X-ray Absorption Spectroscopy Study of TiO_{2-x} Thin Films for Memory Applications D. Carta^{a,*}, G. Mountjoy^b, A. Regoutz^a, A. Khiat^a, A. Serb^a, T. Prodromakis^a ## **Supporting Information** The AFM images of the TF_UA (a) and TF_A (b) are presented in Figure S.I.1. The surface morphology of TF_UA shows a smooth, uniform surface with a calculated root-mean square roughness (RMS) of 0.33 nm. The surface morphology of TF_A is quite similar to that of TF_UA with a calculated root-mean square roughness of 0.22 nm. Therefore, the film is free of agglomeration even after annealing at 600°C. Figure S.I.1. AFM images of (A) TF_UA and (B) TF_A ^a Nanoelectronics and Nanotechnology Research Group, Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, UK ^b School of Physical Sciences, University of Kent, Ingram Building, Canterbury, UK ^{*} Corresponding author. E-mail: d.carta@soton.ac.uk **Figure S.I.2.** XANES spectra at the Ti K-edge of TF_UA (a), bulk brookite (b), bulk anatase (c) and bulk rutile (d) **Figure S.I.3.** XANES spectra at the Ti K-edge of TF_UA (black line); bulk brookite ³⁴(pink line); Dev_PRI (green line); amorphous TiO_{2-x} ³¹(orange line)