954	807	794	0.984	
V ₂₅	905	871	0.962	920	865	0.940	
v_{24}	985	964	0.978	1032	1016	0.985	
v_{19}	1201	1166	0.971	1248	1211	0.971	
v_{18}	1241	1201	0.968	1206	1183	0.981	
Average		0.966		Average	0.981		

	C ₁₀ H ₁₁ -A		C ₁₀ H ₁₁ -B		
	$D_0(A'')$	$D_1(A'')$		$D_0(A'')$	$D_1(A'')$
A	0.081	0.080	A	0.070	0.070
В	0.041	0.042	В	0.046	0.046
С	0.028	0.028	С	0.028	0.028
	C ₁₀ H ₁₁ -C		C ₁₀ H ₁₁ -D		
	$D_0(A'')$	$D_1(A'')$		$D_0(A'')$	$D_1(A'')$
A	0.069	0.068	A	0.108	0.106
В	0.047	0.047	В	0.033	0.033
С	0.028	0.028	С	0.026	0.026
	C ₁₀ H ₁₁ -E		C ₁₀ H ₁₁ -F		
	$D_0(A)$	$D_1(A)$		$D_0(A)$	$D_1(A)$
A	0.112	0.109	A	0.096	0.096
В	0.032	0.033	В	0.038	0.038
С	0.026	0.026	С	0.028	0.028
	$C_{10}H_{11}$ -G		C ₁₀ H ₁₁ -H		
	$D_0(A'')$	$D_1(A'')$		$D_0(A'')$	$D_1(A'')$
A	0.153	0.149	A	0.161	0.156
В	0.019	0.019	В	0.021	0.021
С	0.017	0.017	С	0.019	0.019
	$C_{10}H_{11}$ -I		C ₁₀ H ₁₁ -J		
	$D_0(A'')$	$D_1(A'')$		$D_0(A'')$	$D_1(A'')$
A	0.161	0.158	A	0.152	0.150
В	0.021	0.021	В	0.023	0.023
С	0.019	0.019	С	0.020	0.020

Table S2. Rotational constants (cm⁻¹) of D_0 and D_1 states of $C_{10}H_{11}$ isomers calculated at B3LYP/6-311++g(2d,p) and TD-B3LYP/6-311++g(2d,p) level of theory, respectively.

Figure S1. R2C2PI spectrum at m/z = 131 amu (C₁₀H₁₁) (black) and the Franck-Condon simulations (T_{vib} = 0K) of isomers C₁₀H₁₁-A (red), C₁₀H₁₁-G (green), C₁₀H₁₁-H (blue), C₁₀H₁₁-I (orange) and C₁₀H₁₁-J (violet).

Figure S2. The b-type rotational contour obtained for the $D_1 \leftarrow D_0$ origin band of $C_{10}H_{11}$ -A, B, C, D and E isomers at T=15 K.

Figure S3. The a-type rotational contour obtained for the $D_1 \leftarrow D_0$ origin band of $C_{10}H_{11}$ -A, B, C, D and E isomers at T=15 K.

Figure S4. The b-type rotational contour obtained for the $D_1 \leftarrow D_0$ origin band of $C_{10}H_{11}$ -G, H, I and J isomers at T=15 K.

Figure S5. The a-type rotational contour obtained for the $D_1 \leftarrow D_0$ origin band of $C_{10}H_{11}$ -G, H, I and J isomers at T=15 K.

Complete list of authors of Gaussian 09

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr, J. A.; Peralta, J. E.; Ogliaro, F. o.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;

Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ã. d. n.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.

References:

 Johnson, R. D. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 16a, 2013.
Troy, T. P.; Nakajima, M.; Chalyavi, N.; Clady, R. G. C. R.; Nauta, K.; Kable, S. H.; Schmidt, T. W. Identification of the Jet-Cooled 1-Indanyl Radical by Electronic Spectroscopy, *J. Phys. Chem. A* 2009, *113*, 10279-10283.