
MYSO v1 Core

A Trust-Minimized Protocol for Zero-Liquidation Loans

October 2022

MYSO Finance Association
Aetienne Sardon

as@myso.finance

Abstract

MYSO v1 is a trust-minimized DeFi protocol implemented for the EVM that enables crypto-
collateralized loans without liquidations, so called Zero-Liquidation Loans (ZLLs). The protocol
allows borrowers to take out ZLLs through non-custodial liquidity pools, which on the other side
Liquidity Providers (LPs) can fund. Liquidity pools can be created by anyone using MYSO’s
open source v1 core smart contracts. Each pool is defined by (i) an asset pair, (ii) a maximum
loan amount per pledged collateral unit, (iii) a loan tenor and (iv) an interest rate model.
After a pool has been created and funded, borrowers can take out ZLLs by pledging into the
liquidity pool an amount of collateral token (e.g. wETH) and borrowing an amount of loan
token against it (e.g. USDC). Borrowers then have an option (but no obligation) to reclaim
their previously pledged collateral if they pay a fixed repayment amount, which is determined
autonomously by the pool contract and predominantly depends on current liquidity supply and
demand. If a borrower doesn’t repay before the ZLLs expires, they forfeit their ability to reclaim
their collateral, thereby making it available to LPs for claiming. By design, MYSO v1 doesn’t
involve any liquidations but instead allows LPs to earn yield for bearing the risk that a loan may
become undercollateralized and not be repaid. The associated risk-reward profile resembles that
of an in-the-money covered call position, which is a well-known conservative yield enhancement
strategy.

1

Contents

1 Introduction 3

2 Protocol 3
2.1 Goal . 3
2.2 Overview . 4
2.3 Pool Creation . 4
2.4 Liquidity Provisioning . 6

2.4.1 Adding Liquidity . 6
2.4.2 Removing Liquidity . 6
2.4.3 Claiming . 6
2.4.4 Risks for LPs . 8

2.5 Borrowing . 10
2.5.1 Zero-Liquidation Loans . 10
2.5.2 Loan Amount Calculation . 10
2.5.3 Repayment Amount & Applicable Interest Rate 11
2.5.4 Rolling Loans . 13
2.5.5 Risks for Borrowers . 13

2.6 Approvals & Peripheral Contracts . 14
2.7 Pricing ZLLs . 16

2.7.1 Payoff from a Borrower’s Perspective . 16
2.7.2 Payoff from a LP’s Perspective . 17
2.7.3 Fair APRs . 18

3 Closing Remarks 20

2

1 Introduction

Despite the recent crypto bear market, borrowing and lending protocols remain one of the most crit-
ical components in Decentralized Finance (DeFi) market infrastructure. These protocols allow users
to borrow funds by using their crypto assets as collateral and, on the other side, enable lenders to
earn yield for collectively funding such loans. Most loans in DeFi today are overcollateralized1, essen-
tially resembling Lombard loans in Traditional Finance (TradFi).2 Currently, the primary use cases
for crypto-collateralized loans are carry trades, increasing capital efficiency and leveraged trading [1].
With a combined Total Value Locked (TVL) of $15bn as of October 2022 [3], the protocols Maker,
Aave and Compound are the most well-known players in the space. Though distinct differences ex-
ist between these protocols, one key aspect that they share is that they follow a liquidation-centric
design. This means that borrowers get liquidated if their collateral falls below a certain liquidation
threshold, in which case they also incur a liquidation penalty fee. For example, between April 2019
and April 2021 there were over 2,011 liquidators with an average profit of $31.62k [13], meaning that
in aggregate over $60m in liquidation penalty fees were paid by users during this time. More recently,
in January 2022, users on Maker paid over $15.5m in liquidation penalty fees in just a single day [7].
For borrowers, this represents a significant pain point, requiring them to continuously monitor their
loans to avoid being liquidated. And perhaps even more precarious, liquidation-centric borrowing
systems introduce several systemic risks to the overall crypto market, such as cascading liquidations
[4], concentration risk [8][5], liquidation related Maximal Extractable Value (MEV) [6], overliqui-
dations [13] and oracle manipulations [11]. Zero-Liquidation Loans (ZLLs), as first described in
[15], provide a novel approach to DeFi borrowing and lending that can help mitigate some of the
aforementioned systemic risks. While some protocols have started exploring this field [14][19][20], it
has remained largely underdeveloped until now.

2 Protocol

2.1 Goal

The goal of the MYSO v1 protocol is twofold: (1) simplify crypto loans for borrowers, and (2)
provide yield enhancement opportunities for Liquidity Providers (LPs). ZLLs allow us to link these
two goals together and make them complementary to each other. To be more specific, ZLLs act as
a mutually beneficial risk transfer mechanism, in which the loan liquidation risk is transferred from
the borrower to the lender, and the lender can earn yield for bearing this risk. From the borrower’s
perspective, removing liquidations eliminates one of the biggest friction points of current crypto
loan offerings, where users typically have to constantly monitor their health factors and liquidation
thresholds. From the LP’s perspective, funding such loans provides exposure to an in-the-money
covered call3, which has been a well-known conservative yield enhancement strategy in TradFi

1While undercollateralized loans also exist in DeFi, they currently represent a smaller portion of the overall credit
market and questions are raised around their permissionlessness, however, they may complement overcollateralized
loans in the future [1].

