Supporting Information

Sonja Milić, Jelena Bogdanović Pristov, Dragosav Mutavdžić, Aleksandar Savić, Mihajlo Spasić, Ivan Spasojević

The relationship of physicochemical properties to the antioxidative activity of free amino acids in Fenton system

Supporting Information (9 pages) include 4 tables and 3 figures.

Side-chain	Amino acid	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)
non-polar	Gly	0	0	2.39	3.798	0.94	2.23	-0.16	0	-2.4	-1.131
	Ala	3.3	0.35	1.13	13.26	1.81	0.07	-0.27	0.31	-1.1	-0.605
	AABA	-	-	-0.58	-	-	-	-	0.82	-1.7	-0.247
	Pro	9.4	0.84	0.02	27.54	-	-1.22	-0.75	0.72	-0.2	-0.554
	Val	14	1.32	-2.27	44.6	4.04	-2.69	-0.4	1.22	4.1	0.050
	Nle	15.9	-	-3.71	-	-	-	-	1.7	-	0.891
	Ile	22.2	1.83	-3.48	69.53	4.92	-4.44	-0.77	1.8	8.7	0.619
	Leu	24.1	1.8	-3.66	73.84	4.92	-4.19	-1.1	1.7	9.7	0.830
	Phe	30.1	1.69	-3.62	90.17	2.98	-4.92	-1.43	1.79	10	0.644
	Тгр	33.2	1.35	-4.02	100	2.33	-4.75	-1.57	2.25	9.7	0.196
	Tyr	15.2	0.39	-3.58	47.49	-0.14	-1.39	-0.56	0.96	2.5	-0.492
	DOPA	-	-	-2.57	-	-	-	-	0.56	-	-0.144
	Ser	0	-0.63	2.48	3.526	-3.4	1.96	0.42	-0.04	-4.3	-1.737
polar uncharged	Thr	2.8	-0.27	0.55	11.64	-2.57	0.92	0.63	0.26	-3.8	-1.277
	НҮР	-	-	1.13	-	-	-	-	-	-	-1.584
	Asn	0	-0.99	2.88	1	-6.64	3.22	0.81	-0.6	-7.1	-2.216
	Gln	0.6	-0.93	1.14	5.996	-5.54	2.18	1.1	-0.22	-6	-1.858
charged	Lys	-3.7	-1.54	3.76	2.917	-5.55	2.84	1.7	-0.99	-9.9	-0.196
	Arg	-3.7	-1.5	3.21	10.24	-14.92	2.88	1.87	-1.01	-10	-3.412
	Asp	-1	-2.15	2.33	8.146	-8.72	3.64	0.81	-0.77	-8.3	-3.401
	Glu	-0.5	-1.95	1.07	11.12	-6.81	3.08	1.17	-0.64	-8.3	-3.689

Table S1. Hydrophobicity/hydrophilicity scales for amino acids.

(a) Hydrophobicity coefficients of side-chains established via RP-HPLC (pH = 7) retention times of model peptides.²¹

(b) Residue hydrophobicity calculated from retention times (reverse-phase HPLC; pH = 7.5) and normalized to Gly.²²

(c) Hydrophilicity (z₁-scale) calculated from thin layer chromatography retention values, NMR and theoretical data.²³

(d) Calculated coefficients for side-chain hydrophobicity in peptides using retention times (RP-HPLC) and theoretical approach.²⁴

(e) Hydrophobicity calculated as free energies (kcal/mol) of transfer of amino acids side chains from dilute solution in cyclohexane to dilute aqueous solution at pH 7.²⁵

- (f) Calculated descriptor (principal property) of hydrophilicity (z_1) .²⁶
- (g) Calculated descriptor (principal property) of hydrophilicity (F_4) .²⁷

(h) Hydrophobicity (Π) = Log P (amino acid) - Log P (Gly). Partition coefficient (P) was directly estimated in octanol/water.²⁸

(i) Combined consensus scale of hydrophobicity extracted from 162 different scales (experimental and theoretical).²⁹

(j) LogP (octanol/water) calculated using DruLiTo (this paper).

Side-chain	Amino acid	(k)	(l)	(m)	(n)	(0)
	Gly	2.06	0	43.2	9	5.5
	Ala	2.87	1	60.4	8.1	6.2
	AABA	4.11	2	-	-	-
	Pro	4.11	2.72	81	8	7.58
non nolon	Val	4.11	3	90.8	5.9	8.5
non-polar	Nle	6.17	4	-	-	-
	Ile	4.92	4	107.5	5.2	9.8
	Leu	4.92	4	107.5	4.9	9.7
	Phe	4.62	5.89	121.2	5.2	10.6
	Trp	7.68	8.08	143.9	5.4	-
	Tyr	4.73	6.47	123.1	6.2	-
	DOPA	4.73	7.05	-	-	-
,	Ser	3.97	1.6	60.3	9.2	6.9
polar uncharged	Thr	4.11	2.6	76.8	8.6	-
uncharged	НҮР	-	-	-	-	-
	Asn	4.58	2.95	78	11.6	-
	Gln	6.11	3.95	93.9	10.5	-
	Lys	6.89	4.77	108.5	11.3	10.5*
ahanaad	Arg	7.82	6.13	127.3	10.5	-
charged	Asp	4.74	2.78	73.8	13	-
	Glu	5.97	3.78	85.9	12.3	7.9*

Table S1 (continued). Steric parameters, polarity and hydration numbers of free amino acids.

