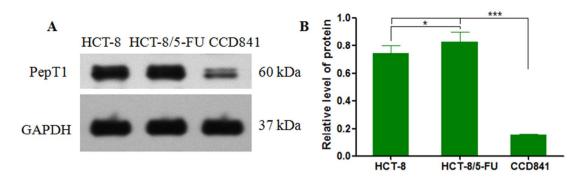
Supporting Information


Synthesis of CDDO-Amino Acid-Nitric Oxide Donor Trihybrids as Potential Antitumor Agents against Both Drug-sensitive and Drug-resistant Colon Cancer

Yong Ai, a,b Fenghua Kang, a,b Zhangjian Huang, a,b,*, Xiaowen Xue, Yisheng Lai, a,b Sixun Peng, a,b Jide Tian, and Yihua Zhang a,b*

Table of concents:

1. Expressing profile of PepT1 in colon cancer and noncancer cells	S1-S2 S2 S2-S8
2. Procedure for the preparation of compound 5	
3. HPLC assessment of compound purity	

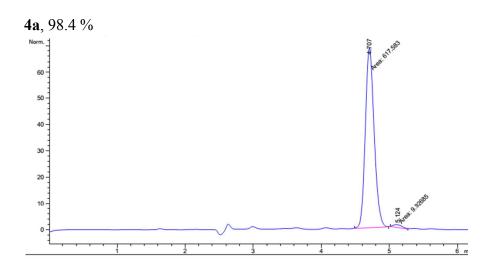
1. Expressing profile of PepT1 in colon cancer and noncancer cells

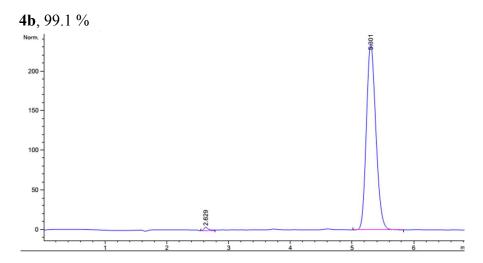
Figure S1. Expression profiles of PepT1 protein in HCT-8, HCT-8/5-FU, and CCD841 cell lines. Cell lysates of HCT-8, HCT-8/5-FU, and CCD841 cells were analyzed by Western blot. The expression of the house keeping protein GAPDH was used as a control of equal protein loading. Data are representative images and expressed as the means \pm SD

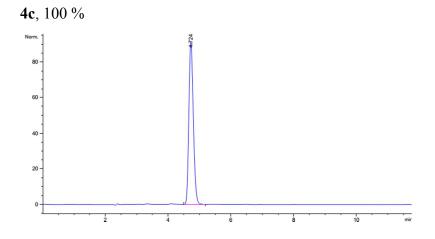
of each group of cells from three separate experiments. A. Western blot analysis of the relative levels of PepT1 expression. B. Quantitative analysis. *P < 0.05 vs. the HCT-8/5-FU group, **P < 0.001 vs. the CCD841 group.

2. Procedure for the preparation of compound 5

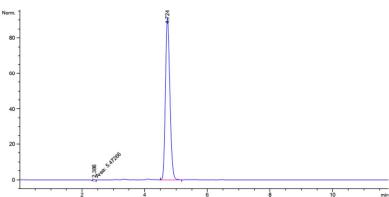
Figure S2. Synthetic Route for Compound 5.

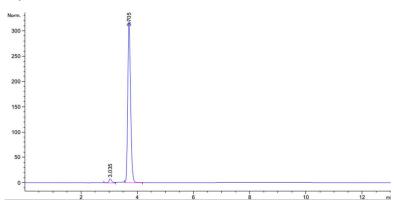

Compound **6** was prepared according to the method described previously.¹ The crude product was used without further purification. Thus, a mixture of **6** (0.2 g, 0.36 mmol), KOH (0.08 g, 2.4 mmol) in methenol was stirred at room temperature until the starting material was totally consumed as indicated by TLC. The mixture was then poured into CH_2Cl_2 (50 mL), and washed sequentially with 1 N HCl (3 × 25 mL) and saturated NaCl solution, and the organic fraction was dried over sodium sulfate. After removal of the solvent, the crude product was purified by column chromatography (PE : AcOEt = 2:1-1:1 v/v) to afford the title product **5** in 82 % yield as a white solid: mp 165-167 °C; ¹H NMR (300 M Hz, CDCl₃, 25 °C, TMS): δ 8.10 (s, 1H, C₁-H), 6.66 (br s, 1H, CONH), 6.02 (s, 1H, C₁₁-H), 4.04 (m, 2H, NH<u>CH₂</u>CO), 3.08 (d, J = 4.2 Hz, 1H, C₁₃-H), 2.96-2.92 (m, 1H, C₁₈-H), 1.49 (s, 3H, CH₃), 1.34 (s, 3H, CH₃), 1.26 (s, 3H, CH₃), 1.17 (s, 3H, CH₃), 1.02 (s, 3H, CH₃), 0.98 (s, 3H, CH₃), 0.91 (s, 3H, CH₃) ppm; ¹³C NMR (75 M Hz, CDCl₃, 25 °C, TMS): δ 199.2, 196.1, 178.0, 172.7, 169.2, 165.5, 123.4, 117.9, 114.0, 49.1, 47.1, 46.1, 45.5, 44.5, 42.1, 41.6, 35.6, 34.0, 33.5, 32.7, 31.3, 31.2, 30.1, 29.2, 28.8, 27.1, 26.5, 26.1, 24.4, 22.6, 21.3, 21.1, 17.7; ESI-MS: 549 [M+H]⁺.