2Lombard loans allow borrowers to cover short-term liquidity needs by using account balances or life insurance
policies as collateral without having to sell these assets [12]. What differentiates DeFi crypto-collateralized loans from
Lombard loans is that the former are facilitated and settled through open decentralized networks (e.g. Ethereum),
enabling permissionless borrowing for anyone at any time. Moreover, since a protocol’s smart contracts are typically
open sourced and publicly verifiable users have full transparency about the underlying asset and liability management
mechanics. This is different to both TradFi and Centralized Finance (CeFi) lending platforms, where these systems
are usually closed and cannot be inspected by the public.

3Or, equivalently, a synthetic short put.

3

[9][18] and with similar strategies becoming increasingly adopted in DeFi through Decentralized
Option Vaults (DOVs).4 Moreover, MYSO v1 can contribute to make crypto markets overall more
resilient and robust against systemic risks such as cascading liquidations or oracle failures and
reduce externalities associated with liquidation-related MEV. As such, MYSO v1 can serve as a
viable complement to today’s predominantly liquidation-centric borrowing and lending platforms.

2.2 Overview

The MYSO v1 protocol is designed to efficiently facilitate ZLLs between borrowers and LPs through
non-custodial liquidity pools. The process by which this happens is as follows:

1. Creating pools: first, a pool needs to be created. This can be done by anyone using the
MYSO v1 BasePool.sol template contract and deploying a derived asset-pair specific pool
implementation contract. At deployment, the creator of the pool must specify the intended
asset pair, loan tenor and maximum loan amount per pledged collateral unit. These values are
immutable and cannot be changed after deployment.

2. Adding liquidity: after a pool has been deployed, LPs can add liquidity and thereby acquire a
share in the given pool.

3. Borrowing: borrowers can choose the pool that best matches their preferred collateral and loan
currency combination, loan tenor etc. and borrow from it. Loans are then funded proportion-
ally by all active LPs of the given pool, who thereby become entitled to a pro-rata share of
the resulting loan proceeds (peer-to-pool model).

4. Repaying or defaulting: once a borrower has taken out a loan they can either (a) repay and
reclaim their collateral or (b) let the loan expire. In either case, the corresponding loan is then
marked as settled and the associated proceeds are made available to LPs.

5. Claiming: after a loan has been settled, LPs can claim a pro-rata share of the corresponding
proceeds. In case the loan was repaid, the proceeds are (a) a pro-rata share of the corresponding
repayment amount, and otherwise (b) a pro-rata share of the unclaimed collateral amount.5

6. Removing liquidity: LPs can remove liquidity that hasn’t (yet) been lent to borrowers.6

2.3 Pool Creation

MYSO v1 provides an abstract BasePool.sol contract, which contains generic and asset pair ag-
nostic functions for adding liquidity, borrowing, repaying, removing liquidity, etc. As an abstract
contract, users cannot deploy BasePool.sol itself but instead must create asset pair specific pool
implementation contracts that inherit from BasePool.sol (see fig. 8).78 The MYSO v1 core repos-
itory provides examples for such pool implementation contracts, which can be used at users’ own
risk.

4What is noteworthy is that with ZLLs the opposite side of the covered call position is taken from borrowers, who
are natural call buyers and provide organic order flow. This stands in contrast to many DOVs, where the other side
of the trade is often times taken by informed and potentially toxic order flow.

5Note that the resulting proceeds aren’t automatically reinvested back into the pool (similar to Uniswap v3).
6Note that removing liquidity is subject to a minimum liquidity provisioning period of 120 seconds.
7In particular, the implementation contract must overwrite the virtual functions getCollCcyTransferFee() and

getLoanCcyTransferFee to handle potential transfer fees of the given asset pair.
8Note that users should carefully assess and test whether their intended asset pair is compatible with BasePool.sol,

4

When a user deploys a new pool the following immutable parameters are set:

• collCcyToken: the collateral currency accepted by the pool (e.g. wETH).9

• loanCcyToken: the loan currency accepted by the pool (e.g. USDC).

• loanTenor: the loan tenor for which users can borrow (e.g. 30 days).

• maxLoanPerColl: the maximum loan currency amount one can borrow per pledged collateral
unit.10

• minLoan: the minimum loan size for which borrowing shall be possible.11

• r1, r2, liquidityBnd1, liquidityBnd2: interest rate model parameters that define how
the pool determines its rates (see section 2.5.3).

• baseAggrBucketSize: the base aggregation bucket size according to which loans are batched
together to enable more efficient claiming (see section 2.4.3).

• creatorFee: a fee of at most 30 bps, which is deducted from the collateral that borrowers
pledge into the pool and which is sent to the creator.12

• minLiquidity: a minimum amount of loan currency that is retained within the pool.13

Note that after a pool has been created, neither the creator nor any other third party can control
the pool or change any parameters. If parameters aren’t properly set or become outdated (e.g.,
maxLoanPerColl in case the collateral price changes significantly) users may need to deploy a new
pool instance with more suitable parameters.14

for example, w.r.t. token decimals, or upgradable behavior.
9Note that pools are not symmetric w.r.t. the asset pair they support, i.e., a pool with wETH as collateral and USDC

as loan currency can only be used to borrow USDC against wETH, but not vice versa.
10For example, if maxLoanPerColl=1000 this means for every pledged wETH unit one can at most borrow 1000 USDC

(see section 2.5.2).
11This is enforced to prevent DoS attacks.
12The deployer of a pool is automatically its creator. Note that the creator fee is immutable and cannot be changed

after deployment.
13This is done to mitigate potential overflows of the amount of total pool shares in case of large liquidity injections

that are directly followed by large borrows.
14Note that duplicate pool instances are possible, in particular, MYSO v1 core doesn’t include any factory contract.

