

Decision-making process underlying foraging can be replicated in an Y-maze with two odors.

Flies show operant matching strategy (Rajagopalan et al. 2022) Matching Law 20:80 $\overline{C1 + C2}^{\approx} \overline{R1 + R2}$ **50:50** C_i = # Odor i Chosen Rewarded **O** Unrewarded Trials

Fundamentally different strategies can show identical operant matching

		Reward										
	Strategy				0			0			0	Choice Reward Ratio Ratio
Choice	Persevere on 1st Reward Omission	1	1	1	1	1	1	1	2	2	2	7/10 ≈ 5/7
	Switch on every Reward Omission	1	1	1	1	2	2	2	1	1	1	7/10 ≈ 5/7

Matching oversimplifies the behavior and throws away important information.

What cognitive processes contribute to the learning rule that governs foraging behavior?

Reinforcement Learning to the Rescue

Q-Learning, a variant of Reinforcement Learning can easily be mapped to the learning and memory circuit of the fruit fly brain to create a library of learning rules.

	RF-QL	
Design a pool of different RL Models	Bitractor Rank 1: 76.25% Bias Rank 2: 76.12% Bias Rank 3: 76.03% Bias Distractor Target	R (Distra C (Distra
Calibrata madala ta imitata flica	Trial Trial Trial Bias (% Target Chosen)	Trial-wise Ave
	Distractor-Rank 1: 55.51% Bias Rank 2: 55.44% Bias Rank 3: 55.31% Bias	C (Ta R (Ta
Starting from any reward schedule, use stochastic optimization on reward timings to find maximize the net bias in each model's behavior.	Target 0 2'5 5'0 7'5 1'00 0 2'5 5'0 7'5 1'00 0 2'5 5'0 7'5 1'00 0 100 Trial Trial Trial Bias (% Target Chosen) DF-LT-QL	
	Distractor- Target - 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 100 Biog (W) Target (W) Target (because)	R (Distra C (Distra
	DF-LT-OS-QL	Trial-wise Ave
Test best reward schedule for each model on flies and quantify bias.	Distractor- Target 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 100 Trial Trial	C (Ta R (Ta

learning rules Different show maximum bias with different reward schedules and predict weak bias.

On comparing two models (excluding and including reward prediction error), we find slightly higher bias for the latter but the results are not statistically significant.

asymrrqN(z)	Fly 1	Fly 2	Fly 3	Fly 4	Fly 5
symrrqN(2)	Fly 1	Fly 2	Fly 3	Fly 4	Fly 5
asymkqN(100)	Fly 1	Fly 2 Fly 2 Fly 7	Fly 3	Fly 4	Fly 5
symkqN(100)	Fly 1	Fly 2	Fly 3	Fly 4	Fly 5

References

1. Rajagopalan, Adithya, et al. "Expectation-based learning rules underlie dynamic foraging in Drosophila." bioRxiv (2022). 2. Dan, Ohad, and Yonatan Loewenstein. "From choice architecture to choice engineering." Nature communications (2019).

Acknowledgements

We thank Adithya Rajagopalan and the members of the Turner and Aso Labs at HHMI Janelia for their valuable feedback throughout the duration of the project. We thank the Janelia Experimental Technology Team and FlyCore at Janelia for their support with the rig design/fabrication and fly husbandry. We also thank Dr Kevin Miller and Dr Maria Eckstien from Google Deepmind, Dr. Jan Funke, Dr. James Fitzgerald, Dr. Srini Turaga, Dr. Tzushuan Ma, Maanasa Natarajan and Yash Mehta from Computation & Theory at Janelia, and Dr. Collins Assisi from IISER Pune for their mentorship and support. Finally, We thank HHMI and KVPY Fellowship for funding and IISER Pune for the studentship that allowed me to conduct this project.