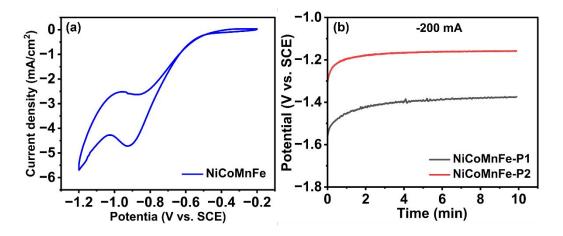
Supporting Information


Highly Durable Compositionally Variant Bifunctional Tetrametallic Ni-Co-Mn-Fe Phosphide Electrocatalysts Synthesized by a Facile Electrodeposition Method for High-Performance Overall Water Splitting

Menna M. Hasan ^a, Aya K Gomaa ^a, Ghada E. Khedr ^{a,b}, Kholoud E. Salem ^a, Basamat S Shaheen ^a, and Nageh K. Allam^{a,*}

^a Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt

^b Department of Evaluation and Analysis, Egyptian Petroleum Research Institute (EPRI), Cairo, 11727, Egypt

* Corresponding Author's email: <u>nageh.allam@aucegypt.edu</u>

Figure S1. (a) and (b) Potential response and current response during electrodeposition for NiCoMnFe and NiCoMnFe-P based nanosheets.

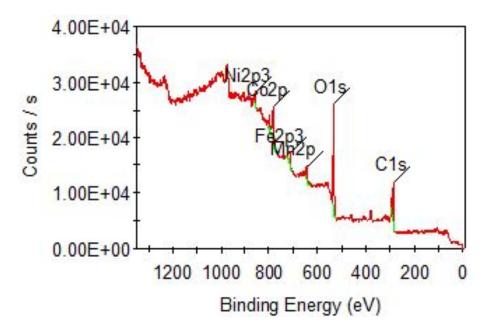


Figure S2. XPS survey scan of NiCoMnFe-P composites.

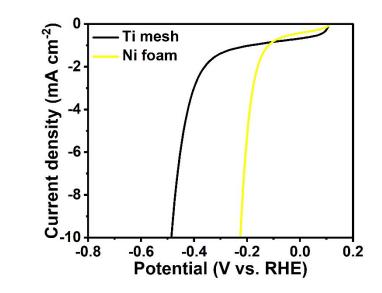


Figure S3. HER polarization curve for Ti mesh and Ni foam substrates.

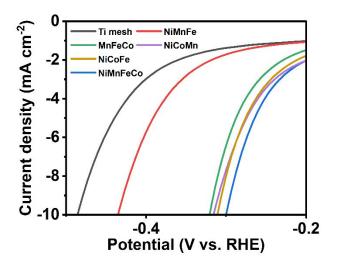


Figure S4. HER polarization curve for the fabricated composites at -10 mA.

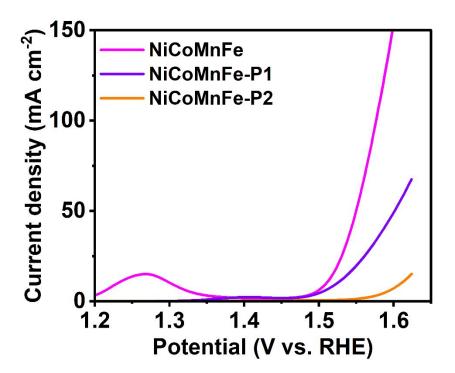


Figure S5. OER polarization curve of NiCoMnFe, NiCoMnFe-P1, and NiCoMnFe-P2.

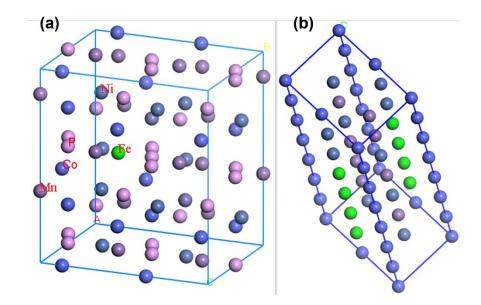


Figure S6. Geometry optimized figures of (a) MnFeNiCo-P (b) MnFeCoNi.

Theoretical Notes

The oxygen evolution reaction consists of four one-electron steps. The activity of each step is expressed by Gibbs free energy as explained in the following equations: -

$$\begin{split} H_2O(l) + &* \rightarrow HO^* + H^+ + e^- \\ &\Delta G_1 = E_{HO} - E_{slab} + \frac{1}{2}H_2 - H_2O + \Delta E_{ZPE} - T \Delta S \\ &HO^* \rightarrow O^* + H^+ + e^- \\ &\Delta G_2 = E_0 - E_{HO} + \frac{1}{2}E_{H2} + \Delta E_{ZPE} - T \Delta S \\ &O^* + H_2O(l) \rightarrow HOO^* + H^+ + e^- \\ &\Delta G_3 = E_{HOO} - E_0 + \frac{1}{2}E_{H2} - E_{H2O} + \Delta E_{ZPE} - T \Delta S \\ &HOO^* \rightarrow O_2(g) + H^+ + e^- \\ &\Delta G_4 = E_{slab} - E_{HOO} - \frac{3}{2}H_2 + 2H_2O + 4.92 + \Delta E_{ZPE} - T \Delta S \end{split}$$

where E_{H2} , E_{HO} , E_{slab} , E_{HO} , E_{H} and E_{HOO} are energies of free H₂, free H₂O, clean surface, adsorbed HO, adsorbed H, adsorbed HOO on surface respectively.

Catalyst	ΔG ₁	ΔG ₂	ΔG_3	ΔG_4
MnFeCoNi	1.37	0.61	2.3	0.73
MnFeCoNiP	1.62	-0.57	3.27	2.43

 Table S1. Calculated Gibbs free energy for MnFeCoNiP and MnFeCoNi during OER.