Moreover, note that it might happen that pool parameters are only temporarily off, for example, if the collateral price
falls below maxLoanPerColl (which would create an arbitrage opportunity and cause liquidity to be removed from the
pool) but later the price rises above that level again.

5

2.4 Liquidity Provisioning

2.4.1 Adding Liquidity

LPs can add liquidity to pools to fund future incoming ZLLs and earn a pro-rata share of the
associated proceeds. When a LP adds y in loan currency to a pool, they receive the following
amount of pool shares s(y):

s(y) =

{
y
L ·Nshares ifL > 0
1000·y
Lmin

else
(1)

where L is the amount of total liquidity in the pool before the LP adds, Nshares is the currently
total outstanding number of shares, and Lmin denotes a minimum liquidity amount that is retained
within a pool and which is configured at deployment time (see section 2.3). Note that when a LP
adds liquidity into an empty pool, their liquidity contribution is normalized by Lmin

1000 to reduce the
amount of pool shares that need to be minted.15

2.4.2 Removing Liquidity

LPs can remove liquidity from a pool by redeeming s pool shares to receive the following pro-rata
amount y(s) of loan tokens:

y(s) =
s · (L− Lmin)

Nshares

(2)

where L is the amount of total liquidity in the pool that hasn’t yet been lent to borrowers, Lmin is
a minimum liquidity amount retained within a pool, and Nshares is the total amount of outstanding
pool shares. Note that LPs must wait for a minimum lockup period of 120 seconds before they can
remove liquidity.16

2.4.3 Claiming

Once a loan has been repaid (or defaulted), LPs can claim a pro-rata share of the corresponding
repayment (or left collateral) amount. To keep track of the loans for which a LP can claim, liquidity
pools have a global loanIdx counter that is incremented after each new loan. Whenever a LP adds
or removes liquidity, the pool stores the loanIdx at which this happened. To be more precise, for
every LP the pool maintains a struct LpInfo with the following members:

• fromLoanIdx: the lower bound loan index (incl.) from which the LP is entitled to claim.
Initially, this is set to the current loan index at which the LP first added liquidity and then
gets updated every time the LP claims, i.e., is set to the highest loan index plus one on which
the LP claimed last.17

• earliestRemove: earliest timestamp after which a LP is allowed to remove liquidity again.
This is always 120 seconds after the LP added liquidity and is enforced to prevent flash liquidity
provisioning.

15This helps mitigate possible overflows of Nshares without significantly losing precision on pro-rata loan proceeds,
especially for loan currencies with many decimals.

16This is done to prevent flash liquidity provisioning. Note that as soon as a LP adds (or tops-up) liquidity, their
lockup period is renewed, requiring them to wait again for 120 seconds before they can remove liquidity.

17Note that the fromLoanIdx is strictly monotonically increasing. This means that if a LP claims on a ‘too high’

6

• sharesOverTime[]: an array storing the amount of shares a LP had at different points in
time. New elements are added for consecutive adding or removing of liquidity.

• loanIdxsWhereSharesChanged[]: an array containing the loan indices at which a LP changed
their amount of shares (see sharesOverTime[]). The elements are used as upper loan index
bounds (excl.) for constant share claiming intervals, i.e., LPs can claim until
loanIdxsWhereSharesChanged[i] with sharesOverTime[i]. And if index i is out-of-bounds
of loanIdxsWhereSharesChanged[] then the LP can claim up until latest global loanIdx with
sharesOverTime[i].

• currSharePtr: current share pointer to indicate which sharesOverTime[] element to be used
for the interval fromLoanIdx to
loanIdxsWhereSharesChanged[currSharePtr] or, if out-of-bounds, from fromLoanIdx to
global loanIdx.

LPs can claim loan proceeds by using the following two functions:

• claim(): LPs can claim loan proceeds on an individual per-loan-index basis. For this, LPs
need to specify a set of loan indices they want to claim on, e.g., {2, 3, 5, 7}.18 The claim()

function iterates over the given loan indices, checks whether the LP is entitled to these and, if
so, returns the corresponding pro-rata repayment amounts (or left collateral amounts). Note
that if there are many loan indices to iterate over, calling this function can lead to high gas
costs, and users should consider using claimFromAggregated() instead.

• claimFromAggregated(): LPs can claim on whole loan index ranges, referred to as buckets,
for example, from loanIdx=1 to loanIdx=100. The valid interval buckets on which a LP can
claim are defined by the given pool (see section 2.3). To be more precise, each pool aggregates
loans into buckets of size baseAggrBucketSize, 10*baseAggrBucketSize and
100*baseAggrBucketSize. For example, if baseAggrBucketSize=100 then loans are grouped
into buckets of size [1, 100), [100, 200), ... etc. as well as [1, 1000), [1000, 2000), ... etc. and
[1, 10000), [10000, 20000), ... etc.

Note, however, that claiming loan proceeds is only possible on a set (or range) of loan indices
during which the LP didn’t change their position (i.e., didn’t add or remove liquidity). If the LP
changed their position they must do multiple claiming transactions, with each being over a loan
index set (or range) for which their pool shares were constant.19 For example, assume there’s a
LP who held 100 pool shares from loan index 1 to 28 and 200 pool shares from index 29 to 50. If
the LP wants to use the claim() function for loan indices {1, 2, ..., 50} they must call the function
twice, i.e., once with {1, 2, ..., 28} and once with {29, 30, ..., 50}. Similarly, if a LP wants to use the
claimFromAggregated() function they can only do this if they were invested for the whole bucket
they’re trying to claim from, and if they maintained a constant pool share position throughout the
whole bucket. For example, if a LP held 100 pool shares from loan index 1 to 98 and then afterwards
added liquidity at loan index 99, they’ll lose their ability to claim from the [1, 100) aggregation bucket.
Hence, LPs need to be mindful of how LP position changes can affect the intervals on which they
can claim. Generally, LPs shouldn’t change their LP position too often or at inopportune times to
avoid transaction overhead and keep their claiming-related gas costs low.

loan index, their fromLoanIdx will be updated accordingly such that intermediate ones will be skipped and they’ll not
be able to claim on those afterwards anymore.

