Supporting Information

Excited State Proton Transfer Dynamics of Topotecan inside Bio-mimicking Nano-cavity

Raj Kumar Koninti, Krishna Gavvala, Abhigyan Sengupta, and Partha Hazra*

Department of Chemistry, Indian Institute of Science Education and Research (IISER),
Pune (411008), Maharashtra, India

Tel.: +91-20-2590-8077; Fax: +91-20-2589 9790.

^{*}Corresponding author E-mail: p.hazra@iiserpune.ac.in.

Table S1. Fluorescence decay parameters of TPT in H_2O reverse micelles ($\lambda_{ex} = 375$ nm and $\lambda_{col} = 520$ nm).

w_0	τ_1 (ns)	τ ₂ (ns)	τ ₃ (ns)	R_1	R_2	R_3	$\tau_{avg}^{\ \ \#}(ns)$	χ^2
$w_0 = 6$	0.65	3.30	5.05	-0.10	0.28	0.62	4.10	0.98
$w_0 = 10$	0.62	3.07	5.16	-0.17	0.29	0.54	3.78	1.01
$w_0 = 25$	0.49	3.04	5.37	-0.19	0.22	0.59	3.94	1.00
$w_0 = 50$	0.32	2.42	5.47	-0.16	0.19	0.65	4.08	1.02

 $^{^{\#}\}tau_{avg}=R_{1}\tau_{1}+\ R_{2}\tau_{2}+\ R_{3}\tau_{3}$

Figure S1. Time-resolved emission spectra (TRES) of TPT in reverse micelle ($\lambda_{ex} = 375$ nm) at (a) $w_0 = 4$, (b) $w_0 = 10$, and (c) $w_0 = 50$.

Table S2. Fluorescence decay parameters of TPT in D_2O reverse micelles ($\lambda_{ex} = 375$ nm).

w_0	$\lambda_{collection}$	τ_1 (ns)	τ ₂ (ns)	R_1	R ₂	$\tau_{avg}^{\ \ \mu}$ (ns)	χ^2
$w_0 = 15$	570 nm	0.86	5.40	-0.37	0.63	3.74	1.15
$w_0 = 25$	570 nm	0.72	5.54	-0.35	0.65	3.84	1.07
$w_0 = 50$	570 nm	0.55	5.60	-0.35	0.65	3.86	1.18

 $^{^{\#}\!\}tau_{avg} = R_1\tau_1 \!\!+ R_2\tau_2$

Note S1:

Rate of proton transfer ($k_{PT} = 1/\tau_1$) is measured from the rise lifetime component (τ_1 in Table 1 and Table S1).

Kinetic isotopic effect (KIE) is obtained by ratio of rate of proton transfer rate in D_2O and water, i.e., KIE = $k_{PT}(H_2O)/k_{PT}(D_2O)$

For example, at $w_0 = 15$,

Rate of proton transfer in H₂O-RM ($w_0 = 15$) is $k_{PT}(H_2O) = 1/(0.49 \text{ ns}) = 2.04 \times 10^9 \text{ s}^{-1}$

Rate of proton transfer in D₂O-RM is $k_{PT}(D_2O) = 1/(0.86 \text{ ns}) = 1.16 \times 10^9 \text{ s}^{-1}$

Therefore, KIE = $k_{PT}(H_2O)/k_{PT}(D_2O) = (2.04 \times 10^9 \text{ s}^{-1})/(1.16 \times 10^9 \text{ s}^{-1}) = 1.75$

Note S2:

Wobbling-in-a-Cone Model: The fluorescence anisotropy decay of TPT in the reverse micellar media is biexponential in nature. The biexponential behavior of anisotropy decay can be explained with the help of wobbling-in-a-cone model. Using wobbling-in-a-cone model, the decay of anisotropy can be described by the following equation: 1-3

$$r(t) = r_0 \left[S^2 \exp\left(\frac{-t}{\tau_{\text{slow}}}\right) + (1 - S^2) \exp\left(\frac{-t}{\tau_{\text{fast}}}\right) \right]$$
 (1)

where S^2 is the order parameter, which can be used for understanding the location of the probe inside the reverse micelle. τ_{slow} and τ_{fast} are slow and fast rotational relaxation of the probe molecule inside the reverse micelle respectively, and r_0 is the limiting anisotropy. The order parameter describes the equilibrium orientational distribution of the probe inside the reverse micelle and follows the relation:

$$0 \le S^2 \le 1$$

where S = 0 indicates the motion is completely free and S = 1 corresponds to the completely restricted environment.

We have also calculated the wobbling semicone angle θ° for the drug to execute the wobbling in cone motion, and the semicone angle θ° can be defined by the following equation

$$\theta^{\circ} = Cos^{-1} \left[\frac{1}{2} \left(\left(\sqrt{(1+8S)} \right) - 1 \right) \right] \tag{2}$$

The estimated cone angles (θ°) calculated using eqn. 2 are 28.05°, 26.98°, and 27.52° for $w_0 = 4$, 25, and 50 respectively.

References:

- (1) Moilanen, D. E.; Fenn, E. E.; Wong, D.; Fayer, M. D. Water Dynamics at the Interface in AOT Reverse Micelles. *J. Phys. Chem. B* **2009**, *113*, 8560-8568.
- (2) Patra, A.; Luong, T. Q.; Mitra, R. K.; Havenith, M. The Influence of Charge on the Structure and Dynamics of Water Encapsulated in Reverse Micelles. *Phys. Chem. Chem. Phys.* **2014**, *16*, 12875-12883.
- (3) Douhal, A.; Angulo, G.; Gil, M.; Organero, J. Á.; Sanz, M.; Tormo, L. Observation of Three Behaviors in Confined Liquid Water within a Nanopool Hosting Proton-Transfer Reactions. *J. Phys. Chem. B* **2007**, *111*, 5487-5493.