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Humans and flies both face foraging challenges in daily life. 
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where Qt+1(odor) = odor value at trial t+1
Ct+1 = chosen odor at trial t+1

Rt+1 = reward recieved at trial t+1
       π(x) = policy that maps value to p(action)

Value learning framework
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Decision-making process underlying foraging can be replicated in an Y-maze with two odors. 

Flies show operant matching strategy (Rajagopalan et al. 2022)

Reinforcement Learning to the Rescue

2   High-throughput Y-Maze Assay
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Choice Sequence:

Reward Sequence:

Consequence:
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randomized non-stationary probabilistic foraging task
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Fixed Block Experiments Variable Block Experiments

Classical ‘Q Learning’ Variants 

Habit-Value Arbiter ‘Q Learning’ Variants 

‘Cognitive’ Value Learning Algorithms

‘Behavioral’ Policy

Accept-Reject Policy

3   Designing Foraging Experiments

Design a pool of different RL Models

Calibrate models to imitate flies

Starting from any reward schedule, 
use stochastic optimization on 

reward timings to find maximize the 
net bias in each model’s behavior.

Test best reward schedule for each 
model on flies and quantify bias.

n = 32 (16+16) flies

5   Evaluating Learning Rules by Biasing flies with Choice Engineering

4   Value Learning Rule Library

6   De-novo Learning Rule Discovery

Q-Learning, a variant of Reinforcement Learning can easily be mapped to the learning 
and memory circuit of the fruit fly brain to create a library of learning rules.

Variable-Block experiments designed to span the space of 
2AFC tasks show operant matching behavior.

Q-Learning models of Rajagopalan et al. (2022) Fixed Block experiments and Variable Block experiments both reveals that including learning-independent forgetting, perseverance, 
and temporal discounting in the value update improves the model’s explanatory power.
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Value learning rule library samples only a small fraction of possibilities.
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Small FFqNs and RqNs can ex-
plain and predict the observed 
choice behavior

Analysing the dynamics of the 
FFqNs  reveals perservative at-
tractors in the absence of re-
wards. 

Also, RqNs perform better 
than the best learning rules 
in the library.

This suggests that there is 
more  to  fly  behavior  than  
trial-wise   recursive   value  
updates.

Reward

C
ho

ic
e 1 1 1 1 1 1 1 2 2 2

1 1 1 1 2 2 2 1 1 1

7/10

7/10

5/7

5/7

≈

≈

Persevere on 1st Reward Omission
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Matching oversimplifies the behavior and throws away important information.

Strategy

Humans foraging in the wild

Fundamentally different strategies can show identical operant matching

What cognitive processes contribute to the learning rule that 
governs foraging behavior?
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We use artificial neural networks to create a “universal value approximator”. After training them to imi-
tate fly behavior, we analyze them as dynamical systems to understand the learning rules that govern 
value updates.

Fixed Block Experiments

Variable Block Experiments

Recurrent q Network (RqN)Feed-Forward q Network (FFqN)

Recurrent q Network (RqN)Feed-Forward q Network (FFqN)

Different learning rules 
show maximum bias with 
different reward schedules 
and predict weak bias.

On comparing two models 
(excluding and including 
reward prediction error), we 
find slightly higher bias for 
the latter but the results are 
not statistically significant.

We utilize “choice engineering” to maximally bias preference between two alternatives (Dan & Loewenstein, 2019) in order to test between different learning rules
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