18Note that the provided loan indices must be in ascending order.
19Note that the construction of such loan index claiming transactions can be automated on the frontend side. [16]

7

2.4.4 Risks for LPs

When providing liquidity to a MYSO v1 pool, LPs should be aware of the following risks:

• Collateral price risk: LPs are exposed to collateral price risk, i.e., if during the lifetime of a
loan the associated pledged collateral becomes worth less than the owed repayment amount,
a borrower will not repay and LPs will not earn the repayment amount but instead receive
the depreciated collateral asset (see section 2.7.2). Moreover, when a LP adds liquidity to a
pool it may happen that during the liquidity provisioning time the collateral price falls below
the maxLoanPerColl value (see section 2.3). In this case, LPs are exposed to arbitrage, where
borrowers could borrow more from the pool than what the pledged collateral is worth. Hence,
LPs need to actively monitor the pools they’re invested in and remove liquidity if needed to
prevent potentially being arbitraged.

• Unpredictability of yield: the yield a LP can earn by adding liquidity to a pool cannot be known
in advance. This is because, depending on how the collateral price changes, borrowers will
repay or not, either yielding the repayment amount or the depreciated collateral. Secondly, the
effective interest rate at which loans are given to borrowers is dynamic and changes depending
on liquidity supply and demand (see section 2.5.3). And lastly, the yield greatly depends on
the borrower activity, i.e., how many loans are effectively taken out while the LP is active.

• Pool dilution: if other LPs add liquidity into a pool, previous LPs get diluted. This means
that older LPs will fund new incoming loans at a lower pro-rata share, and, as a result, will
also only be entitled to a lower pro-rata share of the associated loan proceeds. In case of large
liquidity injections, dilution can be significant and potentially even cause claimable amounts
to become negligible and prone to truncation errors.

• Variable APR: the rates at which users can borrow changes depending on liquidity supply
and demand (see section 2.5.3). As a result, LPs cannot know in advance at which rate they
will exactly fund an incoming ZLL. In particular, large liquidity injections by new LPs can
cause the offered borrow rate to drop. However, the pool’s interest rate model provides a
lower bound r2 that is guaranteed to never fall short of. Nonetheless, LPs should monitor the
currently applicable borrow rate and remove liquidity in case they consider the current borrow
rate inadequate.

• Minimum liquidity provisioning period: LPs must wait for a minimum liquidity provisioning
period of 120 seconds before they can remove liquidity. During this time their capital is locked
up.

• Overhead and costs of claiming: LPs must actively claim any loan proceeds. The process of
claiming can come along with significant transaction overhead and gas costs (see section 2.4.3),
especially if the LP is trying to claim proceeds from a larger number of loans. While the
aggregation mechanism can help make claiming more efficient, it cannot be guaranteed that
the LP will be able to take advantage of the full aggregation benefits. This is because the
eligibility to claim from buckets depends on the time that the LP added liquidity. For example,
if the LP added at loan index 100 and remains invested until loan index 200, they’ll be able
to claim from the full range from loan index 100 to 200. However, if they add liquidity at
loan index 101, they’ll have to claim individually by iterating over 99 loans, making claiming
more costly for them. Lastly, some claiming functions allow LPs to overwrite certain claiming

provides some examples on how to construct such claiming intervals.

8

settings, which can lead to an irrevocable loss of entitled loan proceeds. Hence, LPs should call
claiming related functions with great caution, especially when doing this programmatically or
directly through etherscan.

• Non-transferability of LP position: in MYSO v1, LP positions are non-fungible and non-
transferable, meaning that the only way to recoup a liquidity contribution is by removing
any unused liquidity and claiming from all entitled loan proceeds. In particular, there’s no
secondary market through which a LP could convert their LP position into cash.

• Opportunity costs: if a LP adds liquidity into a pool it cannot be known in advance when
the next borrower will arrive and when the LP’s liquidity contribution can be utilized to fund
the next loan. Hence, LPs can incur opportunity costs when there’s little borrower activity
in the pool. Moreover, once a loan has been settled, the corresponding loan proceeds aren’t
automatically reinvested but instead the LP needs to first actively claim them and reinvest if
desired. Hence, unclaimed loan proceeds may sit idle in the pool and cause opportunity costs
for LPs.

9

2.5 Borrowing

2.5.1 Zero-Liquidation Loans

A ZLL is a crypto-collateralized loan in which a user pledges collateral (e.g., wETH) to receive a loan
amount (e.g., USDC) as well as an option to reclaim their collateral prior expiry of the loan if they pay
a pre-agreed repayment amount. Users can choose which pool they want to borrow from according
to their collateral and loan currency preferences, desired loan tenor, etc. When a borrower takes
out a ZLL, the given pool assigns it a loanIdx20 and associates it with the corresponding borrower
address as well as a struct LoanInfo in which it stores the following information:

• collateral: the amount of collateral a borrower effectively pledges and can reclaim (post
potential transfer and pool fees).