(k) STERIMOL length of the side-chain, measured in the direction in which it is attached to the glycine backbone.²⁸

(I) van der Waals volume of the side chain, normalized according to equation: $[V(side-chain) - V(H)] - V(CH_2)$.²⁸

(m) Molar volume (cm³/mol) of free amino acid in the solvent at neutral pH and 25° C.³⁰

(**n**) Polarity.³¹

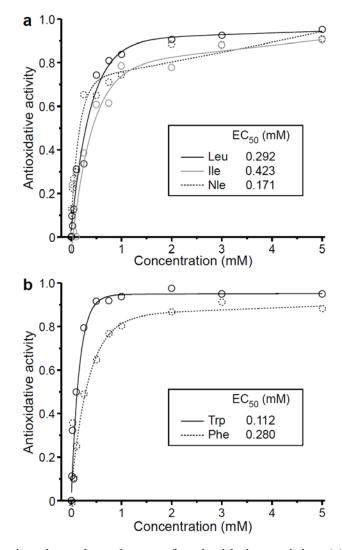
(o) Hydration number for free amino acids in water; 32 * not applied in the calculus.

Side-chain	FAA	AA	$k_{Fenton} (\mathbf{M}^{-1} \mathbf{s}^{-1})^*$	$k_{radiolysis} (\mathbf{M}^{-1} \mathbf{s}^{-1})^{\#}$
	Gly	-0.095	-	$1.7 imes 10^7$
	Ala	-0.080	-	$7.7 imes 10^7$
	AABA	0.260	$2.5 imes 10^9$	$5.3 imes 10^8$
	Pro	0.349	$4.0 imes 10^9$	$6.5 imes 10^8$
non nolon	Val	0.542	$8.9 imes 10^9$	$8.5 imes 10^8$
non-polar	Nle	0.851	$4.3 imes 10^{10}$	$2.5 imes 10^9$
	Ile	0.824	$3.5 imes 10^{10}$	$1.8 imes 10^9$
	Leu	0.903	$7.0 imes 10^{10}$	1.7×10^{9}
	Phe	0.840	$4.0 imes 10^{10}$	6.9×10^{9}
	Trp	0.925	9.2×10^{10}	1.3×10^{10}
	Tyr	0.379	4.6×10^{9}	1.3×10^{10}
	DOPA	0.611	$1.2 imes 10^{10}$	$2.6 imes 10^9$
nolon	Ser	0.059	$4.7 imes 10^8$	3.2×10^8
polar	Thr	0.067	$5.4 imes 10^8$	$5.1 imes 10^8$
uncharged	HYP	0.298	3.2×10^9	3.2×10^8
	Asn	-0.104	-	4.9×10^{7}
	Gln	0.077	6.3×10^{8}	$5.4 imes 10^8$
	Lys	0.396	$4.9 imes 10^9$	3.5×10^{8}
oborgod	Arg	0.576	$1.0 imes 10^{10}$	$3.5 imes 10^9$
charged	Asp	-0.252	-	$7.5 imes 10^7$
	Glu	-0.017	-	$2.3 imes 10^8$

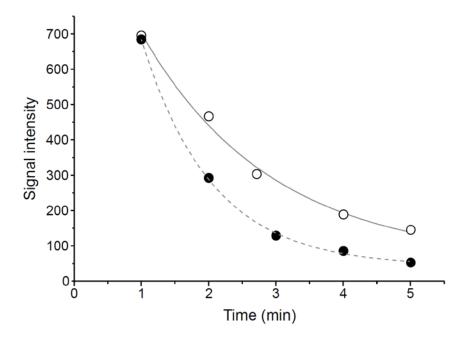
Table S2. Antioxidative activities (AA) and total rate constants (k_{Fenton}) determined in this study, and previously established rate constants for reactions of FAA with HO[•] produced via water radiolysis ($k_{radiolysis}$).