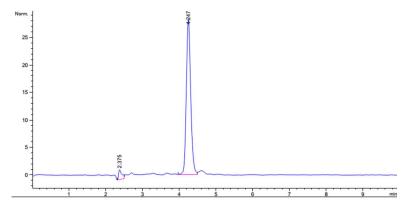

3. HPLC assessment of compound purity.

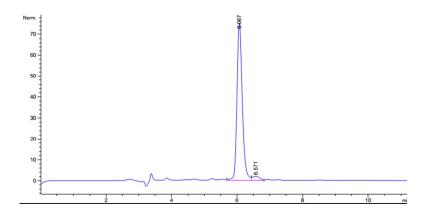

All tested compounds (4a-i) with a purity of > 95% were used for subsequent biological assays. We provided the spectra of HPLC assays as below.

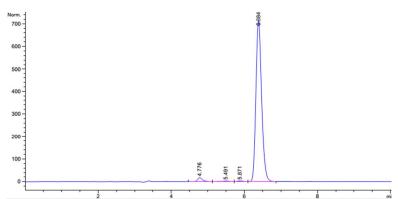
Column: Inertex C18 (150 mm \times 4.6 mm \times 5 μ m); Mobile phase: Methanol-Water (80:20 to 95:5, v/v);

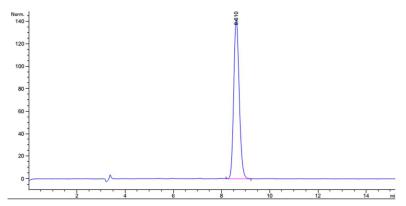

Wavelength: 244 nm; Rate: 0.8 mL/min; Temperature: 25 °C;

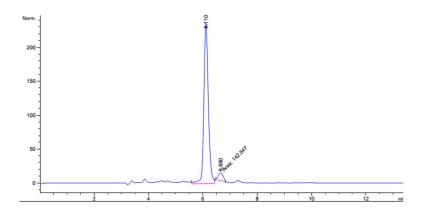


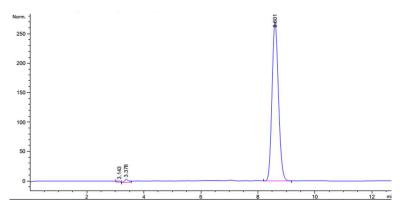


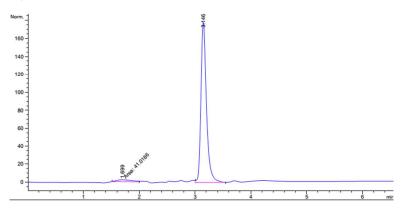

4e, 97.7 %

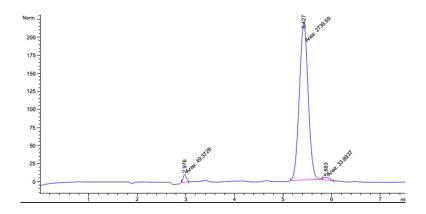

4f, 95.7 %

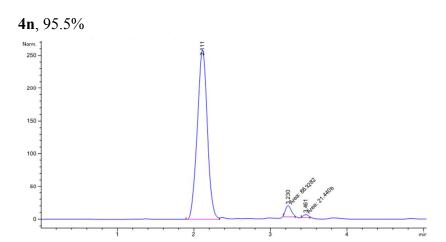

4g, 96.4 %

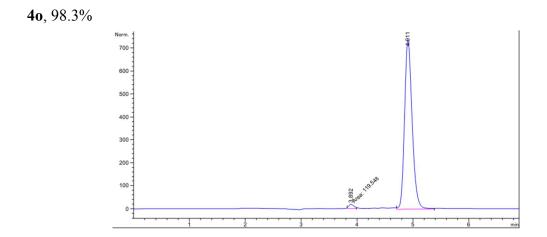


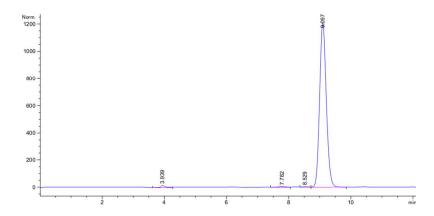


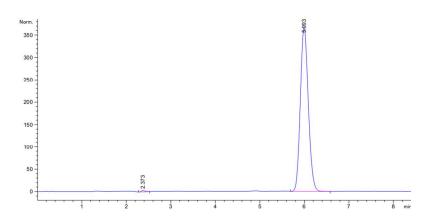

4j, 95.0 %








4m, 97.1 %



4q, 98.0 %

4p, 99.6%

References

(1) Onyango, E. O.; Fu, L.; Cao, M.; Liby, K. T.; Sporn, M. B.; Gribble, G. W. Synthesis and biological evaluation of amino acid methyl ester conjugates of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid against the production of nitric oxide (NO). *Bioorg. Med. Chem. Lett.* **2014**, *24*, 532-534.