• repayment: the amount a user needs to repay to reclaim the pledged collateral amount (see
section 2.5.3).

• totalLpShares: the number of total pool shares by which LPs need to later split the associated
repayment and collateral amounts when claiming.

• expiry: the timestamp until repayment is possible and after which the borrower forfeits their
collateral

• repaid: a flag indicating whether the loan was repaid or not.

2.5.2 Loan Amount Calculation

The amount y(x) a user can borrow from a pool is defined as follows:

y(x) =
x · l · La

x · l + La
(3)

where x is the pledge amount (post transfer and pool fees), l is the maximum loanable amount per
pledged collateral unit, and La = L−Lmin denotes the total available liquidity in a given pool. An
alternative way to express eq. (3) is:

y(x) =
(1− ux) · x · l + ux · La

2
(4)

where ux denotes the pool’s utilization and is given by:

ux =
x · l

x · l + La
(5)

From eq. (4) one can see that the loan amount y(x) is a weighted average of x · l and La (see also
fig. 1). In the extreme case where the pledge amount is zero (i.e., x → 0 and ux = 0) the infinitesimal
loan amount per pledged collateral is:

lim
x→0

y(x)

x
= lim

x→0

l · La

x · l + La
= l (6)

20The loanIdx starts at 1 and is incremented with every new incoming loan, making it unique per pool.

10

Figure 1: Example of how the loan-amount-per-pledged-collateral unit y(x)
x changes for different

pool utilization levels ux, assuming l = 1000, L = 106, and Lmin = 1.

Conversely, if a user pledges an infinite amount of collateral (i.e., x → ∞ and ux → 1) the loan
amount per pledged collateral unit converges to zero and the absolute loan amount to:21

lim
x→∞

y(x) = lim
x→∞

x · l · La

x · l + La

L′Hospital
= lim

x→∞

(x · l · La)
′

(x · l + La)′

= lim
x→∞

l · La

l
= La

(7)

Loan-to-Value
Let S denote the price of one collateral unit x. The Loan-to-Value (LTV) for a loan collateralized
with x is then given by

LTV =
y(x)

x · S

=
l · La

S · (x · l + La)

(8)

The more collateral x a user pledges, the closer the loan amount is to La (see eq. (7)), and
the lower the LTV. The limit of the LTV as limx→∞ is obviously 0. Note that a liquidity pool
is oblivious of the collateral price S, i.e., if the price falls below the maximum loan amount per
collateral unit, users can borrow at a LTV greater or equal 1.22

2.5.3 Repayment Amount & Applicable Interest Rate

If a user wants to reclaim their previously pledged collateral they must, prior to expiry of the loan,
pay the following repayment amount to the pool:

RepaymentAmount = y(x) · (1 + r) (9)

21Figure 9 provides an illustration for the convergence behavior of y(x) as x → ∞.
22LPs are naturally incentivized to remove liquidity in these situations to prevent being arbitraged.

11

where r is a rate locked in at the time the user borrowed y(x). The applicable rate r is given by:23

r =
rate(L∗) + rate(La)

2
(10)

where L∗ = La − y(x) is the pool’s liquidity after a user borrowed y(x), and the underlying
rate(La) is defined as the following piecewise function:

rate(La) =


r1L1

La
La < L1

r2 +
(r1−r2)·(L2−La)

L2−L1
L1 ≤ La ≤ L2

r2 L2 < La

(11)

where 0 < L1 < L2 and 0 < r2 < r1 denote the pool’s target liquidity and interest rate bounds,
which are set at deployment of the given pool and are immutable. Note that the reason we use an
average rate in eq. (10) is to ensure that for loans that occur within the target liquidity range, their
corresponding repayment amounts perfectly match the integral under the rate(La) curve, such that
splitting up a larger loan into multiple smaller ones doesn’t yield any benefit.24 Figure 2 provides
an illustration of the associated interest rate curve, where we can see that if the pool liquidity falls
below the lower liquidity bound L1 then rate(La) is defined by a hyperbola. If the liquidity is
within the target range [L1, L2] then rate(La) follows a linear function, and if the liquidity exceeds
the upper liquidity bound L2 then rate(La) = r2 is constant.

Figure 2: Example of how rate(L) changes depending on the available pool liquidity La, assuming
(L1, r1) = (105, 0.2) and (L2, r2) = (106, 0.02).

Generally speaking, the more liquidity there is (i.e., by LPs adding liquidity) the lower the
interest rate, and conversely, the less liquidity there is (either by users borrowing or by LPs removing
liquidity), the higher the interest rate. From the definition of eq. (11) we can see that rates can never
fall below r2, providing LPs a guaranteed lower bound at which their capital is lent to borrowers.
However, rate(La) isn’t bound upwards to allow the market to find an interest rate equilibrium,
even for highly volatile collateral assets.

23The rate r can easily be converted to an Annual Percentage Rates (APRs) given the tenor of the respective loan.
24Most loans are expected to be taken out within the target liquidity range, hence this property is only guaranteed

12

2.5.4 Rolling Loans

Borrowers can roll loans, i.e., instead of first repaying an old loan and then taking out a new one
with the same collateral amount, they can do all of this in one transaction.25 For this, borrowers
only need to pay the difference between the previously owed repayment amount and the new loan
amount they’d receive if they repledged their collateral. The logic according to which the new loan
amount and repayment amount are determined is the same as previously described in section 2.5.2
and section 2.5.3. Note that for technical reasons, rolling a loan is only possible if the owed repay-
ment amount exceeds the new loan amount, i.e., if RepaymentAmountold > y(x)new.