* k_{Fenton} (total rate constant) could not be calculated for FFA that showed AA < 0; [#] taken from previous reports.^{9,10,19}

Side-chain	FAA	ORP (mV)*		
	Gly	213.0		
	Ala	217.8		
	AABA	210.3		
	Pro	208.4		
non-polar	Val	221.4		
non-pota	Nle	214.1		
	Ile	218.2		
	Leu	210.8		
	Phe	244.4		
	Trp	238.0		
	Tyr	228.2		
	DOPA	78.0		
	Ser	224.2		
polar	Thr	236.5		
uncharged	HYP	216.9		
	Asn	238.2		
	Gln	236.0		
	His	343.8		
	Lys	238.5		
charged	Arg	252.4		
chargeu	Asp	374.1		
	Glu	328.5		
sulfur-	Cys	170.0		
containing	HCY	10.1		
containing	Met	239.1		


Table S3. Static ORP (mV) of water solutions of FAA (5 mM).

* Static ORP of water was 210.9 mV.


Table S4. Contribution of functional groups to hydrophobicity/hydrophilicity of FAA (scales (a) – (j) are presented in Table S1), and coefficients of correlation (R) between contributions to hydrophobicity/hydrophilicity and contributions to AA (the calculus of contributions to AA was conducted without His; it delivered results that were almost identical compared to results presented in Figure 2c). Hydrophobicity/hydrophilicity parameters that were calculated using contributions of groups fitted well with values in the scales from the literature (mean R = 0.993).

Functional group	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)
NH ₃ ⁺ CHCOO ⁻	2.17	0.06	2.79	9.46	0.3	1.63	-0.17	0.08	-2.13	-1.1
СН	11.42	0.58	-1.23	29.76	0.03	-1.47	0.04	0.63	6.79	0.35
CH ₂	4.55	0.39	-1.5	18.21	1.11	-1.44	-0.16	0.45	2.75	0.46
CH ₃	1.47	0.38	-1.85	5.4	1.75	-1.5	-0.25	0.29	0.22	0.49
ОН	-10.57	-1.2	0.83	-31.38	-4.41	2.32	0.87	-0.68	-6.95	-1.07
benzene	21.23	1.21	-5.3	56.86	2.22	-4.51	-1.12	1.2	9.1	1.26
COO.	-9.73	-2.68	1.17	-27.13	-9.73	3.89	1.38	-1.46	-10.31	-3.13
CONH ₂	-8.68	-1.59	1.48	-33.27	-8.05	3.23	1.35	-1.16	-8.56	-1.63
indole	26.5	0.92	-5.31	72.35	0.93	-4.94	-1.26	1.73	9.08	0.84
amino	-24.04	-3.13	6.97	-79.36	-10.28	6.96	2.48	-2.87	-18.77	-0.92
guanidino	-19.49	-2.71	4.92	-53.83	-18.54	5.57	2.49	-2.44	-16.13	-3.68
R	0.938	0.920	-0.846#	0.947	0.738	-0.933#	-0.874#	0.918	0.950	0.746
P *	<0.0001	<0.0001	0.001	<0.0001	0.010	<0.0001	<0.0001	<0.0001	<0.0001	0.008

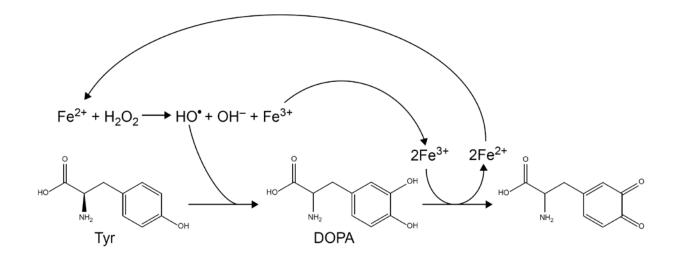

 $^*P < 0.05 -$ statistically significant correlation; $^{\#}$ hydrophilicity.

Figure S1. Concentration-dependent change of antioxidative activity. (a) Branched-chain FAA; (b) Aromatic FAA. Exponential fits with two terms (full, dashed, or gray lines) were used to extract EC_{50} (concentration of FAA at which AA = 0.5). This does not imply anything about the kinetics of reactions, but rather reflects the limitations of the method and complexity of the system, which involves radical trapping and spin-adduct decomposition. Because the calculation of EC_{50} involves interpolation, rational functions were not suitable. Smoothing spline showed a significant overshoot not reflecting the real concentration dependence.

Figure S2. The decay of intensity of EPR signals of DEPMPO adducts in Cys + Fenton system (white circles; exponential fit (full line) $r^2 = 0.989$) and in HCY + Fenton system (black circles exponential fit (dashed line) $r^2 = 0.998$).

Figure S3. Scheme of pro-oxidative activity of Tyr and DOPA in the Fenton system. Tyr reacts with 'OH to produce DOPA (and analogous compounds). DOPA reduces 2 Fe^{3+} to 2 Fe^{2+} via a two-step process. Firstly, DOPA forms a complex with Fe^{3+} which undergoes internal electron transfer to produce the respective semiquinone and release Fe^{2+} . Semiquinone is unstable and rapidly reduces another Fe^{3+} to Fe^{2+} . Fe^{2+} re-enters Fenton reaction thus giving rise to further production of 'OH.