26 Moreover,
note that when a borrower rolls their loan the associated repayment amount (not the difference
RepaymentAmountold − y(x)new) becomes claimable for previously invested LPs.27

2.5.5 Risks for Borrowers

Generally speaking, borrowing from a MYSO v1 pool is less risky than liquidity provisioning.
Nonetheless, borrowers should be aware of the following risks:

• Fixed repayment amounts: when a borrower takes out a ZLL they lock in a fixed repayment
amount. This means that if the pool’s borrow rates fall afterwards, the borrower will still
have to pay the previously locked-in repayment amount. Moreover, borrowers should be aware
that early repayment doesn’t lead to a lower APR, i.e., the repayment amount is constant and
independent of how long the borrow position was open.

• Opportunity costs: when a borrower pledges collateral into a pool, any associated rewards
aren’t automatically harvested for them (e.g., airdrops or the like).

• Rolling loans: if a borrower wants to roll a loan there’s no guarantee that this will be possible
(future pool liquidity might be insufficient) or that the new loan terms will be favorable (see
section 2.5.4).

here.
25This allows to save on potential transfer fees because the collateral asset doesn’t need to be transferred out of the

pool and back in.
26This means that rolling loans always causes a reduction in the borrower’s loan currency balance.
27Essentially, the repayment proceeds are ‘pre-funded’ by the pool’s available liquidity.

13

2.6 Approvals & Peripheral Contracts

The MYSO v1 core allows users to approve other addresses to call certain functions on their behalf.
This enables functional extensibility through peripheral contracts while keeping the MYSO v1 core
lean and maintaining a good separation of concerns. For example, by virtue of approvals one can
move functionalities related to wrapping and unwrapping of tokens into a peripheral router contract
instead of having to incorporate this into the core.28 Another example is automating liquidity pro-
visioning through peripheral vault contracts, e.g., removing liquidity depending on collateral prices
change (see fig. 3) or claiming and reinvesting loan proceeds, etc.

Figure 3: Example of how a peripheral contract could be constructed to automatically remove
liquidity on behalf of a LP depending on some off-chain price data (which can be verified through
an on-chain oracle).

To approve a third party address (i.e, an EOA or contract) users need to call setApprovals()
and specify which functions the given third party shall be allowed to call on their behalf. Users can
approve the following functions:

• Add liquidity: if approved, a third party can add liquidity on behalf of the given LP. This
means the third party pays the liquidity contribution amount but the LP is credited with a
corresponding amount of LP shares. Naturally, this approval is rather low risk because in the
worst case, one can receive LP shares for free. Nonetheless, LPs should carefully assess the
to-be-approved address because adding liquidity on their behalf can prolong their liquidity

28Note that in addition to wrapping and unwrapping a peripheral router contract can be used to minimize transaction
overhead associated with individual pool approvals, or to incorporate flashswaps for leverage.

14

provisioning lock-up (see section 2.4.2).29

• Claiming: the approved third party can claim loan proceeds on behalf of a LP. LPs should
carefully assess the to-be-approved address as it will have control over all unclaimed loan
proceeds the LP is entitled to. Even if the third party is a non-custodial vault contract, it
nonetheless is vital to assess the correctness of the corresponding contract to prevent any
damage from potential ill claiming (e.g., skipping loan indices, see section 2.4.4).

• Remove liquidity: this allows a third party to remove liquidity on behalf of a LP. Users should
be very cautious to provide this approval as the third party will essentially have full control
over the LP’s removable liquidity contribution.

• Borrowing: the approved third party can pledge collateral on behalf of the approving address.
To be more specific, the approved party can then pay the collateral amount and receive the
loan amount but the approving address will be registered as the loan holder and be able to
repay and reclaim the pledged collateral.30 Generally speaking, this approval is rather low risk
because worst case the third party pays the collateral amount and receives the loan, while the
approving address obtains a free option on the underlying collateral.

• Repaying: the approved third party can repay on behalf of the approving address. In this case,
the third party pays the repayment amount and the collateral is sent to a recipient address
that must either be the approved third party or the original loan owner.

• Rolling Over: if approved, a third party can roll over a loan on behalf of the approving address.
In this case the third party pays the rollover cost (see section 2.5.4) and a new loan is taken
out on behalf of the original loan owner. This means that the original loan owner retains their
option to reclaim their previously pledged collateral; however, at a new repayment amount.

29I.e., the LP’s liquidity provisioning lock-up period is reset to 120 seconds.
30This allows wrapping and unwrapping of tokens through a peripheral contract.

15

2.7 Pricing ZLLs

What are fair loan terms at which rational market participants would be willing to take out ZLLs
and fund them? To answer this question we need a way to price ZLLs. We can do this by viewing
them as swaps and pricing the embedded call option leg to derive a fair APR. To be more precise,
every ZLL can be seen as two swaps (see fig. 4): (i) a swap between the borrower and the liquidity
pool, and (ii) a swap between the liquidity pool and the LPs. Section 2.7.1 and section 2.7.2 describe
these swaps in more detail.

Borrower
Liquidity

Pool
LP

(a.1): x · S

(a.2):

y(x) + x · (1− γ) · C(S,K,∆T)

(b.1):

x · (1− γ) ·
(
S − C(S,K,∆T)

)
· si∑

i si

(b.2): y(x) · si∑
i si

Figure 4: Zero-Liquidation Loan decomposed into two swaps, (a) and (b). (a.1) The borrower
pledges collateral. (b.1) The LPs become entitled to the pledged collateral on a pro-rata basis and
write an equal number of calls on it. (b.2) The LPs provide funding for the loan amount on a
pro-rata basis. (a.2) The borrower receives the total loan amount as well as a call option to reclaim
their collateral (net of fees).

2.7.1 Payoff from a Borrower’s Perspective

From a borrower’s perspective, a ZLL can be seen as a swap in which the borrower:

• pledges x collateral tokens;

• receives y(x) loan tokens (see section 2.5.2);

• is allowed to reclaim their previously pledged collateral (net of any fees) if they pay the locked-
in repayment amount prior expiry of the loan. Essentially, this represents a call option to buy
x · (1− γ) collateral tokens from the pool for the RepaymentAmount (see section 2.5.3).31

In other words, taking out a ZLL as a borrower is equivalent to doing the following swap:

x · S 7 borrow−−−−→ y(x) + x · (1− γ) · C(S,K,∆T) (12)

where

31Note that the call options are fully backed by the collateral the borrower pledges. No rehypothecation takes place,
ensuring that borrowers can at all times exercise their calls.

16

x = amount of collateral tokens sent to the pool
S = price of the collateral
y(x) = loan amount
γ = pool fees
C(...) = value of call option

K = strike price of the call option, where K = RepaymentAmount
x·(1−γ)

∆T = tenor of the loan (or time to expiry of the call)

Figure 5 illustrates the borrower’s payoff function before and after the loan is taken out. Initially,
they hold the collateral asset and participate 1:1 in the value change of the asset. After the loan is
taken out, the borrower holds call options on their collateral, and the loan amount.32 This means the
borrower retains their upside participation in the collateral while being protected from any downside
risk, i.e., if the collateral price falls below the strike price K then the borrower doesn’t have any
incentive to repay and will leave the collateral in the pool.

Figure 5: Illustration of a borrower’s payoff before and after taking out a ZLL.

2.7.2 Payoff from a LP’s Perspective

From a LP’s perspective, funding a ZLL can be seen as a swap in which the LP:

• provides y · si∑
i si

in pro-rata funding for the incoming loan;

• receives x · (1− γ) · si∑
i si

in pledged collateral;

• writes x · (1− γ) · si∑
i si

call options.

In other words, a LP who funds a ZLL does the following swap:

α · y 7 LP−−→ α · x · (1− γ) ·
(
S − C(S,K,∆T)

)
(13)

32Depending on the strike price, we can construct a swap where the borrower becomes indifferent between holding
the underlying or a combination of calls and loan amount (see section 2.7.3).

17

where α = si∑
i si

denotes the pro-rata share of the given LP i (see section 2.4.1).

Figure 6 illustrates the payoff diagram of a LP before and after funding a ZLL. Before, the
LP simply holds their liquidity contribution amount, which is independent of the underlying price.
After the LP funded a ZLL, their position turns into an in-the-money covered call, i.e., they’re long
in the underlying collateral but also short an in-the-money call option.33

Figure 6: Illustration of a LP’s payoff before and after funding a ZLL (assuming only one LP in
pool and 100% utilization).

If at expiry of the loan the underlying price is above the strike price (whereK = RepaymentAmount
x·(1−γ)),

then the borrower is naturally incentivized to repay and the LP will be able to claim a pro-rata share
of the repayment amount. Otherwise, if the underlying price falls below the strike price then the
borrower will not repay and the LP will be able to claim a pro-rata share of the collateral. Note
that fig. 6 is a simplified illustration that assumes that there’s only one LP and the pool utilization
is 100%. In practice, however, there will be other LPs in the pool as well, meaning that LPs fund
incoming loans only on a pro-rata basis, and similarly, LPs only gain exposure to a pro-rata share
of an in-the-money covered call position.

2.7.3 Fair APRs

In a fair ZLL, both sides of eq. (12) have the same value such that neither borrowers nor LPs are
better or worse off after the ZLL.34 We can find a fair strike that makes the swap in eq. (12) have
zero value by solving the following minimization problem:

K∗ = argmin
K

(
x · S − y(x)− x · (1− γ) · C(S,K,∆T)

)2
(14)

For simplicity, we’ll assume that ZLL borrowers holds a European style option instead of an
American one and use the well-known Black-Scholes model as an approximation to price the call

33Or, equivalently, the covered call can be seen as a short synthetic put.
34Or, equivalently one could also use eq. (13) here.

18

[2]:35

C(S,K,∆T) = SΦ(d1)−Ke−r(∆T)Φ(d2) (15)

where

d1 =
ln(S/K) + (r + σ2/2)(∆T)

σ
√
∆T

d2 = d1 − σ
√
∆T

(16)

and

r = risk free rate
σ = price volatility of the collateral
Φ = Gaussian cumulative distribution function

Based on eq. (14) it is easy to infer the corresponding fair APR:

APR =

(
x · (1− γ) ·K

y(x)
− 1

)
· 1

∆T
(17)

LPs have positive expected value if they fund ZLLs at a higher APR than the fair APR, and con-
versely, borrowers have positive expected value if they borrow at a lower APR than the fair APR.

Figure 7 provides a numerical example for fair APRs for different LTV and tenor combinations.
One can see that the APR increases for higher LTVs as well as longer tenors, which fits the intuition
that LPs would demand a higher compensation when underwriting loans with higher (and longer)
collateral price risk [17]. Similarly, underwriting loans on more volatile collateral assets should entail
a higher APR compensation. By comparing fig. 7 and fig. 10 we indeed can see that this is the case,
i.e., the fair APRs are overall higher in the higher volatility case and that the differences between
the individual LTV and APR combinations become more pronounced.

35If one wants to take into account the American style exercise feature of ZLLs one can, for example, use the
Longstaff-Schwartz model [10] instead of Black-Scholes.

19

Figure 7: Numerical example of fair APRs across different LTV and loan tenor combinations.

3 Closing Remarks

By introducing ZLLs, MYSO v1 allows to radically simplify the user experience for borrowers and
provide LPs with a conservative yield enhancement strategy in the form of physically settled in-the-
money covered calls36. From a systemic point of view, MYSO v1 can help mitigate some of the key
risks associated with liquidation-centric credit markets, such as cascading liquidations, externalities
stemming from liquidation-related MEV, and oracle manipulations. What makes MYSO v1 unique
is that its pools are open-ended, allowing borrowers to take out loans with a constant tenor37 and
that liquidity provisioning is continuously possible. In addition, the protocol is trust-minimized and
operates without relying on any trusted third parties. Moreover, liquidity pools are isolated from
one another such that a bad collateral asset in one pool cannot compromise the integrity of other
pools. Despite the aforementioned strengths of the MYSO v1 core, it also comes with limitations
that require further work, in particular w.r.t. potential liquidity fragmentation for certain asset
pairs, possible claiming overhead and the need for active liquidity provisioning. Nonetheless, we
hope that the MYSO v1 protocol can meaningfully contribute to the further development of DeFi.

36Or, equivalently, a short synthetic put.
37This stands in contrast to alternative liquidation-less borrowing solutions in which pools typically have a fixed

expiry date such that the offered loan tenors get shorter over time.

20

References

[1] L. Baker. Paradigms for on-chain credit. https://jumpcrypto.com/paradigms-for-on-

chain-credit, Aug 2022.

[2] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of Political
Economy, 1973.

[3] DefiLlama. Dashboards - DeFi overview. https://defillama.com, October 2022.

[4] S. Deshmukh, S. Warren, and K. Werbach. Decentralized finance (defi) policy-maker toolkit.
https://www3.weforum.org/docs/WEF_DeFi_Policy_Maker_Toolkit_2021.pdf, June 2021.

[5] Eurex. Credit, concentration & wrong way risk. https://www.eurex.com/ec-en/services/

risk-management/credit-concentration-wrong-way-risk. visited on 2022-10-19.

[6] Galaxy Digital Research. Mev: How flashboys became flashbots. https://assets.ctfassets.
net/h62aj7eo1csj/NYw2dyWSNeD4KEHP0R4c1/c997bba68ecdc845306eb1ff8bdf5032/GLXY_-

_MEV_Whitepaper.pdf, Jan 2021.

[7] O. Godbole. Ethereum money markets see record liquidations as ether tanks; makerdao revenue
surges. https://www.coindesk.com/markets/2022/01/25/ethereum-money-markets-see-

record-liquidations-as-ether-tanks-makerdao-revenue-surges, Jan 2022.

[8] S. Haig. Solend to not freeze whale’s $216m account after move decried as ‘opposite of defi’.
https://thedefiant.io/solend-whale-proposals-freeze-account, June 2021.

[9] F.-S. Lhabitant. Derivatives in portfolio management: Why beating the market is easy. https:
//risk.edhec.edu/sites/risk/files/EDHEC_WhyBeatingTheMarketIsEasy.pdf, Nov 2000.

[10] F. Longstaff and E. Schwartz. Valuing american options by simulation: A simple least-squares
approach. The Review of Financial Studies, 2001.

[11] T. Mackinga, T. Nadahalli, and R. Wattenhofer. Twap oracle attacks: Easier done than said?
https://eprint.iacr.org/2022/445, Apr 2022.

[12] L. Odier. Lombard loans. https://www.lombardodier.com/home/private-clients/

lombard-loans.html.

[13] K. Qin, L. Zhou, P. Gamito, P. Jovanovic, and A. Gervais. An empirical study of defi liq-
uidations: Incentives, risks, and instabilities. https://arxiv.org/pdf/2106.06389.pdf, Jun
2021.

[14] Ruler Protocol. A market driven lending platform that provides non-liquidatable and fungible
loans. http://rulerprotocol.com.

[15] A. Sardon. Zero-liquidation loans: A structured product approach to defi lending. https:

//arxiv.org/abs/2110.13533, October 2021.

[16] A. Sardon. Claiming intervals. https://github.com/mysofinance/notebooks/blob/main/

claiming-intervals.ipynb, Oct 2022.

[17] A. Sardon. Thinking about fair APRs for profit and fun. https://github.com/mysofinance/
notebooks/blob/main/thinking-about-fair-aprs-for-profit-and-fun.ipynb, Septem-
ber 2022.

21

[18] The Options Industry Council. An income strategy: Let’s sell some options.
https://www.fidelity.com/bin-public/060_www_fidelity_com/documents/learning-

center/lets-sell-some-options.pdf, 2017.

[19] Timeswap. Like uniswap, but for lending & borrowing. https://timeswap.io.

[20] Vendor Finance. Non-liquidatable, fixed-rate, perpetual loans. https://vendor.finance.

22

Appendices

Figure 8: Base pool contract, derived asset-pair specific implementation contracts and pool in-
stances.

23

Figure 9: Example of how the loan amount y(x) changes for different collateral amounts x, assuming
l = 1000, L = 106, and Lmin = 1.

Figure 10: Similar to fig. 10, but with a higher assumed collateral price volatility.

24

